
Cross-Model Traceability for Coupled

Transformation of Software and Performance Models

Nariman Mani, Dorina C. Petriu, Murray Woodside

Department of Systems and Computer Engineering, Carleton University

Ottawa, Ontario, Canada

{nmani | petriu | cmw}@sce.carleton.ca

Abstract— In Model Driven Engineering, the relationship

between a source and target model can be maintained, when the

source model undergoes changes, by a coupled transformation,

whereby changes applied to the source model are incrementally

propagated to the target model. Cross-model traceability links

are key to applying the correct changes to the target model. The

coupled transformation considered in this paper propagates

changes to a Layered Queueing Network (LQN) performance

model (originally derived from a UML design model of a SOA

system) as an effect of applying design patterns to the SOA

model. A special problem arises because of differences in the level

of abstraction between UML and LQN (i.e. a performance model

element may represent a set of many design model elements).

This paper bridges the abstraction gap between models by

proposing traceability links that use new collection types (not

defined in the source metamodel) to represent complex source

model elements, which are then mapped to simple target model

elements.

Keywords- Software performance model, service oriented

systems, SOA pattern, traceability links, change propagation, LQN

I. INTRODUCTION

In Model Driven Engineering (MDE), the performance of a

Service Oriented Architecture (SOA) design can be evaluated

in early lifecycle phases using a quantitative performance

model (hereafter called the PModel) generated by a model

transformation from the software design model (hereafter

called the SModel) extended with performance annotations.

An example of such a technique is the Performance from

Unified Model Analysis (PUMA) [1][8]. Also, system

designers often apply SOA patterns [2] to system designs as

generic solutions for architectural, design and implementation

problems, and study their performance impact with the help of

the corresponding PModel. A pattern could have a significant

performance cost due to the overheads it may introduce, in

which case the performance cost can be balanced against the

benefits of the pattern, and alternative pattern configurations

can be compared. Traditionally, a new performance model

needs to be generated by reusing the PUMA technique to

evaluate the impact of the design pattern changes on the

design model. However, this has drawbacks: 1) it masks the

causal connections between the design changes and the

performance impact which can provide significant insight to

the engineer to make design choices; 2) it is a substantial

waste of execution cost, which could be significant if the cycle

of choosing a pattern, applying and evaluating it is repeated

many times during the development process of large systems.

Cross-model traceability can help by maintaining consistent

relationships between the source and target model elements

from the moment the target model is generated; when changes

occur in the source model, only the affected target model

elements are identified and changed. Compared to generating

a new performance model by techniques such as PUMA every

time a pattern is applied, the cross-model traceability links

show the causal connections between the SModel changes and

the resulting PModel changes with a reduced effort. It also

enables incremental studies of numerous design alternatives

when applying a large number of SOA design patterns.

Cross-model traceability links are straightforward when the

cross-model relationships between elements are one-to-one, or

one–to-many. However, when generating a PModel from a

SModel, it often happens that one PModel element is created

from a set of SModel elements, due to the fact that the level of

abstraction of PModel is higher. An example is a collection of

SOA activities which make up a single service operation in the

PModel. The requirements for these specific collection

elements are defined in Section V and VI.

In [3] we proposed a coupled refactoring technique which

incrementally propagates the SModel changes (due to the

application of a SOA design pattern) to the PModel. It uses

entity-to-entity traceability links without considering the

abstraction gap and makes it the responsibility of the designer

to identify a collection of SModel entities which all trace to

the same PModel entity. This process is error-prone and

requires deep designer understanding of the process.

The difference in this paper is that we address the challenge of

bridging the abstraction gap between the two models by

defining new types for complex source model concepts (not

corresponding to any meta-class in the source metamodel) and

mapping them to the target model concepts. Moreover, in this

paper we propose an improved (and in fact simplified) version

of the coupled transformation process in [3] based on these

extended types, as explained in sections VI and VII. This

makes the coupled transformation more accurate and easier to

automate. Furthermore, the extended types can also be used to

trace the performance results obtained by solving the PModel

back to the collections of SModel elements corresponding to

the PModel elements.

In this paper, the SModel uses UML extended with the SoaML

profile [4, 5] for SOA concepts and the MARTE profile

DOI reference number: 10.18293/SEKE2016-142

(Modeling and Analysis of Real-Time and Embedded sys-

tems) [6] for performance-related information. The PModel is

expressed in the Layered Queueing Network (LQN [7])

formalism. The initial PModel is created from the annotated

UML using the PUMA tools [1, 8]. All of these models are

briefly described in Section IV.

II. RELATED WORK

Traceability is frequently employed in approaches to software

model transformation. In [9], the authors present a method

which attaches traceability generation codes to pre-existing

ATL programs [10]. The method produces a loosely coupled

traceability, meaning it can be used for any kind of one-to-one

traceability. In [11] a method is presented for generating

annotated models with traceability information, by merging

the models with the trace models. The generated trace-links

are embedded in the target model, in elements they refer to, or

are stored externally in a separate model.

Managing the complexity of traceability information in MDE

is discussed in [12]: a) how to identify different kinds of trace-

links that may appear in MDE; and b) propose a rigorous

approach for defining semantically rich trace-links between

models. In [13] the authors propose a traceability framework,

implemented in the model-oriented language Kermeta, to

facilitate modeling transformations. Using a trace metamodel,

the framework allows for tracing the transformation chain

within Kermeta. Model transformation trace-links are defined

in the metamodel as a set of source nodes and target nodes.

