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Abstract— In Model Driven Engineering, the relationship 

between a source and target model can be maintained, when the 

source model undergoes changes, by a coupled transformation, 

whereby changes applied to the source model are incrementally 

propagated to the target model. Cross-model traceability links 

are key to applying the correct changes to the target model. The 

coupled transformation considered in this paper propagates 

changes to a Layered Queueing Network (LQN) performance 

model (originally derived from a UML design model of a SOA 

system) as an effect of applying design patterns to the SOA 

model. A special problem arises because of differences in the level 

of abstraction between UML and LQN (i.e. a performance model 

element may represent a set of many design model elements). 

This paper bridges the abstraction gap between models by 

proposing traceability links that use new collection types (not 

defined in the source metamodel) to represent complex source 

model elements, which are then  mapped to simple target model 

elements. 

Keywords- Software performance model, service oriented 

systems, SOA pattern, traceability links, change propagation, LQN  

I.  INTRODUCTION 

In Model Driven Engineering (MDE), the performance of a 

Service Oriented Architecture (SOA) design can be evaluated 

in early lifecycle phases using a quantitative performance 

model (hereafter called the PModel) generated by a model 

transformation from the software design model (hereafter 

called the SModel) extended with performance annotations. 

An example of such a technique is the Performance from 

Unified Model Analysis (PUMA) [1][8]. Also, system 

designers often apply SOA patterns [2] to system designs as 

generic solutions for architectural, design and implementation 

problems, and study their performance impact with the help of 

the corresponding PModel. A pattern could have a significant 

performance cost due to the overheads it may introduce, in 

which case the performance cost can be balanced against the 

benefits of the pattern, and alternative pattern configurations 

can be compared. Traditionally, a new performance model 

needs to be generated by reusing the PUMA technique to 

evaluate the impact of the design pattern changes on the 

design model. However, this has drawbacks: 1) it masks the 

causal connections between the design changes and the 

performance impact which can provide significant insight to 

the engineer to make design choices; 2) it is a substantial 

waste of execution cost, which could be significant if the cycle 

of choosing a pattern, applying and evaluating it is repeated 

many times during the development process of large systems. 

Cross-model traceability can help by maintaining consistent 

relationships between the source and target model elements 

from the moment the target model is generated; when changes 

occur in the source model, only the affected target model 

elements are identified and changed. Compared to generating 

a new performance model by techniques such as PUMA every 

time a pattern is applied, the cross-model traceability links 

show the causal connections between the SModel changes and 

the resulting PModel changes with a reduced effort. It also 

enables incremental studies of numerous design alternatives 

when applying a large number of SOA design patterns.  

Cross-model traceability links are straightforward when the 

cross-model relationships between elements are one-to-one, or 

one–to-many. However, when generating a PModel from a 

SModel, it often happens that one PModel element is created 

from a set of SModel elements, due to the fact that the level of 

abstraction of PModel is higher. An example is a collection of 

SOA activities which make up a single service operation in the 

PModel. The requirements for these specific collection 

elements are defined in Section V and VI.  

In [3] we proposed a coupled refactoring technique which 

incrementally propagates the SModel changes (due to the 

application of a SOA design pattern) to the PModel. It uses 

entity-to-entity traceability links without considering the 

abstraction gap and makes it the responsibility of the designer 

to identify a collection of SModel entities which all trace to 

the same PModel entity. This process is error-prone and 

requires deep designer understanding of the process.  

The difference in this paper is that we address the challenge of 

bridging the abstraction gap between the two models by 

defining new types for complex source model concepts (not 

corresponding to any meta-class in the source metamodel) and 

mapping them to the target model concepts. Moreover, in this 

paper we propose an improved (and in fact simplified) version 

of the coupled transformation process in [3] based on these 

extended types, as explained in sections  VI and VII. This 

makes the coupled transformation more accurate and easier to 

automate. Furthermore, the extended types can also be used to 

trace the performance results obtained by solving the PModel 

back to the collections of SModel elements corresponding to 

the PModel elements.  

In this paper, the SModel uses UML extended with the SoaML 

profile [4, 5] for SOA concepts and the MARTE profile 
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(Modeling and Analysis of Real-Time and Embedded sys-

tems) [6] for performance-related information. The PModel is 

expressed in the Layered Queueing Network (LQN [7]) 

formalism. The initial PModel is created from the annotated 

UML using the PUMA tools [1, 8]. All of these models are 

briefly described in Section IV. 

