

Exploring SOA Pattern Performance using Coupled

Transformations and Performance Models

Nariman Mani, Dorina C. Petriu, Murray Woodside

Department of Systems and Computer Engineering, Carleton University

Ottawa, Ontario, Canada

{nmani | petriu | cmw}@sce.carleton.ca

Abstract—Service Oriented Architecture (SOA) patterns can

be applied to improve different qualities of SOA designs. The

performance impact of a pattern (improvement or degra-

dation) may affect its use, so we assess its impact by

automatically generated performance models for the original

design and for each candidate pattern and pattern variation.

This paper proposes a technique to incrementally propagate

the changes from the software to the performance model. The

technique formally records the refactoring of the design model

when applying a pattern, and uses this record to generate a

coupled transformation of the performance model. The SOA

design is modeled in UML extended with two profiles, SoaML

and MARTE; the patterns are specified using Role Based

Modeling and the performance model is expressed in Layered

Queuing Networks. Application of the process, and pattern

performance exploration, is demonstrated on a case study.

Keywords- Software performance model, service oriented

systems, SOA pattern, coupled transformation, LQN

I. INTRODUCTION

In designing SOA (Service Oriented Architecture) systems,

SOA patterns [1] are proposed as generic solutions to

problems in the architecture, design and implementation.

The patterns may have a substantial impact on performance,

and we wish to evaluate this with a performance model

(PModel) generated automatically from a software design

model (SModel) and the pattern description. The baseline

PModel may be created by an automated transformation as

in PUMA (Performance from Unified Model Analysis) [2].

The automated refactoring of the PModel to reflect

application of a pattern, using coupled transformations of

the SModel and the PModel, is the subject of this work.

Automating the refactoring makes it easier to consider the

performance issues, and to rapidly consider a (possibly

large) set of variations on a pattern. It also reveals the causal

connections between the design changes and the

performance issues, which may be of value to the designer.

Manually refactoring the SModel and then regenerating the

PModel using PUMA is a viable alternative but may suffer

from inconsistency in the refactoring. In [3] we studied the

impact of SModel changes to PModel due to application of

SOA design patterns.

This research describes a coupled transformation technique

to incrementally propagate design changes to the PModel

by: (A) definition of the pattern using a role-based modeling

technique; (B) formal recording the SOA design refactoring;

(C) automatic derivation of the corresponding performance

model changes; (D) application of the changes to the

PModel. This paper describes (A) – (C) but does not address

the implementation of the transformation in step (D). The

SOA SModel is captured in UML with the OMG profiles

SoaML (Service Oriented Architecture Modeling Language)

[4] and MARTE (Modeling and Analysis of Real-Time and

Embedded Systems) [5] for performance information. The

Role Based Modeling Language (RBML) [6] is used to

formally define each SOA design pattern in terms of first,

the set of SModel elements that represent the problem

addressed by the pattern and second, those that constitute

the solution. The novel contributions of this work are the

coupled transformation in Section VI, and the process

(systematic and automatic) that supports its use, including

the formal recording of the changes for SModel refactoring.

The paper is organized as follows: Section II presents

related work, Section III surveys the approach; Section IV

describes the models; Section V describes the SModel

transformation rules; Section VI presents the coupled

transformation; Section VII describes a case study. Finally

Section VIII concludes the paper.

II. RELATED WORK

The relationship of PModels to SModels, and the

derivation of one from the other, is the subject of

considerable work, including diverse target PModel types

such as Queuing Networks, Layered Queuing Networks

(LQNs) [7] and Stochastic Petri nets [8]. The general

approach of PUMA integrates diverse types of PModel and

SModel [2]. This work uses it with UML SModels (for the

SOA designs) annotated with MARTE, and LQN PModels.

The SModel-to-PModel mapping of [9] is extended here to

support the coupling of the refactoring transformations.

The impact of design patterns on software performance

has been studied only indirectly, through the concept of

performance anti-patterns, introduced in [10]. Anti-patterns

are defined as common design errors that cause undesirable

results. An approach based on anti-patterns for identifying

performance problems and removing them is described in

[11]. An OCL query is created to identify each anti-pattern

and applied to the design model. The anti-pattern removal is

special for each anti-pattern and is not automated.

