

Derivation of Stochastic Reward Net for Compatability and Conformance
Verification of Component Erronous Behaviour Model

Naif A. Mokhayesh Alzahrani , Dorina C. Petriu
Department of Systems and Computer Engineering, Carleton University

1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
{ nzahrani | petriu }@sce.carleton.ca

Abstract— The compatibility verification between interacting
components and the conformance verification of their internal
behavior with the corresponding ports protocol behavior are
crucial steps for the early identification of unexpected
messages between components. The behavior models used for
verification include erroneous behavior along with normal
behavior, in order to ensure greater accuracy in reliability and
availability analysis. We use our Component Erroneous
Behavior Aspect Modeling (CeBAM) approach introduced in
previous work, which applies aspect-oriented modeling for
adding erroneous behavior to UML state machines
representing normal behavior. In this paper we present
transformation rules for deriving Stochastic Reward Net
(SRN) from CeBAM representations. The first step is to
generate SRN for individual component behavior in order to
check the conformance between component internal behavior
and their ports protocol behavior. Subsequently, we compose
the generated SRNs models of the connected components to
verify their compatibility. We show how to identify
conformance and compatibility issues during the construction
and composition of components SRN model by analyzing SRN
properties (e.g., deadlocks). We illustrate the proposed
verification approach through a case study modeled according
to CeBAM.

Keywords- conformance; compatibility; failure propagation

I. INTRODUCTION
Software architecture provides a set of high-level

abstractions for representing structure, behavior and Non-
Functional Properties (NFP) of the software. According to
[1], component structure, dynamic behavior and allocation
are the categories of architectural constructs. Component
Based Development (CBD) applies the “divide and
conquer” principle to manage system complexity. It
produces an abstract model that shows the static structure of
the system in which each component is assigned a specific
functionality. In addition, each component is a unit of
composition that interacts with other components through
predefined interfaces.

Using the software architecture as a basis for the early
reasoning and evaluation of the system’s NFP helps to
reduce the cost and produce software conforming to
specifications [2]. Software dependability is among one of
the examples of NFP that need to be evaluated during the
design phase. This in turn encompasses a set of attributes:
reliability, availability, maintainability, integrity and safety
[3]. The quantitative results of these analyses will support

the developer in making the right decisions for building
dependable systems. Although different approaches were
proposed in the literature, in order to address the reliability
and availability modeling [4], [5], many existing approaches
do not adequately consider error propagation in predicting
system reliability [6].

Model Driven Development (MDD) is a promising
approach for software development that changes the focus
from code to models. This focus on models facilitates the
analysis of different NFP by using formal analysis models
obtained by model transformations from the software
models [7] [8]. In fact, combining MDD and CBD is an
appealing approach for software development, as it reduces
the complexity, time, cost and it helps to integrate NFP
analysis during the design phase.

In our previous work [7], we presented a framework for
automating dependability analysis, which considers error
modeling and failure propagation of a component-based
system. A component’s internal behavior and its ports’
behavior are modeled using the Component Erroneous
Behavioral Aspect Modeling (CeBAM) approach. In
CeBAM we model the component’s erroneous behavior as
an aspect model that is automatically composed with the
component’s normal behavior. Modeling the erroneous
behavior of components and verifying the failure
propagation is a crucial part in our approach. We believe
that a proper representation of error and failure propagation
in CBD has an impact on the accuracy of reliability
(availability) predictions for the system. Moreover, it helps
developers to take the right decisions based on quantitative
data such as selecting proper fault tolerance mechanism,
placing error detection, and using suitable recovery
approaches.

In this paper, the focus is centered towards verifying the
components’ conformance and compatibility. A
component’s ports behavior described by an extended
protocol state machine (PSM) must conform to its internal
behavior modeled using a behavioral state machine (BSM).
Thus, the goal of conformance verification is to avoid any
unexpected messages between the component internal
behavior and its ports, while component compatibility
verification is to avoid mismatch between connected
components in terms of provided services or failure
propagation. A mismatch created when internal component
failure is raised and not captured in corresponding
component port or when component failure can not be
propagated and handled by communicated components.