II. RELATED WORK 

Traceability is frequently employed in approaches to software 

model transformation. In [9], the authors present a method 

which attaches traceability generation codes to pre-existing 

ATL programs [10]. The method produces a loosely coupled 

traceability, meaning it can be used for any kind of one-to-one 

traceability. In [11] a method is presented for generating 

annotated models with traceability information, by merging 

the models with the trace models. The generated trace-links 

are embedded in the target model, in elements they refer to, or 

are stored externally in a separate model.  

Managing the complexity of traceability information in MDE 

is discussed in [12]: a) how to identify different kinds of trace-

links that may appear in MDE; and b) propose a rigorous 

approach for defining semantically rich trace-links between 

models. In [13] the authors propose a traceability framework, 

implemented in the model-oriented language Kermeta, to 

facilitate modeling transformations. Using a trace metamodel, 

the framework allows for tracing the transformation chain 

within Kermeta. Model transformation trace-links are defined 

in the metamodel as a set of source nodes and target nodes. 

None of the above works addresses traceability between 

models at different levels of abstraction. On the other hand, 

reverse engineering transformations, which do raise the 

abstraction level, do not emphasize traceability, perhaps 

because in reverse engineering there is less interest in 

retaining the connection with the original model. In reverse 

engineering of design models from code [14] a single design 

element may be represented by many scattered features of the 

code, with structured relationships which must be captured in 

the traceability link. The taxonomy from [14], for example, 

does not mention traceability links. However, coupled 

transformations of software and performance models, such as 

our proposed techniques in [3], require constructing and 

maintaining these links. Therefore, the technique proposed in 

this paper that addresses the abstraction gap between software 

and performance models, does improve our previous approach 

from [3]. 

III. OVERVIEW OF THE IMPROVED APPROACH 

Figure 1 shows an overview of the coupled transformation 

technique [3], enhanced with extended types for traceability 

links introduced in this paper for propagating changes due to 

design patterns. The inputs to the process include the initial 

SOA SModel (top left), and a library of pattern definitions 

(bottom left). The enhanced traceability links are used in stage 

C (shown in grey) for translation of the SModel refactoring 

transformation rules into PModel refactoring transformation 

rules. The designer steps (supported by tools developed by the 

authors) are shown on the left side and the automated steps on 

the right side.  

 
Figure 1: Overview of Improved Approach using Extended Traceability Links 

for Coupled Transformations 

The extended approach has four stages: 

A. Preliminaries: This stage gets the SModel as an input and 

creates the base PModel using PUMA [1]. The mapping 

information between the SModel and the constructed PModel 

is created during this initial transformation process (Step (2)). 

The mapping information is used by the technique in this 

paper for creating the cross-model traceability links with 

extended types in a mapping table which will be used in stage 

C. Pattern application begins at step (4), where the designer 

selects a candidate pattern for its own reasons (e.g. 

maintainability). 

B. Model Transformation Rules: The selected pattern is 

specified using Role-Based Modeling RBML [15], a graphical 

pattern specification approach which uses model roles to 

identify the participating elements. The designer indicates 

where the pattern is applied by binding pattern roles to 

elements in the SModel and then records SModel 

transformation rules that will satisfy the solution specification 

(step (5)).  

C. Deriving the PModel Transformation Rules: Using the 

traceability links with extended type extracted from the 

mapping information generated in Stage (A) and the SModel 

refactoring transformation rules from Stage (B), the PModel 

refactoring transformation rules are derived automatically in 

the coupled transformation process (Step 6). The dashed line 

between the “SModel Refactoring Transformation Rules” and 

“PModel Refactoring Transformation Rules” represents the 

coupling between them. If there are updates to the table of 

traceability links (mapping table) due to add/deletion of the 

elements, this is being done as part of Step 6.1.  

D. Refactoring PModel: The PModel refactoring 

transformation rules are executed by a transformation engine 

to refactor the PModel into the final PModel* (Steps 7 and 8). 

Although the steps in this stage are explained briefly in 

Section VII.B , the details are discussed in [3] and are not 
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within the scope of this paper as they are not impacted by the 

proposed extended types in this paper. 