None of the above works addresses traceability between

models at different levels of abstraction. On the other hand,

reverse engineering transformations, which do raise the

abstraction level, do not emphasize traceability, perhaps

because in reverse engineering there is less interest in

retaining the connection with the original model. In reverse

engineering of design models from code [14] a single design

element may be represented by many scattered features of the

code, with structured relationships which must be captured in

the traceability link. The taxonomy from [14], for example,

does not mention traceability links. However, coupled

transformations of software and performance models, such as

our proposed techniques in [3], require constructing and

maintaining these links. Therefore, the technique proposed in

this paper that addresses the abstraction gap between software

and performance models, does improve our previous approach

from [3].

III. OVERVIEW OF THE IMPROVED APPROACH

Figure 1 shows an overview of the coupled transformation

technique [3], enhanced with extended types for traceability

links introduced in this paper for propagating changes due to

design patterns. The inputs to the process include the initial

SOA SModel (top left), and a library of pattern definitions

(bottom left). The enhanced traceability links are used in stage

C (shown in grey) for translation of the SModel refactoring

transformation rules into PModel refactoring transformation

rules. The designer steps (supported by tools developed by the

authors) are shown on the left side and the automated steps on

the right side.

Figure 1: Overview of Improved Approach using Extended Traceability Links

for Coupled Transformations

The extended approach has four stages:

A. Preliminaries: This stage gets the SModel as an input and

creates the base PModel using PUMA [1]. The mapping

information between the SModel and the constructed PModel

is created during this initial transformation process (Step (2)).

The mapping information is used by the technique in this

paper for creating the cross-model traceability links with

extended types in a mapping table which will be used in stage

C. Pattern application begins at step (4), where the designer

selects a candidate pattern for its own reasons (e.g.

maintainability).

B. Model Transformation Rules: The selected pattern is

specified using Role-Based Modeling RBML [15], a graphical

pattern specification approach which uses model roles to

identify the participating elements. The designer indicates

where the pattern is applied by binding pattern roles to

elements in the SModel and then records SModel

transformation rules that will satisfy the solution specification

(step (5)).

C. Deriving the PModel Transformation Rules: Using the

traceability links with extended type extracted from the

mapping information generated in Stage (A) and the SModel

refactoring transformation rules from Stage (B), the PModel

refactoring transformation rules are derived automatically in

the coupled transformation process (Step 6). The dashed line

between the “SModel Refactoring Transformation Rules” and

“PModel Refactoring Transformation Rules” represents the

coupling between them. If there are updates to the table of

traceability links (mapping table) due to add/deletion of the

elements, this is being done as part of Step 6.1.

D. Refactoring PModel: The PModel refactoring

transformation rules are executed by a transformation engine

to refactor the PModel into the final PModel* (Steps 7 and 8).

Although the steps in this stage are explained briefly in

Section VII.B , the details are discussed in [3] and are not

System Designer

SModel
(SoaML)

PUMA
 Transformation

Selecting the
Candidate SOA
Design Pattern

PModel
(LQN)

Solving
the PModel

Extended Mapping
Table (Traceability

Links)

Refactoring PModel
(Transformation)

Automated Coupled
Transformation Technique(A) Preliminaries

(D) Refactoring PModel

PModel*

(B) SModel Transformation Rules

Creating (Recording) SModel
Refactoring

Transformation
Rules

(2) (3)

(4)

(5)

(1)

(C) Coupled SOA Transformation using Traceability Links

Updating
 Mapping Table

(6)

(6.1)

Library of SOA
pattern

definitions

System Input

System Input
Annotating PModel

(Transformation)

(7) (8)

Refactoring SModel
(Transformation)

(5.1)

PModel
Refactoring

Transformation
Rules

SModel
Refactoring

Transformation
Rules

Deriving PModel
Refactoring

Transformation
Rules through a

Translation Process

Coupling

Input

Mapping
Information

within the scope of this paper as they are not impacted by the

proposed extended types in this paper.

IV. MODELS

A. SOA Models

From the range of views in SoaML [4, 5] used to model SOA

systems, we use the Business Processes Model (BPM) for

behavior and the Service Architecture Model (SEAM) for

structure and contracts, together with a UML deployment

diagram. The SEAM is specified as a UML collaboration

diagram with service participants and contracts (with SoaML

stereotypes «Participant» and «ServiceContract»

respectively). Each participant plays a role of Provider or

Consumer with respect to a contract. Participants correspond

to pools, participants and swimlanes in the BPM. The BPM is

specified as a UML Activity Diagram (AD) (see Figure 2).

Service invocations are modeled as operation calls, using three

types of UML actions: a CallOperationAction sends a service

request and waits for the reply via its input/output pins; an

AcceptCallAction, an accept event action, waits for the request

arrival; and a ReplyAction returns the reply values to the

caller. The called operation name appears in ‘()’ as “(class-

name::operation-name)”. We assume that all BPM edges

between ActivityPartitions represent calling interactions,

connecting these three types of Actions.

MARTE performance annotations are given in shaded notes.

BPM describes the behavior as a sequence of steps «PaStep»

with a workload attached to the first step stereotyped as

«GaWorloadEvent». «PaStep» has attributes hostDemand

(required CPU time), rep (mean repetitions) and prob

(probability of optional step). «GaWorloadEvent» defines a

population of Nusers users, each with a thinking time

ThinkTime defined by MARTE variables. Concurrent runtime

instances «PaRunTInstance» are identified with swimlane

roles. UML Deployment Diagram (DP) is also defined, as in

Processing nodes are stereotyped «GaExecHost» and

communication network nodes are stereotped

«GaCommHost», with attributes for processing capacity,

message latency and communication overheads.