Xu [12] described a rule-based system which discovered

performance problems and automatically improved the

DOI reference number: 10.18293/SEKE2015-140

design as represented by the PModel. However the rules are

slightly different from patterns or anti-patterns and the

changes were not propagated automatically to the SModel.

III. PROCESS OVERVIEW

The overall process is shown in Figure 1. This paper

describes stages B and C, shown in grey. The inputs include

a SOA SModel (top left), and a library of pattern definitions

with formal roles (bottom left). The designer steps are given

on the left and the automated steps on the right side.

RBML Pattern
Specification –

Solution

RBML Pattern
Specification -

Problem

System Designer

SModel
(SoaML)

PUMA
 Transformation

Selecting the
Candidate SOA
Design Pattern

PModel
(LQN)

Solving
the PModel

Mapping Table

(Trace Links)

Refactoring PModel
(Transformation)

Identifying Problem
Area

in SModel

Refactoring SModel
(Transformation)

Automated Coupled
Transformation Technique(A) Preliminaries

(D) Coupled Transformation

PModel*

(B) SModel Transformation Rules

Creating SModel
Transformation

Rules

SModel*

(2) (3)

(4)

(5) (6)

(7)

(1)

(C) Deriving PModel Transformation Rules

Deriving PModel
Transformation Rules

PModel
Transformation

Rules

SModel
Transformation

Rules

Updating Mapping Table

(7)

(7.1)

Library of SOA
pattern

definitions

System Input

System Input

Annotating SModel
(Transformation)

Annotating PModel
(Transformation)(8) (8)

(9) (9)

Figure 1: Proposed Approach Overview

The designer steps are supported by tools that have been

implemented in this work. There are four stages:

 A) Preliminaries: This stage uses the SModel to create the

base PModel using PUMA, and creates the SModel/PModel

mapping table. Pattern application begins at step (4), where

the designer selects a candidate pattern for its own reasons

(e.g. maintainability).

 B) Model Transformation Rules: The selected pattern is

specified using RBML. The designer indicates where the

pattern is applied by binding pattern roles to entities in the

SModel (step (5)) and then specifies SModel transformation

rules that will satisfy the solution specification (step (6)).

C) Deriving the PModel Transformation Rules: Using

the mapping table from (A) and the SModel transformation

rules from (B), the PModel transformation rules are derived

automatically.

D) Coupled Transformations: Both sets of transformation

rules are executed via coupled transformations to refactor

the SModel and PModel into SModel* and PModel*,

respectively. The PModel* results can be used to select the

pattern to be applied. Therefore, Stages B, C and D may be

repeated until the designer gets the desired results.

IV. MODELS

A. SOA Models

From the range of diagrams used to model SOA systems,

we use the Business Processes Model (BPM) for behavior

and the Service Architecture Model (SEAM) for structure

and contracts, together with a UML deployment diagram.

Figure 2 shows examples.

The BPM is specified as a UML activity diagram (Figure

2.B). Service invocations are modeled as operation calls,

using three types of UML actions: a CallOperationAction

transmits a request to the target and waits for the reply via

its input/output pins; an AcceptCallAction is an accept event

action waiting for the arrival of a request; and a ReplyAction

returns the reply values to the caller. The called operation

appears in parentheses after the action name as “(class-

name::operation-name)”. We assume all BPM edges

between ActivityPartitions are between these three Action

types and represent calling interactions.

Performance information by MARTE annotations are

given in shaded notes. They describe the behavior as a

sequence of steps «PaStep» with a workload attached to the

first step («GaWorloadEvent»). «PaStep» has attributes

hostDemand (the required CPU time), rep (the mean

repetitions) and prob (its probability if it is an optional step).

The workload «GaWorloadEvent» defines a population of

Nusers users, each with a thinking time ThinkTime defined

by MARTE variables. Concurrent runtime instances

«PaRunTInstance» are identified with swimlane roles.