IV. MODELS 

A. SOA Models 

From the range of views in SoaML [4, 5]  used to model SOA 

systems, we use the Business Processes Model (BPM) for 

behavior and the Service Architecture Model (SEAM) for 

structure and contracts, together with a UML deployment 

diagram. The SEAM is specified as a UML collaboration 

diagram with service participants and contracts (with SoaML 

stereotypes «Participant» and «ServiceContract» 

respectively). Each participant plays a role of Provider or 

Consumer with respect to a contract. Participants correspond 

to pools, participants and swimlanes in the BPM. The BPM is 

specified as a UML Activity Diagram (AD) (see Figure 2). 

Service invocations are modeled as operation calls, using three 

types of UML actions: a CallOperationAction sends a service 

request and waits for the reply via its input/output pins; an 

AcceptCallAction, an accept event action, waits for the request 

arrival; and a ReplyAction returns the reply values to the 

caller. The called operation name appears in ‘()’ as “(class-

name::operation-name)”. We assume that all BPM edges 

between ActivityPartitions represent calling interactions, 

connecting these three types of Actions. 

MARTE performance annotations are given in shaded notes. 

BPM describes the behavior as a sequence of steps «PaStep» 

with a workload attached to the first step stereotyped as 

«GaWorloadEvent». «PaStep» has attributes hostDemand 

(required CPU time), rep (mean repetitions) and prob 

(probability of optional step). «GaWorloadEvent» defines a 

population of Nusers users, each with a thinking time 

ThinkTime defined by MARTE variables. Concurrent runtime 

instances «PaRunTInstance» are identified with swimlane 

roles. UML Deployment Diagram (DP) is also defined, as in 

Processing nodes are stereotyped «GaExecHost» and 

communication network nodes are stereotped 

«GaCommHost», with attributes for processing capacity, 

message latency and communication overheads. 

B. Performance Model 

PModels are expressed in an extended queueing notation 

called Layered Queuing Networks (LQNs) [8], selected 

because of its close coupling to the high-level software 

architecture. An LQN estimates waiting for service due to 

contention for host processors and software servers, and 

provides response time and capacity measures. Figure 3 shows 

the LQN model for the example. For each service there is a 

task, shown as a bold rectangle, and for each of its operations 

(contracts) there is an entry, shown as an attached rectangle. 

The task has a parameter for its multiplicity or thread pool size 

(e.g. {‘1’}). Each entry has a parameter for its host CPU 

demand, equal to the total hostDemand of the set of «PaSteps» 

for the same operation in the SModel.  

Calls from one entry to another are indicated by arrows 

between entries (a solid arrowhead indicates a synchronous 

call for which the reply is implicit, while an open arrowhead 

indicates an asynchronous call). The arrow is annotated by the 

number of calls per invocation of the sender. For deployment, 

an LQN host node is indicated by a round node associated to 

each task. While Figure 3 shows entries with host demands 

and calls, there is an optional level of detail which is not 

shown here, which defines an activity subgraph for each entry 

with predecessors, successors, forks and joins, similar to a 

UML activity diagram. The host demands and calls are then 

defined for each activity. 

V. THE ABSTRACTION GAP BETWEEN SMODEL AND PMODEL 

Each type of traceability link produced by the SModel-to-

PModel transformation describes the mapping relationship 

between a SModel element type (i.e., a meta-class of the UML 

metamodel) and a PModel element type (i.e., a meta-class of 

the LQN metamodel). Establishing the traceability links 

    
Figure 2: Checkout Business Process Model for the Online Shop Figure 3: LQN (PModel) corresponding to SOA design (SEAM, BPM and 

Deployment Diagram) 
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between elements of SModel and PModel which are in a one-

to-one relationship is straightforward. A partial list of one-to-

one mappings is shown in the following table: 

SModel (SoaML) Type                     PModel(LQN) Type 

 SEAM Participant             Task 
 BPM Swimlane (PaRunTInstance)  Task 

 BPM Action                                                Activity 

 BPM Control Flow                                    Sequence 
 BPM Async Call                                       Async Call 

          DP Processing Node (ExecHost) Host 

          DP Artifact                                   Task 

However, SModel to PModel relationships are not always one-

to-one. We have identified cases where a group of 

interconnected SModel elements (called subgraph) is mapped 

to one or more PModel elements (i.e. many-to-one or many-

to-many relationship). In most cases, there are more SModel 

elements mapped to fewer PModel elements, indicating that 

the latter has a higher level of abstraction. These mappings are 

described below.  

