
Extending the UML Profile for Schedulability Performance and Time (SPT) for
component-based systems

Dorina C. Petriu and Murray Woodside
Dept of Systems and Computer Engineering, Carleton University, Ottawa Canada

{petriu | cmw} @ sce.carleton.ca

1. Introduction
Component Based Software Engineering (CBSE) is emerging as a paradigm for the development of large

complex software systems. CBSE promises to yield cheaper and higher quality assembled systems by reusing
configurable generic components that were developed separately [5]. UML 2.0 has extended and improved the
representation of components and component-based systems. In UML 2.0, a component is an autonomous unit
which has one or more well-defined interfaces (potentially exposed via ports), and its internals are hidden and
inaccessible other than as provided by its interfaces [3]. The interfaces provided by a component define a formal
contract of services offered to the outside world, whereas the interfaces required by a component define the services
needed from elsewhere. In the performance domain there is a growing interest in modeling component based
systems (e.g., [6]). This paper proposes a number of extensions to the STP Profile [2] (more exactly to its
Performance Sub-Profile) in regard to component modeling.

2. Component-based case study system
The kinds of UML 2.0 diagrams required for the derivation of a performance model for a component-based

system are presented in Fig. 1 to 5 by the means of a e-commerce case study system. In principle, the UML model
should describe the software architecture, the deployment of software components to physical resources, the
behavioural description of a set of selected key scenarios and the workload applied to each of them. In Fig.1 is
shown the component diagram of a e-commerce system, where multiple client browsers are connected through
assembly connectors (with ball-and-socket symbol) with a WebServer, which serves as an intermediary between the
clients and the main application server, named eCommServer. The WebServer parses http requests arrived from the
clients and forwards them to the eCommServer for processing, then uses its replies to build HTML pages that are
send back to the clients. The eCommServer component implements the main functionality of the system, represented
by use cases such as browse, add/remove products to/from the shopping cart, checkout, create account, etc. (The use
case diagram is not give here due to lack of space.)

Fig.2 gives the internal structure of eCommServer, showing the classes that realize the services specified by
the external provided interface. A delegation connector (drawn with dotted lines) maps requests from an incoming
port to internal classes. Similarly, other delegation connectors are used to map the services required by the internal
classes to outgoing ports and required interfaces. The ports separate the component's relationship with the outside
world from its internal structure. Ports in UML 2.0 are classifiers, and may describe the sequence of behaviours,
constraints and overall logic involved in the transition across the port through state machines, if necessary [3].

Fig.3 illustrates the deployment of the artifacts that implement the components to physical nodes. This
information is necessary for building a performance model of the system, which should capture the contention for all
resources, hardware and software. Note that the networks involved (Internet and LAN) are shown as separate nodes.

Figs. 4 and 5 describe the behaviour for the scenario Checkout used for performance analysis. In Fig. 4 it is
shown the interaction between components, which references the sequence diagram CreateOrder given in Fig. 5.
Note that CreateOrder is described in more detail, as it involves internal classes of the eCommServer component. In
Fig. 4, FinancialInstitution (shown in gray) is an external system and can be represented as an actor in the model. In
fact, the operation checkCreditCard() performed by it will be modeled as an external operation according to the
Performance Profile [2]. One of the challenges illustrated in this example is that there are two kinds of levels of
abstraction: one based on component boundaries (in order to plug in different components realizing the same
interfaces), and another on behaviour boundaries (e.g., in Fig 4 the CreateOrder subdiagram is not completely
within the eCommServer component). This may create problems in structuring the scenarios. The next section
addresses the problem of describing component QoS and the role of ports as interfaces between levels of
abstractions.