The proposed verification process is done by
transforming the components’ BSM and their PSMs to
Stochastic Reward Net (SRN). Initially we begin by
transforming each BSM and PSM model separately to SRN,
and then for each component we compose the obtained SRN
of component internal behavior with its ports’ SRN for
conformance verification. Next, we consider component
compatibility by composing the SRNs of the connected
ports. The conformance and compatibility violations and
mismatches are then determined during the composition
phase, and also by analyzing the generated SRN to identify
deadlocks. Although model checker techniques can be used
in such verification process, but dependability analysis
model (SRN) is utilized in our approach to avoid having
different models with different properties.

This paper is organized as follows. Section two presents
the background of the CeBAM approach. Section three
explains the case study and how we apply CeBAM. The
next section describes the proposed approach for component
conformance and compatibility verification. Then we
illustrate the derivation and composition of SRN, as well as
the semantics behind each transformation rule. Section six
presents examples of our proposed approach applied to the
case study. Related works is presented in section seven, and
then we conclude and summarize our work in progress.

II. BACKGROUND
In previous work [7], we presented our long-term

objective that is to develop a framework based on standard
modeling languages (such as UML and QVT), which would
help developers to evaluate the dependability properties
during a CBD + MDD process, by taking into consideration
component erroneous behavior and error propagation. We
believe that including component erroneous behavior in
dependability analysis and prediction will help developers to
make the right design decisions. We proposed the CeBAM
approach, which applies aspect-oriented modeling
techniques in order to model erroneous behaviors separately
from the normal behavior. This approach reduces the model
complexity and improves its readability and modifiability.

Modeling component behavior using CeBAM can be
done in two phases [7]. In the first phase we only model the
normal behavior of both component views (internal and
external). BSM is used for the component’s internal normal
behavior and extended PSM is used for the external view.
The second phase is focused on modeling component
erroneous behavior separately using two profiles:
ErroneousBehavior and AspectBSM profile. The outcomes
of this phase are represented by two aspect models: one for
the erroneous behavior of the internal view and another for
the external view. We may need a few iterations to build
these two models. First we capture the local failures and
then in the next iteration(s) we may have to add propagated
failures that originate in other components. The iterations
will end when all errors/failures have been “propagated”. In
some cases we may need to use refactoring aspects to
preserve the run-to-completion semantics of BSM
transitions. Fig. 2 and Fig. 5a show the final BSM and PSM
respectively for the case study described in the next section.

Also, in [9] we present all CeBAM models for the case
study.

III. CASE STUDY
Factory Automation System (FAS) is the case study that

will be used throughout this paper to illustrate the
transformation of state machine (behavioral and protocol) to
SRN. This case study was presented in [10], and our
objective is to verify the compatibility between the FAS
components and the conformance of components ports with
their internal behavior. It is important to mention that this
step is required before starting dependability analysis (as
explained in [7]).

The FAS is an example of a distributed real-time system.
It consists of three components: Automated Guided Vehicle
(AGV), Supervisory System and Display System. Each of
these components represents a subsystem in FAS and they
interact with each other through predefined interfaces. Fig.
1 shows the component’s architectural model. In this figure,
AGV is the main component in FAS and it consists of
subcomponents such as motor, arm, sensor and timer. Here
the Supervisory System sends the command (load/unload)
to the AGV and the status is reported to the display
component.

COMET methodology [10] was used to develop this
case study. We extend the development of this case study by
applying the CeBAM approach [7] to model component
erroneous behavior and error propagation. Due to the
limited space we select only “move to the station” use case
to illustrate our transformation approach; more details can
be found in [9].

Figure 1. Component structure of case study [10]

Since the AGV component is the core component of the
FAS, we choose to model its internal behavior. Initially we
model the internal behavior and then we apply the
refactoring aspect according to the CeBAM approach. For
each transition that has an action we create an intermediate
state with a do activity corresponding to the action that was
on the transition. Fig. 2 shows the final internal behavioral
state machine after applying the refactoring aspect and
erroneous behavior aspect ([9] has all aspect models). Due
to limited space, as well as for the sake of simplicity, we
model just one fault that is raised from the chcekDestination
method. If this fault is activated, it will change the behavior
of the AGV from normal behavior to the erroneous behavior
and since this error is not recoverable it will propagate to
cause a failure mode of the AGV. Moreover, this failure
mode will be propagated to the Supervisory System

component throughout the provided interface and it will
cause another error and failure mode of the Supervisory
System component according to [3].