A. LQN Entry 

An LQN entry of a task represents the entire operation carried 

out by the task in response to a call. Thus, the entire subgraph 

of SModel activity diagram actions, control flows, hyper edges 

and attributes invoked by an AcceptCallAction is mapped to 

an LQN entry. An example of this type of mapping is shown 

in Figure 4.  

 
Figure 4: (A) Partial SModel AD Subgraph and (B) Corresponding Partial 

LQN PModel with mapped Entry 

The partial SModel AD and the corresponding partial LQN 

PModel are shown in Figure 4.A and Figure 4.B, respectively. 

There are two swimlanes representing “Service A” and 

“Service B”, where “Service B” contains two subgraphs, each 

accepting a call from a CallOperation-Action in “Service A”. 

The subgraph between AcceptCallAction(B::b) and 

ReplyAction(B::b) is mapped to “Entry a”, and the one 

between AcceptCall-Operation(B::e) and ReplyAction(B::e) to 

“Entry e” in the partial LQN model shown in Figure 4.B. This 

is a case of many-to-one mapping.  

B. LQN Synchronous Call 

An LQN synchronous call corresponds to two messages in the 

SModel, the call and the corresponding reply. This is also a 

case of many-to-one mapping. Two examples of this type of 

mapping are shown in Figure 5. The synchronous call from 

CallOperationAction(B::b) in “Service A” to 

AcceptCallAction(B::b) in “Service B” and the reply from 

ReplyCallAction(B::b) to the caller action in Figure 5.A are 

mapped to a single LQN call from “Entry a” to “Entry b” in 

Figure 5.B.   Figure 5  shows also an example of nested 

synchronous calls, where a call to “Service C” is made before 

the reply from “Service B” to the initial caller, “Service A”.   

 

 
Figure 5: (A) Partial SModel AD with synchronous calls and (B) 

Corresponding LQN PModel with synchronous calls 

C. LQN Asynchronous Call 

An LQN asynchronous call represents a SModel call without 

reply, which also might be part of a forwarding call (to be 

dealt with next). While this correspondence is one-to-one, it is 

mentioned here because it only occurs only in a certain context 

in the SModel. 

D. LQN Forwarding Call 

An LQN forwarding call represents delegation of 

responsibility for an operation. It is a chain of calls in the 

PModel that corresponds to a chain of messages in the 

SModel. There is an initial synchronous call from a 

CallOperationAction which eventually receives its 

corresponding reply from a different swimlane than the one it 

called, and one or more asynchronous calls that forward the 

caller request to another swimlane; the final one in the chain 

replies to the initial caller.  

This collection of SModel messages is mapped to the 

following collection of PModel elements: a LQN synchronous 

call and one or more forwarding calls that forward the request 

to a final entry, which implicitly provides the reply to the 

initial caller. This is a case of many-to-many mapping between 

the SModel and PModel elements.  Figure 6 shows an 

example. CallOperationAction(B::b) from “Service A” in 

Figure 6 .A initiates a call to “Service B”, which forwards it to 

“Service C”,  which replies to the initial caller. Figure 6.B 

shows corresponding (mapped) partial LQN PModel with one 

synchronous call and one forwarding call (i.e. dashed arrow 

line).  
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Figure 6: (A) Partial SModel AD forwarding scenario and (B) Corresponding 

Partial LQN PModel with synchronous & forwarding calls 

VI. TRACEABILITY LINKS AND MAPPING TABLE 

We assume that the transformation that derives the initial 

PModel from the SModel (e.g. PUMA) also generates the 

basic element-to-element mapping between SModel and 

PModel elements (i.e. in form of a mapping table), as 

described in [16]. In this paper, the initial mapping table 

provided by PUMA is extended with the additional higher-

level types of traceability link, as described in this section. 

Mapping table is discussed in Section VI.A and the 

traceability links metamodel is described in Section VI.B. 