B. Performance Model

PModels are expressed in an extended queueing notation

called Layered Queuing Networks (LQNs) [8], selected

because of its close coupling to the high-level software

architecture. An LQN estimates waiting for service due to

contention for host processors and software servers, and

provides response time and capacity measures. Figure 3 shows

the LQN model for the example. For each service there is a

task, shown as a bold rectangle, and for each of its operations

(contracts) there is an entry, shown as an attached rectangle.

The task has a parameter for its multiplicity or thread pool size

(e.g. {‘1’}). Each entry has a parameter for its host CPU

demand, equal to the total hostDemand of the set of «PaSteps»

for the same operation in the SModel.

Calls from one entry to another are indicated by arrows

between entries (a solid arrowhead indicates a synchronous

call for which the reply is implicit, while an open arrowhead

indicates an asynchronous call). The arrow is annotated by the

number of calls per invocation of the sender. For deployment,

an LQN host node is indicated by a round node associated to

each task. While Figure 3 shows entries with host demands

and calls, there is an optional level of detail which is not

shown here, which defines an activity subgraph for each entry

with predecessors, successors, forks and joins, similar to a

UML activity diagram. The host demands and calls are then

defined for each activity.

V. THE ABSTRACTION GAP BETWEEN SMODEL AND PMODEL

Each type of traceability link produced by the SModel-to-

PModel transformation describes the mapping relationship

between a SModel element type (i.e., a meta-class of the UML

metamodel) and a PModel element type (i.e., a meta-class of

the LQN metamodel). Establishing the traceability links

Figure 2: Checkout Business Process Model for the Online Shop Figure 3: LQN (PModel) corresponding to SOA design (SEAM, BPM and

Deployment Diagram)

«GaWorkloadEvent»{closed
(population=$Nusers,
extDelay=$ThinkTime}

«PaRunTInstance»

User

PrepareCheckout
Request

AcceptCallAction
(Shopping::Checkout)

«PaRunTInstance»

Shopping

BasketCheckout

ReplyCallAction
(Shopping::Checkout)

DisplayConfirmatio
n

CallAction
(Shopping::Checkout)

CalculateShippin
g

CreateInvoice

CallAction
(OrderProcessing:

:
PayCredit) CallAction

(OrderProcessing:
:

PayDebit)

« PaStep»
{hostDemand=(0,ms),

extOpDemand=“network
”,

extOpCount=$R}

«PaRunTInstance»

OrderProcessing« PaStep»
{hostDemand=(1,

ms), prob=0.5}

« PaStep»v
{hostDemand=(5,ms)}

AcceptCallAction
(OrderProcessing::

PayCredit)

Validate
CreditCardInfo

ChargeCredit

CallAction
(PaymentService::

ProcessCredit)

ReplyCallAction
(OrderProcessing::

PayCredit)

« PaStep»
{hostDemand=(10,ms)}

« PaStep»
{hostDemand=(10,ms)}

AcceptCallAction
(OrderProcessing::

PayDebit)

Validate
DebitCardInfo

ChargeDebit

CallAction
(PaymentService::

ProcessDebit)

ReplyCallAction
(OrderProcessing::

PayDebit)

« GaPerformanceContext»{contextParams = $Nusers, $ThinkTime, $R}

AcceptCallAction
(PaymentService::

ProcessDebit)

DebitPayment

ReplyCallAction
(PaymentService::

ProcessDebit)

«PaRunTInstance»

PaymentService

AcceptCallAction
(PaymentService::

ProcessCredit)

CreditPayment

ReplyCallAction
(PaymentService::

ProcessCredit)

« PaStep»
{hostDemand=(0.1,ms)}

« PaStep»
{hostDemand=(0.1,ms)}

« PaStep»
{hostDemand=(0.2,ms)}

«PaStep»{hostDemand=
(0.1,ms), rep=1.5}

« PaStep»
{hostDemand=(0.2ms)}

« PaStep»
{hostDemand=(0.1,ms)}

« PaStep»
{hostDemand=(0.1,ms)}

«PaStep»{hostDemand=
(0.1,ms), rep=0.5}

«PaStep»{hostDemand
=(0.04,ms)}

« PaStep»
{hostDemand=(0.1,ms),

prob=0.5}

« PaStep»
{hostDemand=(0.1,ms),

prob=0.5}

« PaStep»
{hostDemand=(3.8,ms)}

User
[z=1000ms]

users

users

Browse
[s=30ms]

Checkout
[s=30ms]

PayCredit
[s=1ms]

PayDebit
[s=1ms]

Order Processing
{1}

OrderProcessCredit
[s=1ms]

ProcessDebit
[s=1ms]

Payment

Payment
Processing

{1}

Product
[s=5ms]

Product
Catalogue

{1}

Product
Catalogue

DCT
[s=5ms]

DB
{1}

DB

0.5
0.5

3 1.5

1.5

2

1.5

Browsing

0.5

Shopping

Shopping
Browsing

between elements of SModel and PModel which are in a one-

to-one relationship is straightforward. A partial list of one-to-

one mappings is shown in the following table:

SModel (SoaML) Type PModel(LQN) Type

 SEAM Participant Task
 BPM Swimlane (PaRunTInstance) Task

 BPM Action Activity

 BPM Control Flow Sequence
 BPM Async Call Async Call

 DP Processing Node (ExecHost) Host

 DP Artifact Task

However, SModel to PModel relationships are not always one-

to-one. We have identified cases where a group of

interconnected SModel elements (called subgraph) is mapped

to one or more PModel elements (i.e. many-to-one or many-

to-many relationship). In most cases, there are more SModel

elements mapped to fewer PModel elements, indicating that

the latter has a higher level of abstraction. These mappings are

described below.