In order to study the error propagation from component
BSM to its PSM and then to the connected component we
have to model the port behavior of AGV and the
Supervisory System components according to CeBAM. Fig.
5a shows PAGV port behavior model. Hence, we show the
final model after applying erroneous behavior aspect
according to the CeBAM approach [7]. The report [9] has
the complete model list used during iterations of the
CeBAM modeling approach, as well as other component
ports models.

Figure 2. Automated guided vehicle component internal behavior

In the following section we will focus on illustrating the
transformation of these models to SRN in order to verify the
conformance and compatibility of the FAS system.
Consequently, we will not show the modeling and
transformation of the DAM profile, which will be part of
our dependability analysis framework as explained in [7].

IV. CONFORMANCE AND COMPATIBILITY VERIFICATION
APPROACH

In the CBD paradigm, the component is a logical unit of
abstraction with well-defined interfaces that provide or
require services from their environment [1]. In our approach
we assume that the port is the interaction point and that it
has the needed interfaces to be integrated with other
components in the system. Interfaces consist of a set of
public services that may be called by other components in
the system through their required interfaces. This call may
be synchronous so as to block the caller until it passes back
the response, while the asynchronous call starts a new

thread. In all connection styles the received call will be
based on the internal component’s behavior since the
interface has no implementation.

However, in order to study and analyze the reliability
(availability) we need to verify the conformance and
compatibility of the involved components. In conformance
verification we verify whether the component’s internal
behavior state machine is conforming to its ports’ protocol
state machine or not. In other word, we need to check
whether or not each modeled incoming message on the
component port has a corresponding transition on the
internal component’s behavior that can handle the message.
It should also be verified whether or not each outgoing
event modeled in the internal component behavior has been
captured on the port behavior model or not. These events
may include normal behavior events or erroneous and
propagation behavior.

Compatibility deals with the communication between
components in the system. For two connected components,
the provided services must be compatible with the requester.
In fact, using extended PSM as proposed in CeBAM helps
us to model how components in the system interact with one
another, by capturing the passing messages through its ports
in a specific order.

UML [11] considers the conformance of protocol state
machine through the ProtocolConformance model element.
It explicitly assures that a specific state machine is
conforming to a generic one. Thus, component realization
must be conforming to its interfaces. Unfortunately, the
conformance definition in the UML standard is limited and
there is no clear framework for reasoning and verification.
As a result, there are many approaches in the literature [12],
[13] that attempt to address the problem of how to verify the
components conformance and compatibility. In our
dependability predication framework we are following state-
based analysis methods based on SRN. In other words, we
are using the same formal model for conformance and
compatibility verification, since this, to us seems like a
logical step before starting the dependability analysis using
the same SRN model.

The verification phase should resolve all issues in the
software model before starting the reliability/availability
analysis phase. For instance, we need to be certain that any
manifested internal failure inside a component will be
propagated to all connected components and that the model
is free of deadlocks (this is to avoid the impact of such
issues on the reliability analysis results).

We identify the conformance or compatibility issues
during the construction and composition of the SRN models
obtained by transformation from the software model or that
have identified deadlocks of the composed model using the
SPNP tool. The activity diagram of Fig. 3 describes the
verification process.

Iteratively for each component in the model, we apply
transformation rules on its BSM and PSM models, which
describe its internal and ports behaviors, respectively. Our
next step is to compose the transformed models of the
component’s internal behavior with its ports. This
composition includes normal behavior as well as the

erroneous behavior that connects incoming and outgoing
messages from the components ports to its internal
behavioral model. During this step, we may identify some
conformance issues that must be fixed in the main software
model before continuing to the next step. For example, in
the PSM model we have incoming messages representing
the external failure propagated from another connected
component, even though the effects of this message is not
modeled in the component internal behavioral model.
Consequently, the component internal behavior model is not
conforming to its port and this mismatch must be repaired in
order to reflect the external propagated failure into the
internal behavior model.