A. Mapping Table  

The mapping table is a collection of the traceability links of 

the form: 

Traceability Link = (link name, SME , PME) 

 

where SME stands for an SModel Element or attribute, and 

PME for the corresponding PModel Element or attribute. For 

example, the traceability link named BTL1 between the BPM 

swimlane “Service B” in Figure 5.A and the LQN Task 

“Service B” in Figure 5.B has the form: 

Traceability Link = (BTL1, BPM::Swimlane:ServiceB, 

LQN::Task:ServiceB) 

B. Traceability Links Metamodel 

To bridge the abstraction gap, in this paper we propose that 

traceability links in the mapping table use a metamodel that 

includes the following: 

 UML types describing the SModel elements, 

 LQN metamodel types describing the PModel elements, 

 the following four additional types: 
1. EntrySME: a collection of Elements in the SModel containing 

the elements of the Activity Subgraph invoked by a Call, 

2. SyncCallSME: a pair of Call and Reply Actions and their 

corresponding AcceptCallActions in SModel, that make up a 

synchronous call 

3. ForwardingSME: a collection of CallActions and one 

ReplyAction in SModel, with their corresponding 

AcceptCallActions, forming a forwarding pattern as described 

in Section V. 

4. LQNFwdCall or ForwardingPME: a corresponding collection 

of LQN calls in PModel with one synchronous call and one or 

more forwarding calls.  

Therefore, the SME column of the mapping table has UML 

types plus four additional types for SModel and PME column 

has one additional type for PModel. The traceability links 

based on these extended types are called “traceability links 

with extended types” and are defined in the following sub 

sections: 

1) Traceability Link for an LQN Entry 

An entry in the PModel corresponds to a portion of the 

behaviour specified in an activity diagram, defining the 

response by a PaRunTInstance (defined by a swimlane) to a 

call. The subgraph starts with an AcceptCallAction following a 

call from a CallOperationAction in another swimlane, and 

ends where it provides a reply with a ReplyAction, or ends, or 

executes a CallOperationAction to another swimlane.  

The EntrySME can be discovered automatically by an analysis 

of the flow of Actions, based on this definition. In presenting 

it here, it is shown as a list of the elements in the subgraph 

within ‘{}’ brackets, separated by commas. In this list, the 

action names are shown first, then the activity control flows 

each defined as a couple (source, destination) and finally the 

hyper edges (Decision, Merge, Fork, Join). Each hyper edge is 

defined as: 

Type (predecessor list, successor list) 

if Type is Decision or Fork, there is only one predecessor; 

if Type is Merge or Join, there is only one successor. 

To distinguish the hyperedges in the text, their types are 

shown in bold.  

The EntrySME is mapped to a LQN Entry and each element in 

the defining list is mapped to a corresponding element of the 

LQN activity subgraph inside the LQN entry. An example of 

this type of traceability link, referencing elements in the 

scenario in Figure 4, is given below: 

Link = (BTL2,BPM::EntrySME:{AcceptCallAction(B::b), Action(B::b1), 
Action(B::b2), Action(B::b3), ReplyAction(B::b), (AcceptCallAction(B::b), 

Action(B::b1)),  Decision (Action (B::b1), Action(B::b2), Action(B::b3)), 

Merge( Action (B::b2), Action(B::b3), 
ReplyCallAction(B::b))},LQN::LQN Entry: {(Entry b)}) 

2) Traceability Link for an LQN Synchronous call 

A synchronous call (i.e., call-reply) in the PModel corresponds 

to a pair of messages (that is, of ActivityEdges that cross the 

boundary between two ActivityPartitions), called here a 

Synchronous Call. The first message is from a  

CallOperationAction in the first BPM swimlane to an 

AcceptCallOperation in the second swimlane; the second 

message is from a ReplyAction in the second swimlane to the 

initiating CallOperationAction. A SyncCallSME is defined as 

a two-element list as follows: 

{(CallOperationAction, AcceptCallOperation), 
(ReplyAction, CallOperationAction) } 

which is mapped to the corresponding LQN Synchronous Call. 