A. LQN Entry

An LQN entry of a task represents the entire operation carried

out by the task in response to a call. Thus, the entire subgraph

of SModel activity diagram actions, control flows, hyper edges

and attributes invoked by an AcceptCallAction is mapped to

an LQN entry. An example of this type of mapping is shown

in Figure 4.

Figure 4: (A) Partial SModel AD Subgraph and (B) Corresponding Partial

LQN PModel with mapped Entry

The partial SModel AD and the corresponding partial LQN

PModel are shown in Figure 4.A and Figure 4.B, respectively.

There are two swimlanes representing “Service A” and

“Service B”, where “Service B” contains two subgraphs, each

accepting a call from a CallOperation-Action in “Service A”.

The subgraph between AcceptCallAction(B::b) and

ReplyAction(B::b) is mapped to “Entry a”, and the one

between AcceptCall-Operation(B::e) and ReplyAction(B::e) to

“Entry e” in the partial LQN model shown in Figure 4.B. This

is a case of many-to-one mapping.

B. LQN Synchronous Call

An LQN synchronous call corresponds to two messages in the

SModel, the call and the corresponding reply. This is also a

case of many-to-one mapping. Two examples of this type of

mapping are shown in Figure 5. The synchronous call from

CallOperationAction(B::b) in “Service A” to

AcceptCallAction(B::b) in “Service B” and the reply from

ReplyCallAction(B::b) to the caller action in Figure 5.A are

mapped to a single LQN call from “Entry a” to “Entry b” in

Figure 5.B. Figure 5 shows also an example of nested

synchronous calls, where a call to “Service C” is made before

the reply from “Service B” to the initial caller, “Service A”.

Figure 5: (A) Partial SModel AD with synchronous calls and (B)

Corresponding LQN PModel with synchronous calls

C. LQN Asynchronous Call

An LQN asynchronous call represents a SModel call without

reply, which also might be part of a forwarding call (to be

dealt with next). While this correspondence is one-to-one, it is

mentioned here because it only occurs only in a certain context

in the SModel.

D. LQN Forwarding Call

An LQN forwarding call represents delegation of

responsibility for an operation. It is a chain of calls in the

PModel that corresponds to a chain of messages in the

SModel. There is an initial synchronous call from a

CallOperationAction which eventually receives its

corresponding reply from a different swimlane than the one it

called, and one or more asynchronous calls that forward the

caller request to another swimlane; the final one in the chain

replies to the initial caller.

This collection of SModel messages is mapped to the

following collection of PModel elements: a LQN synchronous

call and one or more forwarding calls that forward the request

to a final entry, which implicitly provides the reply to the

initial caller. This is a case of many-to-many mapping between

the SModel and PModel elements. Figure 6 shows an

example. CallOperationAction(B::b) from “Service A” in

Figure 6 .A initiates a call to “Service B”, which forwards it to

“Service C”, which replies to the initial caller. Figure 6.B

shows corresponding (mapped) partial LQN PModel with one

synchronous call and one forwarding call (i.e. dashed arrow

line).

«PaRunTInstance»
Service B

AcceptCallAction(B::b)

Action b1

Action b2

Service A

Service BEntry bEntry e

CallOperationAction(B::b)

«PaRunTInstance»
Service A

Entry a

(A) (B)

CallOperationAction(B::e)

AcceptCallAction(B::e)

Action e1

Action e2

Action b3

ReplyCallAction(B::b)

ReplyCallAction(B::e)

«PaRunTInstance»
Service B

AcceptCallAction(B::b)

ReplyCallAction(B::b)

Action b1

Action b2

Action b3

Action b4

Service A

Service BEntry b

«PaRunTInstance»
Service C

CallOperationAction(C::c)

AcceptCallAction(C::c)

Action c1

Action c2

ReplyCallAction(C::c) Service CEntry c

CallOperationAction(B::b)

«PaRunTInstance»
Service A

Entry a

(A) (B)

Figure 6: (A) Partial SModel AD forwarding scenario and (B) Corresponding

Partial LQN PModel with synchronous & forwarding calls

VI. TRACEABILITY LINKS AND MAPPING TABLE

We assume that the transformation that derives the initial

PModel from the SModel (e.g. PUMA) also generates the

basic element-to-element mapping between SModel and

PModel elements (i.e. in form of a mapping table), as

described in [16]. In this paper, the initial mapping table

provided by PUMA is extended with the additional higher-

level types of traceability link, as described in this section.

Mapping table is discussed in Section VI.A and the

traceability links metamodel is described in Section VI.B.