The SEAM is specified as a UML collaboration diagram

(Figure 2.A) with service participants and contracts

(stereotyped «Participant» and «ServiceContract»

respectively; these are not from MARTE but are specific to

this process). Each participant plays a role of Provider or

Consumer with respect to a contract. Participants correspond

to pools, participants and swimlanes in the BPM.

Deployment is also defined, as in Figure 2.C. Processing

nodes are stereotyped «GaExecHost» and communication

network nodes are stereotped «GaCommHost», with

attributes for processing capacity, message latency and

communication overheads.

B. Performance Models

PModels are expressed in an extended queueing notation

called Layered Queuing Networks (LQNs) [2], selected

because of its close coupling to the high-level software

architecture. An LQN estimates waiting for service due to

contention for host processors and software servers, and

provides response time and capacity measures.

Figure 2.D shows the LQN model for the example. For

each service there is a task, shown as a bold rectangle, and

for each of its operations (contracts) there is an entry, shown

as an attached rectangle. The task has a parameter for its

multiplicity or thread pool size (e.g. {‘1’}). Each entry has a

parameter for its host CPU demand, equal to the total

hostDemand of the set of «PaSteps» for the same operation

in the SModel. Calls from one entry to another are indicated

by arrows between entries (a solid arrowhead indicates a

synchronous call for which the reply is implicit, while an

open arrowhead indicates an asynchronous call). The arrow

is annotated by the number of calls per invocation of the

sender. For deployment, an LQN host node is indicated by a

round node associated to each task.

C. SModel to PModel Mapping Table

When the PModel is derived from the SModel using the

PUMA [2] process, the mapping between the corresponding

elements of the two models is recorded as described in [9],

extended to identify a set of Actions initiated by a Call (an

ActivitySet), and pairs of Call and Reply Actions. There are

three mapping sub-tables, for StructuralElements, Calls, and

Attributes. Each row in a table represents a link between an

SModel element or set and a corresponding PModel element

(because the PModel is more abstract, one element may

correspond to a set of SMEs). Table 1 shows a few of the

traceability links for the example in Figure 2.

D. Role-Based Models for SOA Patterns

To formalize the definition of SOA design patterns

without resorting to a new language, we use Role-Based

Modeling RBML [6], where the pattern is expressed with

generic roles acting as formal parameters which must be

bound to actual parameters from the application context to

which the pattern is applied.

Table 1: Partial Mapping Table between SModel and PModel

for Shopping and Browsing

Sub-table (A) StructuralElements Trace Links

Link Set of SModel Elements PModel Element

DTL3 Deployment Node: Order LQN Host: Order

DTL2 Deployment Artifact: Browsing LQN Task: Browsing

BTL1 ActivitySet: Checkout = {AcceptCall,

BasketCheckout, CalculateShipping, CreateInvoice,

CallOperation(OrderProcessing::PayCredit),

CallOperation(OrderProcessing::PayDebit}, Reply}

LQN Entry: Checkout

Sub-table (B) Calls Trace Links

Link Set of SModel Calls PModel Call

BCTL1 Call

fromCallOperationAction(Shopping::Checkout)

to AcceptCallAction (Shopping::Checkout) and

the corresponding reply from

ReplyAction(Shopping::Checkout) back to

CallOperationAction(Shopping::Checkout)

LQN synchronous

Call from Entry:User

to Entry: Checkout

«ServiceArchitecture»

Shopping and

Browsing Services

«ServiceContract»

CheckOut

«Consumer»

«Consumer»

«ServiceContract»

PlaceOrder

«ServiceContract»

Process Payment

«Provider»

«Provider»

«Provider»

«Consumer»

«ServiceContract»

Browse

«Provider»

«Participant»
:Browsing

«ServiceContract»

Product Service
«Participant»

:DB

«Provider»

«Consumer»

«Participant»

:Shopping

CheckOut()

«Participant»

:Order Processor

PayCredit()

PayDebit()

«Participant»

:Payment Processor

PaymentService()

«Participant»

:Customer

«Consumer»