An example of this type of traceability link based on the 

scenario in Figure 5 is given below: 

Link = (BCTL3,BPM::SyncCallSME: {(CallOperationAction(B::b), 
AcceptCallAction(B::b)), 

(ReplyAction(B::b),CallOperationAction(B::b))}, 

LQN::LQNSyncCall: {(Entry a, Entry b)}) 
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Table 1: Examples of corresponding SModel and PModel element types in the 

traceability links of the Mapping Table
 Sub-table (A) Types for Structural Elements  

 SME PME 
C1 Participant (in SEAM) LQN Task  

C2 Host Node (in Deployment) LQN Host  

C3 ActivityPartition/Swimlane (in BPM) stereotyped 

«PaRunTInstance» 

LQN Task  

C4 EntrySME (collection of elements forming an 

activity subgraph) 

LQN Entry 

C5 BPM Action LQN Activity 

 Sub-table (B) Calls  
C6 SyncCallSME  (collection of calls) LQN Synchronous Call/LQNSyncCall 

C7 ForwardingSME (collection of calls) LQN Forwarding Call/LQNFwdCall 

(collection of calls) 

C8 Asynchronous Call  LQN Asynchronous 

Call/LQNAsyncCall 

 Sub-table (C) Attributes  
C9 MARTE WorkloadEvent.extDelay  Think Time of a workload 

C10 MARTE ExecHost.resMult  Processor Multiplicity  

C11 MARTE PaRunTInstance.poolsize  Task Multiplicity 

 
Table 2: Mapping Table with examples of traceability links for Shopping and 

Browsing SModel and PModel 

Sub-table (A) Structural Elements 

Link SME PME 

DTL3 Deployment Node Order Host LQN Host Order 

DTL2 Deployment Artifact Browsing LQN Task Browsing 

STL3 SEAM Participant User LQN Task User 

STL2 SEAM Participant Browsing LQN Task Browsing 

BTL1 EntrySME:{AcceptCall 

(Shopping::Checkout), BasketCheckout, 

CalculateShipping,  

CreateInvoice, 

CallOperation(OrderProcessing::PayCredit), 

CallOperation(OrderProcessing::PayDebit),  

ReplyCallAction(Shopping::Checkout),  

(AcceptCall (Shopping::Checkout), 

BasketCheckout), 

( BasketCheckout, CalculateShipping), 

(CalculateShipping, CreateInvoice),  

Decision( CreateInvoice, 

CallOperation(OrderProcessing::PayCredit) , 

CallOperation(OrderProcessing::PayDebit)),  

Merge(CallOperation(OrderProcessing::PayCr

edit) , 

CallOperation(OrderProcessing::PayDebit), 

ReplyCallAction(Shopping::Checkout))} 

LQNEntry: {(Checkout)}  

Sub-table (B) Calls  

BCTL1 SyncCallSME:{(CallOperationAction(Shoppin

g::Checkout), 

(AcceptCallAction(Shopping::Checkout)),  

ReplyAction(Shopping::Checkout), 

CallOperationAction(Shopping::Checkout))} 

   

LQNSyncCall: {( 

User,Checkout)} 

Sub-table (C) Attributes  

BATL1  MARTE Attribute hostDemand for the 

AcceptCallAction(Shopping::Checkout) 

Host Demand attribute of 

LQN AcceptCallAction in 

Entry Checkout 

3) Traceability Link for an LQN Forwarding Call 

A Forwarding Call identifies a call pattern which includes 

synchronous and asynchronous calls. It begins with a 

synchronous call from a CallOperationAction in one BPM 

swimlane to an AcceptCallOperation in a second swimlane. 

However instead of a reply, this operation ends with a call that 

forwards the request to a third swimlane. It may be forwarded 

any number of times, until a reply is sent back to the 

originating swimlane. The fact that the reply is coming from a 

swimlane which is different than the swimlane of the receipt 

of initial call shows that the request has been forwarded to 

other swimlanes for processing. A ForwardingSME is defined 

as follow: it begins with SyncCallSME (defined above for the 

synchronous calls) which is followed by a comma-separated 

list of forwarding calls, as: 

ForwardingSME:{ SyncCallSME, (frwdCall1), (frwdCall2 ),…} 

A ForwardingSME is mapped to a collection of PModel 

elements containing an LQN synchronous call and one or 

more LQN forwarding calls. The last forwarding call 

implicitly generates the reply to the originating entry. This 

requires another extended type for the LQN column of the 

mapping table, called LQNFwdCall. A LQNFwdCall begins 

with LQNSyncCall and it is defined similarly by a list: 

LQNFwdCall: { LQNSyncCall, (frwdCall1), (frwdCall2 ),…} 

An example of this type of traceability link based on the 

scenario in  is:  

Link = (BCTL4,BPM::ForwardingSME: {(CallOperationAction(B::b), 

AcceptCallAction(B::b)), (ReplyAction(C::c), CallOperationAction(B::b)), 

(CallOperationAction(C::c), AcceptCallAction(C::c))}, 
LQN::LQNFwdCall:{(Entry a, Entry b),(Entry b, Entry c)}) 

Table 1 shows  examples of corresponding SModel and 

PModel element types in the traceability links of the mapping 

table.  Table 1 is organized into three groups for Structural 

Elements, Calls, and Attributes. Table 2 gives some examples 

of traceability links established between the SModel (BPM is 

shown in Figure 2) and PModel (Figure 3) for the shopping 

and browsing SOA.  