A. Mapping Table

The mapping table is a collection of the traceability links of

the form:

Traceability Link = (link name, SME , PME)

where SME stands for an SModel Element or attribute, and

PME for the corresponding PModel Element or attribute. For

example, the traceability link named BTL1 between the BPM

swimlane “Service B” in Figure 5.A and the LQN Task

“Service B” in Figure 5.B has the form:

Traceability Link = (BTL1, BPM::Swimlane:ServiceB,

LQN::Task:ServiceB)

B. Traceability Links Metamodel

To bridge the abstraction gap, in this paper we propose that

traceability links in the mapping table use a metamodel that

includes the following:

 UML types describing the SModel elements,

 LQN metamodel types describing the PModel elements,

 the following four additional types:
1. EntrySME: a collection of Elements in the SModel containing

the elements of the Activity Subgraph invoked by a Call,

2. SyncCallSME: a pair of Call and Reply Actions and their

corresponding AcceptCallActions in SModel, that make up a

synchronous call

3. ForwardingSME: a collection of CallActions and one

ReplyAction in SModel, with their corresponding

AcceptCallActions, forming a forwarding pattern as described

in Section V.

4. LQNFwdCall or ForwardingPME: a corresponding collection

of LQN calls in PModel with one synchronous call and one or

more forwarding calls.

Therefore, the SME column of the mapping table has UML

types plus four additional types for SModel and PME column

has one additional type for PModel. The traceability links

based on these extended types are called “traceability links

with extended types” and are defined in the following sub

sections:

1) Traceability Link for an LQN Entry

An entry in the PModel corresponds to a portion of the

behaviour specified in an activity diagram, defining the

response by a PaRunTInstance (defined by a swimlane) to a

call. The subgraph starts with an AcceptCallAction following a

call from a CallOperationAction in another swimlane, and

ends where it provides a reply with a ReplyAction, or ends, or

executes a CallOperationAction to another swimlane.

The EntrySME can be discovered automatically by an analysis

of the flow of Actions, based on this definition. In presenting

it here, it is shown as a list of the elements in the subgraph

within ‘{}’ brackets, separated by commas. In this list, the

action names are shown first, then the activity control flows

each defined as a couple (source, destination) and finally the

hyper edges (Decision, Merge, Fork, Join). Each hyper edge is

defined as:

Type (predecessor list, successor list)

if Type is Decision or Fork, there is only one predecessor;

if Type is Merge or Join, there is only one successor.

To distinguish the hyperedges in the text, their types are

shown in bold.

The EntrySME is mapped to a LQN Entry and each element in

the defining list is mapped to a corresponding element of the

LQN activity subgraph inside the LQN entry. An example of

this type of traceability link, referencing elements in the

scenario in Figure 4, is given below:

Link = (BTL2,BPM::EntrySME:{AcceptCallAction(B::b), Action(B::b1),
Action(B::b2), Action(B::b3), ReplyAction(B::b), (AcceptCallAction(B::b),

Action(B::b1)), Decision (Action (B::b1), Action(B::b2), Action(B::b3)),

Merge(Action (B::b2), Action(B::b3),
ReplyCallAction(B::b))},LQN::LQN Entry: {(Entry b)})

2) Traceability Link for an LQN Synchronous call

A synchronous call (i.e., call-reply) in the PModel corresponds

to a pair of messages (that is, of ActivityEdges that cross the

boundary between two ActivityPartitions), called here a

Synchronous Call. The first message is from a

CallOperationAction in the first BPM swimlane to an

AcceptCallOperation in the second swimlane; the second

message is from a ReplyAction in the second swimlane to the

initiating CallOperationAction. A SyncCallSME is defined as

a two-element list as follows:

{(CallOperationAction, AcceptCallOperation),
(ReplyAction, CallOperationAction) }

which is mapped to the corresponding LQN Synchronous Call.

An example of this type of traceability link based on the

scenario in Figure 5 is given below:

Link = (BCTL3,BPM::SyncCallSME: {(CallOperationAction(B::b),
AcceptCallAction(B::b)),

(ReplyAction(B::b),CallOperationAction(B::b))},

LQN::LQNSyncCall: {(Entry a, Entry b)})

«PaRunTInstance»
Service B

AcceptCallAction(B::b)

Action b1

Action b2

Action b3

Action b4

Service A

Service BEntry b

«PaRunTInstance»
Service C

CallOperationAction(C::c)

AcceptCallAction(C::c)

Action c1

Action c2

ReplyCallAction(C::c) Service CEntry c

CallOperationAction(B::b)

«PaRunTInstance»
Service A

Entry a

(A) (B)

Table 1: Examples of corresponding SModel and PModel element types in the

traceability links of the Mapping Table
 Sub-table (A) Types for Structural Elements

 SME PME
C1 Participant (in SEAM) LQN Task

C2 Host Node (in Deployment) LQN Host

C3 ActivityPartition/Swimlane (in BPM) stereotyped

«PaRunTInstance»

LQN Task

C4 EntrySME (collection of elements forming an

activity subgraph)

LQN Entry

C5 BPM Action LQN Activity

 Sub-table (B) Calls
C6 SyncCallSME (collection of calls) LQN Synchronous Call/LQNSyncCall

C7 ForwardingSME (collection of calls) LQN Forwarding Call/LQNFwdCall

(collection of calls)

C8 Asynchronous Call LQN Asynchronous

Call/LQNAsyncCall

 Sub-table (C) Attributes
C9 MARTE WorkloadEvent.extDelay Think Time of a workload