3. Pe

3.1. R

(or re
Gene
servic

be in
Perfo
perfo
differ
defin
Client
Browser

WebServer eComm
Server

ProductDB

SecureDB

Fig. 1. Software architecture of the e-commerce system

Controller

Shopping
Cart

Item

Customer

AccountCreditCard

1 1

*

1
1

1
0..1

Order

LineItem

*

1 1
** *

Fig. 2. Structure of the component eCommServer

Client
Browser

ClientWS

Web
Server

WebServerCPU

In
te

rn
et

LAN

eComm
Server

eCommCPU

Product
DB

ProductCPU

Secure
DB

SecureCPU

Fig. 3. Deployment of the e-commerce system

Client
Browser

WebServer eComm
Server

ProductDB

SecureDB

Fig. 1. Software architecture of the e-commerce system

Client
Browser

WebServer eComm
Server

ProductDBProductDB

SecureDBSecureDB

Fig. 1. Software architecture of the e-commerce system

Controller

Shopping
Cart

Item

Customer

AccountCreditCard

1 1

*

1
1

1
0..1

Order

LineItem

*

1 1
** *

Controller

Shopping
Cart

Item

Customer

AccountCreditCard

1 1

*

1
1

1
0..1

Order

LineItem

*

1 1
** *

Fig. 2. Structure of the component eCommServer

Client
Browser

ClientWS

Web
Server

WebServerCPU

In
te

rn
et

LAN

eComm
Server

eCommCPU

Product
DB

ProductCPU

Secure
DB

SecureCPU

Fig. 3. Deployment of the e-commerce system

Client
Browser

ClientWS

Web
Server

WebServerCPU

In
te

rn
et

LAN

eComm
Server

eCommCPU

Product
DB

ProductCPU

Secure
DB

SecureCPU

Client
Browser

ClientWS

Client
Browser

ClientWS

Web
Server

WebServerCPU

In
te

rn
et

LANLAN

eComm
Server

eCommCPU

eComm
Server

eCommCPU

Product
DB

ProductCPU

Product
DB

ProductCPU

Secure
DB

SecureCPU

Secure
DB

SecureCPU

Fig. 3. Deployment of the e-commerce system

rformance Profile extensions

esources and Services
The first proposed extension is to map the components to resources and their interfaces to services provided

quired) by the resources. So far, the Performance Profile does not use a "Service" stereotype. However, the
ral Resource Model (GRM), which is a package of the STP Profile, introduces the concept of resources and
es. The Performance Sub-profile inherits from GRM, so the extension is not difficult.

In UML 2.0, an interface definition can be mapped to multiple interface realizations, as polymorphism may
volved (i.e., different subclasses may implement the same interface in different ways). This means that the
rmance Profile has to allow for multiple service realizations for a given service defined by an interface. In the
rmance model, each service realization has to be represented separately, as it has a different behaviour,
ent resource demands, etc. This will have an impact on the way the results will be reported - not per service
ition, but per service realization.

sd Checkoutsd Checkout

Client
Browser

Web
Server

eComm
Server

ProductDB SecureDB Financial
Institution

checkout()
checkout(cust)

getAccInfo(account)

accountInfo() return(account)

accInfoForm()

creditCardInfo()
creditCard(cust)

checkCreditCard(card)

return(result)

CreateOrder

[result == valid]

orderInfo()

orderInfoPage()
submit()

submit(cust)
submit(order)

return

alt

ref

done()

byePage()

error()
errorPage()

[else]

Fig. 4. Sequence diagram for the Checkout scenario

Controller Shopping
Cart

Order

ProductDB

new()

loop

checkStock(item)

return(status)

getItem()

return(item)

return

copy(item) toTotalPrice(item)

sd CreateOrder

Fig. 4. Sequence diagram CreateOrder referenced by Checkout

Client
Browser

Web
Server

eComm
Server

ProductDB SecureDB Financial
Institution

checkout()
checkout(cust)

getAccInfo(account)

accountInfo() return(account)

accInfoForm()

creditCardInfo()
creditCard(cust)

checkCreditCard(card)

return(result)

CreateOrder

[result == valid]

orderInfo()

orderInfoPage()
submit()

submit(cust)
submit(order)

return

alt

ref

done()

byePage()

error()
errorPage()

[else]

Fig. 4. Sequence diagram for the Checkout scenario

Controller Shopping
Cart

Order

ProductDB

new()

loop

checkStock(item)

return(status)

getItem()

return(item)

return

copy(item) toTotalPrice(item)

sd CreateOrder

Controller Shopping
Cart

Order

ProductDB

new()

loop

checkStock(item)

return(status)

getItem()

return(item)

return

copy(item) toTotalPrice(item)

sd CreateOrder

Fig. 4. Sequence diagram CreateOrder referenced by Checkout

3.2. Offered and required QoS
In the present version of the Performance Profile, it is possible to define required and offered performance

characteristics (such as response time, throughput, etc.) at the scenario level. (Offered characteristics are obtained as
analysis results). Once we introduce provided and required services for resources, the next step would be to attach
QoS characteristics to these services.