VII. COUPLED TRANSFORMATION USING EXTENDED 

TRACEABILITY LINKS 

The coupled transformation technique in [3] includes a formal 

recording of the refactoring of the SModel, and automatic 

derivation of the refactoring transformation of the PModel as 

well as its automatic application to the PModel. This section 

describes how these steps must be modified (enhanced) to 

accommodate the extended types of cross-model traceability 

links with extended types proposed in this paper. An overview 

of the modified process is also shown in Figure 1 (Stages B 

and C). 

A. Coupled PModel Refactoring Rules 

The coupled transformation in [3] begins with recording the 

SModel refactoring that arises from the pattern application. A 

tool was implemented in [3] to assist the system designer with 

this process. With the extended link types introduced in this 

paper, the system designer can now create rules at various 

levels of abstraction. Therefore in this paper, the tool in  [3] is 

enhanced to support extended types. The designer creates the 

rules using the provided tool by selecting SMEs from a table 

created from the UML specification, and can choose the level 

of abstraction by choosing from the extended element types. 

For example, when refactoring behavior, rules can be applied 

either to an entire EntrySME or to its individual activities, as 

the designer wishes. The automated translation of the SModel 

refactoring rules into PModel refactoring rules is based on the 

cross-model traceability links in the mapping table described 

in Section VI, using both the Type Correspondences table (e.g. 

Table 1) and the Mapping Table (e.g. Table 2). With the 

extended model and link types the process of generating the 



PModel refactoring rules is made more accurate, simpler and 

more uniform. Therefore the automated process in [3]  is 

modified to use the extended types as follow. Figure 7 shows a 

partial screenshot of the tool that takes care of the enhanced 

automated translation using the traceability links. Each 

SModel refactoring rule has an operation name and some 

arguments, which are processed as follows:  

1. The operation name generates one or more PModel 

operations.  The action part of the name (add/ delete/ 

modify) is retained, and the operand-type part (e.g. 

Participant) is mapped according to the Type 

Correspondences table, similar to one shown in Table 1 For 

example the SModel operation addParticipant is translated 

to addTask, and deleteEntrySME to deleteEntry.   

2. The arguments of the PModel operation (e.g. the element 

or elements to be added, deleted, or modified) are 

translated from the arguments of the SModel operation 

using the Mapping Table (e.g. Table 2). In an “add” 

operation the name of the new PModel element is taken as 

the name of the corresponding SModel element. 

For example, a SModel “addParticipant” operation is mapped 

to “addTask” for the PModel, and the “addParticipant” 

argument becomes the new task name. Modifications to calls 

require special consideration in the translation. The SModel 

“modifyActionCall” operation changes a service invocation 

from a CallOperationAction to an AcceptCallAction. As this 

might apply to more than one call to the same 

AcceptCallAction, the mapping table is searched (using a 

MappingTableSearchByKey command) to identify all the 

PModel activities making the call. Then the operation is 

mapped to one or more “modifyActivity” operations in the 

PModel domain, to change all the calls.    Some of the PModel 

transformation rules derived for the Façade pattern are 

presented in Figure 7. 

B. PModel Refactoring 

The extended types introduced in this paper do not impact the 

process of applying the PModel refactoring rules (stage D in 

Figure 1) discussed as part of the coupled transformation 

technique in [3]. Briefly, first the PModel is annotated with 

transformation directives indicating the changes, then the 

changes are applied by a transformation engine implemented 

using QVT Operational (Query, View, and Transformation, a 

OMG standard model transformation language) which 

processes the directives. The details are provided in [3]. 

VIII. CASE STUDY 

To illustrate the application of the coupled transformation and 

the role of the extended types and traceability links in the 

mapping, two SOA patterns will be applied to the Shopping 

and Browsing SOA given in Figure 2 and Figure 3. 