C10 MARTE ExecHost.resMult Processor Multiplicity

C11 MARTE PaRunTInstance.poolsize Task Multiplicity

Table 2: Mapping Table with examples of traceability links for Shopping and

Browsing SModel and PModel

Sub-table (A) Structural Elements

Link SME PME

DTL3 Deployment Node Order Host LQN Host Order

DTL2 Deployment Artifact Browsing LQN Task Browsing

STL3 SEAM Participant User LQN Task User

STL2 SEAM Participant Browsing LQN Task Browsing

BTL1 EntrySME:{AcceptCall

(Shopping::Checkout), BasketCheckout,

CalculateShipping,

CreateInvoice,

CallOperation(OrderProcessing::PayCredit),

CallOperation(OrderProcessing::PayDebit),

ReplyCallAction(Shopping::Checkout),

(AcceptCall (Shopping::Checkout),

BasketCheckout),

(BasketCheckout, CalculateShipping),

(CalculateShipping, CreateInvoice),

Decision(CreateInvoice,

CallOperation(OrderProcessing::PayCredit) ,

CallOperation(OrderProcessing::PayDebit)),

Merge(CallOperation(OrderProcessing::PayCr

edit) ,

CallOperation(OrderProcessing::PayDebit),

ReplyCallAction(Shopping::Checkout))}

LQNEntry: {(Checkout)}

Sub-table (B) Calls

BCTL1 SyncCallSME:{(CallOperationAction(Shoppin

g::Checkout),

(AcceptCallAction(Shopping::Checkout)),

ReplyAction(Shopping::Checkout),

CallOperationAction(Shopping::Checkout))}

LQNSyncCall: {(

User,Checkout)}

Sub-table (C) Attributes

BATL1 MARTE Attribute hostDemand for the

AcceptCallAction(Shopping::Checkout)

Host Demand attribute of

LQN AcceptCallAction in

Entry Checkout

3) Traceability Link for an LQN Forwarding Call

A Forwarding Call identifies a call pattern which includes

synchronous and asynchronous calls. It begins with a

synchronous call from a CallOperationAction in one BPM

swimlane to an AcceptCallOperation in a second swimlane.

However instead of a reply, this operation ends with a call that

forwards the request to a third swimlane. It may be forwarded

any number of times, until a reply is sent back to the

originating swimlane. The fact that the reply is coming from a

swimlane which is different than the swimlane of the receipt

of initial call shows that the request has been forwarded to

other swimlanes for processing. A ForwardingSME is defined

as follow: it begins with SyncCallSME (defined above for the

synchronous calls) which is followed by a comma-separated

list of forwarding calls, as:

ForwardingSME:{ SyncCallSME, (frwdCall1), (frwdCall2),…}

A ForwardingSME is mapped to a collection of PModel

elements containing an LQN synchronous call and one or

more LQN forwarding calls. The last forwarding call

implicitly generates the reply to the originating entry. This

requires another extended type for the LQN column of the

mapping table, called LQNFwdCall. A LQNFwdCall begins

with LQNSyncCall and it is defined similarly by a list:

LQNFwdCall: { LQNSyncCall, (frwdCall1), (frwdCall2),…}

An example of this type of traceability link based on the

scenario in is:

Link = (BCTL4,BPM::ForwardingSME: {(CallOperationAction(B::b),

AcceptCallAction(B::b)), (ReplyAction(C::c), CallOperationAction(B::b)),

(CallOperationAction(C::c), AcceptCallAction(C::c))},
LQN::LQNFwdCall:{(Entry a, Entry b),(Entry b, Entry c)})

Table 1 shows examples of corresponding SModel and

PModel element types in the traceability links of the mapping

table. Table 1 is organized into three groups for Structural

Elements, Calls, and Attributes. Table 2 gives some examples

of traceability links established between the SModel (BPM is

shown in Figure 2) and PModel (Figure 3) for the shopping

and browsing SOA.

VII. COUPLED TRANSFORMATION USING EXTENDED

TRACEABILITY LINKS

The coupled transformation technique in [3] includes a formal

recording of the refactoring of the SModel, and automatic

derivation of the refactoring transformation of the PModel as

well as its automatic application to the PModel. This section

describes how these steps must be modified (enhanced) to

accommodate the extended types of cross-model traceability

links with extended types proposed in this paper. An overview

of the modified process is also shown in Figure 1 (Stages B

and C).

A. Coupled PModel Refactoring Rules

The coupled transformation in [3] begins with recording the

SModel refactoring that arises from the pattern application. A

tool was implemented in [3] to assist the system designer with

this process. With the extended link types introduced in this

paper, the system designer can now create rules at various

levels of abstraction. Therefore in this paper, the tool in [3] is

enhanced to support extended types. The designer creates the

rules using the provided tool by selecting SMEs from a table

created from the UML specification, and can choose the level

of abstraction by choosing from the extended element types.

For example, when refactoring behavior, rules can be applied

either to an entire EntrySME or to its individual activities, as

the designer wishes. The automated translation of the SModel

refactoring rules into PModel refactoring rules is based on the

cross-model traceability links in the mapping table described

in Section VI, using both the Type Correspondences table (e.g.

Table 1) and the Mapping Table (e.g. Table 2). With the

extended model and link types the process of generating the

PModel refactoring rules is made more accurate, simpler and

more uniform. Therefore the automated process in [3] is

modified to use the extended types as follow. Figure 7 shows a

partial screenshot of the tool that takes care of the enhanced

automated translation using the traceability links. Each

SModel refactoring rule has an operation name and some

arguments, which are processed as follows:

1. The operation name generates one or more PModel

operations. The action part of the name (add/ delete/

modify) is retained, and the operand-type part (e.g.