However, this is not a trivial problem, as "offered QoS" depends not only on the component capacity
(which include all underlying resources) but also on the workload offered to the component. For instance, the
response time experienced by a request at a component includes not only the service time per se, but also the
queueing delay due to waiting for other competing requests. So, the response time depend not only on the
components, but on its environment, as well. Therefore, the QoS offered by a component should be expressed as a
function of the load. This is complicated when a component offers multiple services, as the service mix plays also a
role. More research is needed to find simple yet expressive ways of specifying different offered QoS characteristics.
In what regards "required QoS" for required services, there are two arguments for the need to express it as a function
of workload, as well: a) it has to be matched with the QoS offered by other resources, which is workload dependent,
and b) the Qos required by a certain resource has to be taken into account when determining the QoS offered by the
same resource, which is workload dependent.

In the present version of the Performance Profile, the workload level is attached to the first step of a
scenario. However, the workload has to be computed for every resource if we intend to express QoS at the resource
level as a function of workload.

In the performance evaluation domain was proposed recently a new kind of components that are QoS aware
[1]. These components are empowered to perform admission control and to reject request above certain levels in
order to insure that they can deliver a certain QoS. The decision whether to accept or reject new requests is taken
based on Queueing Network analysis results. However, the majority of today's software components do not have
control over their load, and thus cannot guarantee desired QoS levels.

3.3. Ports in the Performance Profile
As mentioned before, ports in UML 2.0 may describe the sequence of behaviours, constraints and overall

logic involved in the transition across the port through state machines [3]. Since ports may represent actions or
activities, they should be stereotyped as Scenario Steps in the Performance Profile. The performance model should
also capture how the ports translate workload levels and QoS values between levels.

4. Conclusions
The paper proposes a number of extensions to the Performance Profile for component-based systems. Some

of the extensions are rather straightforward, but others (such as the specification of offered and required QoS as a
function of the workload) require more research in the performance domain. Performance analysis will require the
flexibility to plug together component performance descriptions as well as system-level behaviour descriptions.

References
[1] D. Mensace, H. Ruan, H. Gommaa, "A Framework for QoS-Aware Software Components", Proc. of 4th Int.

Workshop on Software and Performance WOSP'2004, Redwood Shores, California, pp.186-196, Jan. 2004.
[2] Object Management Group, "UML Profile for Schedulability, Performance, and Time Specification," OMG

Adopted Specification ptc/02-03-02, July 1, 2002.
[3] Object Management Group, " UML 2.0 Superstructure Specification", OMG Final Adopted Specification

ptc/03-08-02, 2003.
[4] D. C. Petriu and C. M. Woodside, "Performance Analysis with UML," in UML for Real, B. Selic, L. Lavagno,

and G. Martin, Eds. Kluwer, 2003, pp. 221-240.
[5] C. Szypersky, with D. Gruntz and S, Murer, "Component Software: Beyond Object Oriented Programming",

2nd Edition, Addison-Wesley, 2002.
[6] X.Wu, C.M.Woodside, "Performance Modeling from Software Components", Proc. of 4th Int. Workshop on

Software and Performance WOSP'2004, Redwood Shores, California, pp.290-301, Jan. 2004.

	Extending the UML Profile for Schedulability Performance and Time (SPT) for component-based systems
	1. Introduction
	2. Component-based case study system
	3. Performance Profile extensions
	3.1. Resources and Services
	3.2. Offered and required QoS
	3.3. Ports in the Performance Profile

	4. Conclusions
	References