Suppose a designer must re-design a Shopping and Browsing 

SOA to support three different user types (mobile phone, 

desktop, kiosk) through a multi-channel endpoint.  First, the 

designer applies the pattern “Concurrent Contracts”[2],  which 

addresses the following problem: A service’s contract may not 

be able to support all potential types of clients, because of 

access and interface differences. The pattern also suggests the 

following solution [2]: To accommodate different types of 

clients, separate service contracts (“channels”) can be 

created for the one underlying service implementation. Using 

the Concurrent Contracts pattern, separate shopping and 

browsing operations are provided for each group of users. 

Separate sets of actions (in form of activity subgraphs, i.e. 

EntrySMEs) are created in the Shopping swimlane (see Figure 

3) and also the Browsing swimlane (not shown in Figure 3). 

Using the corresponding types table (using row C4 in Table 

1), traceability links are created for these EntrySMEs mapping 

the activity subgraphs to new PModel LQN entries 

(LQNEntry) of the Shopping and Browsing tasks. Although 

this allows each contract to be extended and managed 

individually, it introduces duplication in the functional design. 

Furthermore, when a service is subject to change due to 

contract changes, the core service logic needs to be extended 

  
Figure 7: Tool for automatic derivation of PModel refactoring rules 

 

Figure 8: Shopping and Browsing LQN PModel with the Façade Design Pattern 
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and augmented to accommodate the change. This leads the 

designer to consider another SOA design pattern called 

“Service Façade”, which addresses the following problem 

according to [2]: The tight coupling of the core service logic to 

its contracts can obstruct its evolution and negatively impact 

service consumers. The solution suggested in [2] is: Façade 

logic is inserted into the service architecture to establish a 

layer of abstraction that can adapt to future changes to the 

service contract. 

 
Figure 9: System Throughput (Requests/Sec) for Concurrent Contracts and 

Façade 

 To apply the Façade design pattern, a new Façade swimlane is 

created in the BPM with one new EntrySME activity subgraph 

for each service contract. The new swimlane is mapped to a 

new LQN task ServiceFacade in the PModel (using row C3 in 

Table 1), and the new EntrySMEs are mapped its entries 

(LQNEntry) (using row C4 in Table 1). The BPM 

synchronous calls from the users to the Shopping swimlane 

are redirected to pass through the façade EntrySMEs. The 

synchronous calls are mapped to LQN synchronous calls 

through the traceability links with SyncCallSME types (C6 in 

Table 1).  The LQN PModel after application of the Façade 

Design pattern is shown in Figure 8 (PModel before 

application is shown in Figure 3). The refactored PModel is 

solved by LQN Solver tool [8] for performance analysis (i.e. 

throughput, response time, utilization. etc). Figure 9 compares 

the system throughput (request/sec) given by the LQN model 

solver for the two cases (Concurrent Contracts and Facade) 

when the total number of users varies for three types of users. 

Figure 9 shows that application of Façade design pattern is 

consistently making the system throughput worse compared to 

Concurrent Contracts, due to the additional overhead. This 

shows that Façade has a performance cost to balance against 

its architectural benefits. 

IX. CONCLUSION  

Establishing cross-model traceability links is challenging 

when there is an abstraction gap between the source and target 

models. In case of the SOA SModel and the  corresponding 

PModel created by the PUMA [1] transformation chain, the 

abstraction difference involves collections of elements in both 

models. In this paper, four relationships were identified which 

involve many-to-one or many-to-many mappings which reveal 

the gap in the level of abstraction between SModel and 

PModel. To bridge the abstraction gap, these four additional 

types for subgraphs of SModel and PModel elements are 

defined and used in establishing the extended traceability 

links. These additional types do not correspond to any meta-

class of the source or target metamodel. The syntactic 

correctness of the corresponding artifacts is verified by the 

model transformation that generates the target model from the 

source model, and also identifies the model elements 

contained in every artifact. We also modified the coupled 

transformation technique in [3] to use the traceability links 

with extended types which keeps consistent the SModel and 

PModel after the application of a SOA pattern. Examples of 

use are described with coupled refactoring transformations 

that represent the application of two SOA patterns: 

“Concurrent Contracts” and “Service Façade”. 
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