Participant) is mapped according to the Type

Correspondences table, similar to one shown in Table 1 For

example the SModel operation addParticipant is translated

to addTask, and deleteEntrySME to deleteEntry.

2. The arguments of the PModel operation (e.g. the element

or elements to be added, deleted, or modified) are

translated from the arguments of the SModel operation

using the Mapping Table (e.g. Table 2). In an “add”

operation the name of the new PModel element is taken as

the name of the corresponding SModel element.

For example, a SModel “addParticipant” operation is mapped

to “addTask” for the PModel, and the “addParticipant”

argument becomes the new task name. Modifications to calls

require special consideration in the translation. The SModel

“modifyActionCall” operation changes a service invocation

from a CallOperationAction to an AcceptCallAction. As this

might apply to more than one call to the same

AcceptCallAction, the mapping table is searched (using a

MappingTableSearchByKey command) to identify all the

PModel activities making the call. Then the operation is

mapped to one or more “modifyActivity” operations in the

PModel domain, to change all the calls. Some of the PModel

transformation rules derived for the Façade pattern are

presented in Figure 7.

B. PModel Refactoring

The extended types introduced in this paper do not impact the

process of applying the PModel refactoring rules (stage D in

Figure 1) discussed as part of the coupled transformation

technique in [3]. Briefly, first the PModel is annotated with

transformation directives indicating the changes, then the

changes are applied by a transformation engine implemented

using QVT Operational (Query, View, and Transformation, a

OMG standard model transformation language) which

processes the directives. The details are provided in [3].

VIII. CASE STUDY

To illustrate the application of the coupled transformation and

the role of the extended types and traceability links in the

mapping, two SOA patterns will be applied to the Shopping

and Browsing SOA given in Figure 2 and Figure 3.

Suppose a designer must re-design a Shopping and Browsing

SOA to support three different user types (mobile phone,

desktop, kiosk) through a multi-channel endpoint. First, the

designer applies the pattern “Concurrent Contracts”[2], which

addresses the following problem: A service’s contract may not

be able to support all potential types of clients, because of

access and interface differences. The pattern also suggests the

following solution [2]: To accommodate different types of

clients, separate service contracts (“channels”) can be

created for the one underlying service implementation. Using

the Concurrent Contracts pattern, separate shopping and

browsing operations are provided for each group of users.

Separate sets of actions (in form of activity subgraphs, i.e.

EntrySMEs) are created in the Shopping swimlane (see Figure

3) and also the Browsing swimlane (not shown in Figure 3).

Using the corresponding types table (using row C4 in Table

1), traceability links are created for these EntrySMEs mapping

the activity subgraphs to new PModel LQN entries

(LQNEntry) of the Shopping and Browsing tasks. Although

this allows each contract to be extended and managed

individually, it introduces duplication in the functional design.

Furthermore, when a service is subject to change due to

contract changes, the core service logic needs to be extended

Figure 7: Tool for automatic derivation of PModel refactoring rules

Figure 8: Shopping and Browsing LQN PModel with the Façade Design Pattern

Mapping Table loaded from a
XML file into the Tool

Derived PModel
Transformation Rules

User
[z=9s]

users 2

net
[pure delay

80ms]

Network
2 Network

1

users
1

Browse
[s=30ms]

Checkout
[s=30ms]

PayCredit
[s=1ms]

PayDebit
[s=1ms]

Order
Processing

{1}

OrderProcessCredit
[s=1ms]

ProcessDebit
[s=1ms]

Payment

Payment
Processing

{1}

Product
[s=5ms]

Product
Catalogue

{1}

Product
Catalogue

DCT
[s=5ms]

DB
{1}

DB

0.5 0.5

3 1.5

1.5

2

1.5

Browsing
{i}

0.5

1

Convert1
[s=5ms]

Service
Façade

{i}

1

Shopping
{i}

Shopping Browsing

User
[z=10s]

users 1

net
[pure delay

100 ms]

Network
1

Network
1

users
1

1

1

User
[z=8s]

users 3

net
[pure delay

50 ms]

Network
3

Network
1

users
1

1

1

Convert2
[s=10ms]

Convert3
[s=20ms]

and augmented to accommodate the change. This leads the

designer to consider another SOA design pattern called

“Service Façade”, which addresses the following problem

according to [2]: The tight coupling of the core service logic to

its contracts can obstruct its evolution and negatively impact

service consumers. The solution suggested in [2] is: Façade

logic is inserted into the service architecture to establish a

layer of abstraction that can adapt to future changes to the

service contract.

Figure 9: System Throughput (Requests/Sec) for Concurrent Contracts and

Façade

 To apply the Façade design pattern, a new Façade swimlane is

created in the BPM with one new EntrySME activity subgraph

for each service contract. The new swimlane is mapped to a

new LQN task ServiceFacade in the PModel (using row C3 in

Table 1), and the new EntrySMEs are mapped its entries

(LQNEntry) (using row C4 in Table 1). The BPM

synchronous calls from the users to the Shopping swimlane

are redirected to pass through the façade EntrySMEs. The

synchronous calls are mapped to LQN synchronous calls

through the traceability links with SyncCallSME types (C6 in

Table 1). The LQN PModel after application of the Façade

Design pattern is shown in Figure 8 (PModel before

application is shown in Figure 3). The refactored PModel is

solved by LQN Solver tool [8] for performance analysis (i.e.

throughput, response time, utilization. etc). Figure 9 compares

the system throughput (request/sec) given by the LQN model

solver for the two cases (Concurrent Contracts and Facade)

when the total number of users varies for three types of users.