<<GaCommHost>>
Lan

{blockT=(0,ms)}

<<GaExecHost>>
Shopping Host

<<GaExecHost>>
Order Host

<<GaExecHost>>
Product Catalogue

Host

<<GaExecHost>>
Payment Host <<GaExecHost>>

DB Host

<<artifact>>
Order Service

<<artifact>>
ProductCatalogue

Service

<<artifact>>
P

aym
en

t
Service <<artifact>>

d
b

Shopping Service
Order Service ProductCatalogue

Service

P
aym

en
t

Service

d
b

<<Manifest>> <<Manifest>> <<Manifest>>

<<Manifest>>
<<Manifest>>

<<artifact>>
Shopping Service

<<GaCommHost>>
Internet

{blockT=(1,ms)}

<<Deploy>> <<Deploy>>

<<Deploy>>

<<Deploy>>

<<Deploy>>

<<GaExecHost>>
Browsing Host

<<
ar

ti
fa

ct
>>

B
ro

w
si

n
g

Se
rv

ic
e

B
ro

w
si

n
g

Se
rv

ic
e

<<Manifest>><<Deploy>>

(A) Service Architecture Model (SEAM) for online shop (C) UML Deployment Diagram for online shop

«GaWorkloadEvent»{closed
(population=$Nusers,
extDelay=$ThinkTime}

«PaRunTInstance»

User

PrepareCheckout
Request

AcceptCallAction
(Shopping::Checkout)

«PaRunTInstance»

Shopping

BasketCheckout

ReplyCallAction
(Shopping::Checkout)

DisplayConfirmatio
n

CallAction
(Shopping::Checkout)

CalculateShippin
g

CreateInvoice

CallAction
(OrderProcessing:

:
PayCredit) CallAction

(OrderProcessing:
:

PayDebit)

« PaStep»
{hostDemand=(0,ms),

extOpDemand=“network
”,

extOpCount=$R}

«PaRunTInstance»

OrderProcessing« PaStep»
{hostDemand=(1,

ms), prob=0.5}

« PaStep»v
{hostDemand=(5,ms)}

AcceptCallAction
(OrderProcessing::

PayCredit)

Validate
CreditCardInfo

ChargeCredit

CallAction
(PaymentService::

ProcessCredit)

ReplyCallAction
(OrderProcessing::

PayCredit)

« PaStep»
{hostDemand=(10,ms)}

« PaStep»
{hostDemand=(10,ms)}

AcceptCallAction
(OrderProcessing::

PayDebit)

Validate
DebitCardInfo

ChargeDebit

CallAction
(PaymentService::

ProcessDebit)

ReplyCallAction
(OrderProcessing::

PayDebit)

« GaPerformanceContext»{contextParams = $Nusers, $ThinkTime, $R}

AcceptCallAction
(PaymentService::

ProcessDebit)

DebitPayment

ReplyCallAction
(PaymentService::

ProcessDebit)

«PaRunTInstance»

PaymentService

AcceptCallAction
(PaymentService::

ProcessCredit)

CreditPayment

ReplyCallAction
(PaymentService::

ProcessCredit)

« PaStep»
{hostDemand=(0.1,ms)}

« PaStep»
{hostDemand=(0.1,ms)}

« PaStep»
{hostDemand=(0.2,ms)}

«PaStep»{hostDemand=
(0.1,ms), rep=1.5}

« PaStep»
{hostDemand=(0.2ms)}

« PaStep»
{hostDemand=(0.1,ms)}

« PaStep»
{hostDemand=(0.1,ms)}

«PaStep»{hostDemand=
(0.1,ms), rep=0.5}

«PaStep»{hostDemand
=(0.04,ms)}

« PaStep»
{hostDemand=(0.1,ms),

prob=0.5}

« PaStep»
{hostDemand=(0.1,ms),

prob=0.5}

« PaStep»
{hostDemand=(3.8,ms)}

User
[z=1000ms]

users

users

Browse
[s=30ms]

Checkout
[s=30ms]

PayCredit
[s=1ms]

PayDebit
[s=1ms]