Figure 3. Conformance and compatibility verification activities

Once each of the components’ internal behavior
conforms to its ports behaviors, we may start the next step,
which deals with the inter-component compatibility. For the
connected components, we compose their port behavior
model (SRN model) to identify incompatibility between
components for the provided and required services and
failure propagation. For instance, if there is a service failure
modeled at one component’s port, it may not necessarily be
modeled at the connected component. This type of
incompatibility must be resolved in the main model by
verifying the conformance again in that component, before
completing the compatibility verification (Fig. 3).

V. DERIVING SRN FROM COMPONENTS BEHAVIORAL
MODEL

State machine is a behavioral diagram that may be used
to specify the behavior of a part of a designed system, and it
is characterized by states and transitions. State represents a
situation of the component or object when some invariant
condition holds. For instance, a specific state may represent
a dynamic condition when a software component is

performing a series of internal computations activities
resulting from the external call event, or it may represent a
static situation when the component is waiting for another
event to occur [11].

UML2 defines three kinds of states: simple state,
composite state, and submachine state. In addition, UML2
defines ten different kinds of pseudostates. In our case we
focus on the initial and final pseudostates, as well as the
simple state machine that does not have any sub-states or
regions.

According to [11] state machines have three kinds of
transitions: local transitions, internal transitions, and
external transitions. Local transitions are used in composite
state. It can not only leave any state but it may enter a new
state (i.e. entering a new sub-state). Internal transitions will
not cause a state change since the source and target states
are the same. External transitions represent the transition
between states (i.e. simple states). They have an
event[condition]/action label that captures how the software
component in a specific state receives the dispatched event
and then evaluates the condition to start the action, if the
condition is right. The transition action has the “run-to-
completion” semantics, which means that the software
component will not enter the target state until the action is
successfully completed and no other event may be accepted
during execution of the action associated with that
transition. A special kind of external transition is the
completion transition (done) that does not have an event or
action and it is triggered when the activity of the state has
finished execution.

 Therefore, the limitation of our approach is that the
hierarchical states and history are not supported. States can
have optionally entry/exit actions and do activity. Entry
action is executed when entering the state while the exit
actions is executed when leaving the state. A do behavior is
executed after an entry behavior and it continues as long as
the state is active. Both actions (entry/exit) have “run-to-
completion” semantics which means that those actions are
uninterruptable and once they have started no other new
events may be executed. On the other hand, do activity does
not have “run-to-completion” semantics. In our approach we
respect and preserve this semantics and we do not consider
fault activation and failure propagation as new events, since
it will be a part of the execution path of state actions. For
instance, an entry activity that contains a method execution
will not be interrupted by another call until it has finished its
execution. However, during the execution, a fault may be
activated to change the component’s state from a normal to
an erroneous state. Fault activation in this case is not a new
incoming event dispatched from an event pool of that state
machine, but it is changing the execution path of the activity
that we precisely model in our modeling approach
(CeBAM).

As mentioned before, we use the behavioral state
machine to describe the internal behavior of each
component in the system. In order to capture the erroneous
behavior of the activity on state transition without violating
the “run-to-completion” semantics, we introduce the
refactoring aspects[7]. This will add new intermediate states
and will move the transition action activity to be a do

(a) Simple state with just do activity executed locally with return value

(b) Simple state with do activity executed remotely (synchronous style)

(c) Simple state with just entry action that executed locally

(d) Simple state with exit action executed locally after out transition
Legends

Figure 4. Graphical transformation rules for behavioral state machine.

activity of the new state. As a result, the do activity is
interruptible and does not have a “run-to-completion”
semantic allowing us to model the fault activation and
transition from that new introduced state. Moreover, after
applying the refactoring aspect on the original behavioral
state machine, the refactored model will only have
transitions with events or completion (done) transitions.

In the following section we will describe the informal
semantics of how we derive the SRN from the refactored
behavioral states machine that captures the internal software
components behavior (normal and erroneous). In the
literature, different approaches are suggested to translate the
state machine to Petri net for the analysis such as [12]-[14].