Figure 9 shows that application of Façade design pattern is

consistently making the system throughput worse compared to

Concurrent Contracts, due to the additional overhead. This

shows that Façade has a performance cost to balance against

its architectural benefits.

IX. CONCLUSION

Establishing cross-model traceability links is challenging

when there is an abstraction gap between the source and target

models. In case of the SOA SModel and the corresponding

PModel created by the PUMA [1] transformation chain, the

abstraction difference involves collections of elements in both

models. In this paper, four relationships were identified which

involve many-to-one or many-to-many mappings which reveal

the gap in the level of abstraction between SModel and

PModel. To bridge the abstraction gap, these four additional

types for subgraphs of SModel and PModel elements are

defined and used in establishing the extended traceability

links. These additional types do not correspond to any meta-

class of the source or target metamodel. The syntactic

correctness of the corresponding artifacts is verified by the

model transformation that generates the target model from the

source model, and also identifies the model elements

contained in every artifact. We also modified the coupled

transformation technique in [3] to use the traceability links

with extended types which keeps consistent the SModel and

PModel after the application of a SOA pattern. Examples of

use are described with coupled refactoring transformations

that represent the application of two SOA patterns:

“Concurrent Contracts” and “Service Façade”.

ACKNOWLEDGEMENT

This work was supported by the Natural Sciences and

Engineering Research Council of Canada (NSERC) through

its Discovery Grant program.

REFERENCES

[1] M. Woodside, D. Petriu, J. Merseguer, D. Petriu, and M. Alhaj,

"Transformation challenges: from software models to performance

models," Software & Systems Modeling, vol. 13, pp. 1529-1552, 2014.
[2] T. Erl, SOA Design Patterns Boston, MA: Prentice Hall PTR, 2009.

[3] N. Mani, D. Petriu, and M. Woodside, "Exploring SOA Pattern

Performance using Coupled Transformations and Performance
Models," the 27th International Conference on Software Engineering

and Knowledge Engineering (SEKE 2015), Pittsburgh, PA, USA, 2015,
pp. 552-557.

[4] Object Management Group, "Unified Modeling Language (UML),"

Version V2.4.1,formal/2011-08-05
[5] Object Management Group, "Service oriented architecture Modeling

Language (SoaML) " Version 1.0.1, formal/2012-05-10

[6] Object Management Group, "A UML Profile for MARTE (Modeling
and Analysis of Real-Time and Embedded systems)," Version 1.1,

formal/2011-06-02.

[7] G. Franks, T. Al-Omari, M. Woodside, O. Das, and S. Derisavi,
"Enhanced Modeling and Solution of Layered Queueing Networks,"

IEEE Trans. on Software Eng., vol. 35, pp. 148-161, 2009.

[8] M. Woodside, D. C. Petriu, D. B. Petriu, H. Shen, T. Israr, and J.

Merseguer, "Performance by Unified Model Analysis (PUMA),"

WOSP '05 Proc. of the 5th international workshop on Software and

performance, Palma de Mallorca, Illes Balears, Spain, 2005, pp. 1 - 12
[9] F. Jouault, "Loosely Coupled Traceability for ATL. In: Traceability

Workshop," Traceability Workshop at European Conference on Model

Driven Architecture (ECMDA-TW), Nürnberg, Germany, 2005, pp. 29–
37.

[10] F. Jouault and I. Kurtev, "Transforming Models with ATL,"

MoDELS'05 Proc. of the 2005 international conference on Satellite
Events at the MoDELS, Montego Bay, Jamaica, 2005, pp. 128-138.

[11] D. S. Kolovos, R. F. Paige, and F. A. C. Polack, "On-Demand Merging

of Traceability Links with Models," 3rd ECMDA Traceability
Workshop, 2006.

[12] R. F. Paige., N. Drivalos., D. S. Kolovos., K. J. Fernandes., C. Power.,

G. K. Olsen., et al., "Rigorous identification and encoding of trace-links
in model-driven engineering," Software and Systems Modeling

(SoSyM), vol. 10, pp. 469-487, 2011.

[13] J.-R. e. Falleri, M. Huchard, and C. e. Nebut, "Towards a Traceability

Framework for Model Transformations in Kermeta," Traceability

Workshop at European Conference on Model Driven Architecture

(ECMDA-TW), 2006, pp. 31-40.
[14] E. J. Chikofsky and J. H. Cross, "Reverse engineering and design

recovery: a taxonomy," Software vol. 7, pp. 13 - 17, 1990.

[15] R. B. France, D.-K. Kim, S. Ghosh, and E. Song, "A UML-Based
Pattern Specification Technique," IEEE Trans. Software Eng., vol. 30,

pp. 193-206, 2004.

[16] M. Alhaj and D. Petriu, "Traceability Links in Model Transformations
between Software and Performance Models," in SDL 2013: Model-

Driven Dependability Engineering. vol. 7916, F. Khendek, M. Toeroe,

A. Gherbi, and R. Reed, Eds., Springer, 2013, pp. 203-221.

0

5

10

15

20

25

30

35

40

45

7 70 140 210 280 350 420 490 560 630 700 770

System Throughput Comparison - Concurrent Contracts VS Façade

User Group 1 - A

User Group 2 - A

User Group 3 - A

User Group 1 - B

User Group 2 - B

User Group 3 - B

A = Concurrent Contracts
B = Facade

Users

Req/Sec