Order Processing
{1}

OrderProcessCredit
[s=1ms]

ProcessDebit
[s=1ms]

Payment

Payment
Processing

{1}

Product
[s=5ms]

Product
Catalogue

{1}

Product
Catalogue

DCT
[s=5ms]

DB
{1}

DB

0.5
0.5

3 1.5

1.5

2

1.5

Browsing

0.5

Shopping

Shopping
Browsing

(B) Checkout Business Process Model for the Online Shop (D) LQN (PModel) corresponding to (A) (B) and (C)

Figure 2 : SModel views (A, B, and C) and PModel (D)

Three UML views are used for each pattern: BPS

(Behavioral Pattern Specification) for behavior,

corresponding to the BPM; SPS (Structural Pattern

Specification) for structure, corresponding to the SEAM;

and DPS (Deployment Pattern Specification), not described

here due to space limitations. Each view has two

specifications: Pattern Problem (the view before pattern

application) and Pattern Solution (after application). Figure

3 shows the role-based specification for the Service Façade

pattern (which is described in Section VII), with the

problem on the left and the solution on the right. As in [6]

the names of generic roles start with the character ‘|’.

(A) Structural Pattern Specification: Problem

«ServiceArchitecture»

ServiceFaçadeProblem

«ServiceContract»

|CoreService
Contract

«Participant»
|Customer

«Participant»
|CoreService

|CoreOp()

«ServiceArchitecture»

ServiceFaçadeSolution

«Participant»
|Customer

« Consumer »

« Provider » «Participant»
|Façade

« ServiceContract»
|CoreService

Contract

« Provider »

«Participant»
|CoreService

|CoreOp()
|Convert()

(B) Structural Pattern Specification: Solution

«PaRunTInstance»

|Customer

| PrepareRequest |AcceptCall

(|CoreService::|CoreOp)

«PaRunTInstance»

|CoreService

|CoreServiceLogic

|Reply
(|CoreService::|CoreOp)| ProcessReply

|CallOperation
(|CoreService::|CoreOp)

(C) Behavioural Pattern Specification: Problem (D) Behavioural Pattern Specification: Solution

«PaRunTInstance»

|Customer
«PaRunTInstance»

|Façade
«PaRunTInstance»

|CoreService

|PrepareRequest

ConvertRequest

|Reply
(|Façade::|Convert)

|ProcessReply

|CallOperation
(|Façade::|Convert)

|AcceptCall
(|Façade::|Convert)

|CallOperation
(|CoreService::|CoreOp)

|AcceptCall
(|CoreService::|CoreOp)

|CoreServiceLogic

|Reply
(|CoreService::|CoreOp)

ConvertReply

« Provider »

« Consumer »

Figure 3: Service Façade pattern specification

V. SMODEL TRANSFORMATION RULES

The first step in applying a pattern is to identify the

model elements to which it can be applied, based on the

pattern problem. From these, particular elements are chosen

as the area of application by binding them to roles in the

RBM definition. It is not our goal to automate this process

of selection and binding and then applying the pattern

solution, but to make it systematic and to support it with a

construction tool (as shown below in Figure 4).

A. Problem Identification and Role Binding

The designer chooses a pattern to apply and, using its

RBM definition from a pattern library, binds the elements of

its problem specification (SPS, BPS and DPS) to the

elements of the SModel. An element can be bound if:

1. Its type matches the RBM element type.

2. It has all the attributes and operations defined by the

RBM element.

3. Any constraints defined for the two matching elements

are compatible (that is, the pattern does not impose

additional constraints when applied to the SModel).

4. For the SModel behavioral view (BPM), the execution

flow and the ActivityPartitions (swimlanes) must match.

Not every pattern specification element is defined as a role.

Those which are not (e.g. Calls, Replies, Attributes) are also

bound, governed by the role bindings. These “derived

bindings” may be determined by the binding of a single

element (e.g. its Attributes) or from the bindings of multiple

elements (e.g. a Connector between two elements). Some

bindings for the BPM of the example (involving the pattern

specification in Figure 3 and the SModel BPM in Figure

2.B) are given by the following pairs including a derived

binding found between the RBM Call and SModel Call,

which is implied by the binding of the core operation:

RBM Element SModel Element

|CallOperation(|CoreService::|CoreOp) CallOperationAction(Shopping::Checkout)

|AcceptCall(|CoreService::|CoreOp) AcceptCallAction(Shopping::Checkout)

|CoreServiceLogic Sequence of all Actions in Shopping

swimlane

(Derived Binding) Call from

|CallOperation(|CoreService::|CoreOp)

to |AcceptCall(|CoreService::|CoreOp)

Call from CallOperationAction

(Shopping::Checkout) to |

AcceptCallAction (Shopping::Checkout)

B. Creating the SModel Transformation Rules

The designer creates the SModel transformation,

(governed by the RBM bindings and the pattern problem

and solution specifications) as a set of operations to add,

delete, and modify model elements. An operation is defined

for each element type (eg. addAssoc/deleteAssoc for

adding/deleting associations). Depending on the element

type it applies to, an operation is applied to the services and

interactions of the SEAM and to the ActivityPartitions,

Activities, Actions and ActivityEdges of the BPM.

Transformation operations indicated by the designer are

recorded using the tool shown in Figure 4 as follows:

 Remove elements that are present in the problem but not

in the solution, by applying delete actions (such as

deleteParticipant or deleteAssoc) to them

 Create new elements that are defined in the solution but

are not present in the problem, by add actions (such as

addParticipant or addActivityPartition),

 Modify elements present in both problem and solution,

by modify actions (such as modifyActionCall).

SModel elements which are not in any of the above groups

remained untouched. Figure 4 shows a screen shot of the tool

support for the technique in this section with a set of

operations recorded for the application of Service Façade

pattern to the example in Figure 2, with the role bindings

shown above.

VI. COUPLED TRANSFORMATION

A. Coupled PModel Refactoring Rules

This section describes the automated translation of the

SModel transformation rules into PModel transformation

rules, based on the mapping table described in Section IV.C.

Each SModel transformation rule has an operation name and

some arguments, which are processed as follows:

1. The operation name is translated into one or more

PModel transformation operations. The action part of the

name (add/delete/modify) is retained, and the operand-

type part (e.g. Participant) is mapped according to the

type correspondences of the Mapping Table. A partial

list of these is:

SModel Type PModel Type

 Participant Task

 ActivitySet Entry

 Call/Reply pair of Actions Call (sync)

 Call (no Reply) Call (async)

 ExecHost Host

Thus the SModel operation addParticipant is translated

to addTask, and deleteActivitySet to deleteEntry.

2. The arguments of the PModel operation (e.g. the entity

or entities to be added, deleted, or modified) are

translated from the arguments of the SModel operation

using the correspondences in the Mapping Table. For

“add” operations the name of the new PModel element is

taken as the name of the corresponding SModel element.

For example, the SModel “addParticipant” operation is

mapped to “addTask” in the PModel, and the

“addParticipant” argument becomes the new task name.

Modifications to calls require special consideration in

the translation. The SModel “modifyActionCall” operation

changes a service invocation from a CallOperationAction to

an AcceptCallAction. As this might apply to more than one

call to the same AcceptCallAction, the mapping table is

searched (by the MappingTableSearchByKey command) to

identify all the PModel activities making the call. Then the

operation is mapped to one or more “modifyActivity”

operations in the PModel domain, to change all the calls.

Some of the PModel transformation rules derived for the

Façade pattern (shown in Figure 4) are presented in Figure

5 as part of the screenshot from the implemented tool

supporting coupled transformations.

B. Application of the PModel Rules

Briefly, the PModel transformation rules derived in

Section VI.A are applied to the PModel in two steps. First

the PModel is annotated with transformation directives

indicating the changes, then the changes are applied by a

transformation engine implemented using QVT [13] (Query,

View, and Transformation, a OMG standard model

transformation language) which processes the directives.

The implementation of these two steps is not presented here.

VII. CASE STUDY

We suppose that a designer is assigned the task of re-

designing the Shopping and Browsing SOA described

earlier to support three different user access channels

(mobile phone, desktop, kiosk, etc.) through a single multi-

channel endpoint. Initially, the designer uses the SOA

design pattern “Concurrent Contracts” [1] in which the

multi-channel capability is implemented by providing

separate shopping and browsing operations for each

channel. Separate set of actions are created inside the

shopping swimlane (see Figure 2.B) and also the browsing

swimlane (not shown Figure 2.B). However, the designer

realizes that those three separate operations introduce code

duplication in the functional design.

To eliminate this duplication the designer considers

using the SOA design pattern “Service Façade” [1]. In the

service façade design pattern, the problem is that the tight

coupling of the core service logic to its contracts can

obstruct its evolution and negatively impact service

consumers. As the solution, Façade logic is inserted into the

service architecture to establish a layer of abstraction that

can adapt to future changes to the service contract.

SModel Diagrams (BPM, SEAM,
Deployment) are loaded from UML

Design Tools such as Papyrus

SModel Transformation Rules
 are coded by the System

Designer

Figure 4 : Tool for Recording SModel Transformation Rules

Mapping Table loaded from a
XML file into the Tool

Derived PModel
Transformation Rules

Figure 5 : Tool for automatic derivation of PModel Rules

Concerned that the façade overhead might impair the

system performance, the designer applies the present

technique. The designer first binds the pattern roles and

records the necessary SModel changes (as in Section V, and

the screenshot of Figure 4), using the base SOA design

loaded from a standard UML modeling tool (e.g. Papyrus).

The recorded rules and the Mapping Table are used by the

coupled transformation tool (as in Section VI and the

screenshot of Figure 5) to derive the PModel transformation

rules. The PModel transformation rules are applied to the

LQN model shown in Figure 2.D, giving a performance

model which is partly shown in Figure 6 below.

To illustrate how performance issues can be revealed,

the performance was estimated for a range of user

populations. For each N users in group “users1”, there were

2N in “users2”, and N/2 in “users3”. N ranged from 2 to

220, so the total users ranged from 7 to 770. Figure 7 shows

the response times for the three groups of users and for both

patterns. It shows that the groups have the same response

time, and under heavy loads (which are also the conditions

in which the system resources are efficiently utilized) the

Façade pattern imposes about 30% additional delay in

response time. This penalty is the price for the benefits it

provides to the system architecture by preparing it for future

changes to the service. An alternative view of the penalty is

that it reduces the user population that a deployed system

can serve with a given target response time.

User
[z=9s]

users 2

net
[pure delay

80ms]

Network
2 Network

1

users
1

Browse
[s=30ms]

Checkout
[s=30ms]

PayCredit
[s=1ms]

PayDebit
[s=1ms]

Order
Processing

{1}

OrderProcessCredit
[s=1ms]

ProcessDebit
[s=1ms]

Payment

Payment
Processing

{1}

Product
[s=5ms]

Product
Catalogue

{1}

Product
Catalogue

DCT
[s=5ms]

DB
{1}

DB

0.5 0.5

3 1.5

1.5

2

1.5

Browsing
{i}

0.5

1

Convert1
[s=5ms]

Service
Façade

{i}

1

Shopping
{i}

Shopping Browsing

User
[z=10s]

users 1

net
[pure delay

100 ms]

Network
1 Network

1

users
11

1

User
[z=8s]

users 3

net
[pure delay

50 ms]

Network
3 Network

1

users
11

1

Convert2
[s=10ms]

Convert3
[s=20ms]

Figure 6: Partial Refactored PModel (Façade applied)

VIII. CONCLUSION

This paper describes a process and tools for interpreting

a software pattern in terms of the corresponding change in a

performance model of the software, to support an immediate

analysis of the performance effects of using a pattern. It

helps the system designer to choose a pattern that has

acceptable performance impact, and to choose between

alternatives. It provides the system designer with a

systematic approach and tool for formally recording those

changes for the SOA design and from these it automatically

derives the performance model changes. Coupling the

transformations ensures that the performance analysis

remains in sync with the software changes, and relates the

resource and performance changes back to the pattern.

The use of the process and tools was illustrated by an

extensive example which applied the Facade pattern to a

Browsing and Shopping system design, and by an analysis

which compared its impact to that of the Concurrent

Contracts pattern. The performance cost of the Facade

pattern is a significant increase in response time under load,

which could influence the development of the design.

0

0.5

1

1.5

2

2.5

3

3.5

7 70 140 210 280 350 420 490 560 630 700 770

System Respose Time Comparison - Concurrent Contracts VS Façade

User Group 1 - A

User Group 2 - A

User Group 3 - A

User Group 1 - B

User Group 2 - B

User Group 3 - B

Delay

Users

A = Concurrent Contracts (lower curve)
B = Facade (upper curve)

Figure 7: System Response Time (ms) for (A) Concurrent

Contracts and (B) Façade patterns

ACKNOWLEDGMENT

This work was supported by the Ontario Centers of

Excellence and by the Natural Sciences and Engineering

Research Council of Canada (NSERC) through its

Discovery Grant program.

REFERENCES

[1] T. Erl, SOA Design Patterns Boston, MA: Prentice Hall PTR, 2009.

[2] M. Woodside, D. C. Petriu, D. B. Petriu, H. Shen, T. Israr, and J.
Merseguer, "Performance by Unified Model Analysis (PUMA),"

WOSP '05 Proceedings of the 5th international workshop on Software

and performance, Palma de Mallorca, Illes Balears, Spain, 2005, pp. 1
- 12

[3] N. Mani, D. Petriu, and M. Woodside, "Propagation of Incremental

Changes to Performance Model due to SOA Design Pattern
Application," Proceedings of the 4th ACM/SPEC International

Conference on Performance Engineering (ICPE'13) , Research

Papers Track Prague, Czech Republic, 2013, pp. 89-100.
[4] B. Elvesæter, C. Carrez, P. Mohagheghi, A. Berre, S. G. Johnsen, and

A. Solberg, "Model-driven Service Engineering with SoaML," in

Service Engineering, S. Dustdar and F.Li, Eds., Springer, 2011, pp.

25-54.

[5] Object Management Group, "A UML Profile for MARTE (Modeling

and Analysis of Real-Time and Embedded systems)," Version 1.1,
formal/2011-06-02.

[6] R. B. France, D.-K. Kim, S. Ghosh, and E. Song, "A UML-Based

Pattern Specification Technique," IEEE Trans. Software Eng., vol.
30, pp. 193-206, 2004.

[7] G. Franks, T. Al-Omari, M. Woodside, O. Das, and S. Derisavi,

"Enhanced Modeling and Solution of Layered Queueing Networks,"
IEEE Trans. on Software Eng., vol. 35, pp. 148-161, 2009.

[8] P. Haas, Stochastic Petri Nets: Modelling, Stability, Simulation
Springer-Verlag, New York, 2002.

[9] M. Alhaj and D. Petriu, "Traceability Links in Model

Transformations between Software and Performance Models," in SDL
2013: Model-Driven Dependability Engineering. vol. 7916, F.

Khendek, M. Toeroe, A. Gherbi, and R. Reed, Eds., Springer, 2013,

pp. 203-221.
[10] C. U. Smith and L. G.Williams, Performance Solutions : A Practical

Guide to Creating. Responsive, Scalable Software. Boston, MA:

Addison Wesley, 2002.
[11] V. Cortellessa, A. D. Marco, R. Eramo, A. Pierantonio, and C.

Trubiani, "Digging into UML models to remove performance

antipatterns," Proceeding of ICSE Workshop on Quantitative
Stochastic Models in the Verification and Design of Software

Systems, Cape Town, 2010, pp. 9-16

[12] J. Xu, "Rule-based automatic software performance diagnosis and
improvement," Proceeding of 7th Intl Workshop on Software and

Performance, Princeton, NJ, USA, 2008, pp. 1-12.

[13] Object Management Group, "Query/View/Transformation (QVT) "
Version 1.2 ,formal/2015-02-01.