Our approach of deriving SRN from BSM is inspired by
[14], but in this transformation we do not show how to
derive the dependability attributes of Dependability
Analysis and Modeling profile (DAM) [8] from the BSM or
PSM model to the SRN; we simply concentrate on how to
iteratively build the SRN model from BSM and PSM for the
compatibility and conformance verifications.

A. Transformation Rules for Behavioral State Machine
Simple state in our approach may represent a normal or

erroneous behavior of the component. Normal state may
have optional entry/exit actions and/or do activity that
model method execution or signals. Erroneous states (error
and failure modes), conversely, does not have any actions or
activity since they capture the components dependability
threats and error propagation.

Accordingly, for the normal behavior we define the
different generic transformation rules shown in Fig. 4 that
cover selected possible cases of a simple state. In [9] we
presents all possible transformation rules with more details.
In order to compose the translated model elements we adopt
the idea of interface transitions and places that are presented

in [14]. We have interface transition and places that connect
simple state with the transitions based on matched names.
We have three types of interface transitions: completion
execution interface transition (done) that will be triggered
once the state activity is completed and it no longer has any
triggering events, the out interface transition that represents
the transition between two states with a triggering event,
and the recovery interface transition is associated with the
initial place of the target state and it represents recovery
from the erroneous state.

Legends in Fig. 4 describe the SRN model elements and
how we graphically differentiate between different
transitions and place types. To facilitate things, we
concatenate the labels along with the states and transitions
name in order to help identify the errors in composition and
to trace them back to the conformance and composition
issues in the main software model.

In all transformation rules we consider the local fault
occurrences and the fault activation of every state. For
instance Fig. 4a shows the translation of a simple state with
the do activity executed locally and sends a return value.
This activity may be executed successfully or exceptions
may be raised during the execution that will change the
component’s behavior from normal to erroneous, as it
propagates to the caller and then to the connected
components. To capture this semantics we add two timed
transitions that connect the initial place. In fact, this place
(P_init_<stateName>) represents the entrance of the simple
state. The first timed transition (T_do_<methodName>)
captures the correct execution of the activity, while the other
timed transition (T_localFaultOccurrences) captures the
fault occurrences of do activity. When the first one is
enabled, it will gain the tokens of the initial place. For
instance, if the fault occurrences are enabled first, then all
tokens will be moved to the faulty place, which means that

all pending requests of that activity will fail. The SRN
multiplicity on arc that depends on marking and shown as
(#) on the arc is utilized here to model the failure of all
pending requests due to exceptions.

To compose this state with a connected transition, we
use matched out or done interfaces transition to be
composed with the state transition to the next simple state,
according to the software model. Similarly local fault
activation interface transition will be composed with
matched erroneous transition to the erroneous state in the
error propagation chain. In some cases the error may be
recovered and the system can be restored to a specific state.
To model the recovery, we add timed interface transition
connected to the initial state as explained in [9].

Software components interact with each other in two
styles: synchronous and asynchronous. Fig. 4b show
synchronous styles and we note that the do activity in this
case is modeled as an immediate transition, which
represents the calling of a remote method implemented by
another connected component. As mentioned earlier, the
internal behavior state machine will send or receive the
messages to other connected component only through its
ports. Moreover, we have different interface places (shaded
and striped places): 1) one for sending the request; 2) one
for receiving the replay from the called method; and 3) in
case the called method fails during the execution, the failure
will be propagated to the caller. All these interface places
will be used to connect the component port behavior to the
internal behavior during the BSM and PSM composition.

Fig. 4c shows a simple state with entry activity. The
entry activity, in this case, is a local method execution that
may raise an exception during the execution. In order to
model the normal execution and local fault activation
semantics, we add two timed transitions connected to the
initial place that represents the entrance of the state. First,
the transition model’s execution time for the method is
represented, and second, the fault occurrences are
represented. In the case of an entry action that calls a
method’s implementation remotely, the transformation will
be same as the do activity translation (Fig 4b). In these
transformation rules of the entry action, we do not violate
the “run-to-completion semantic” since the transition that
represents the execution of the method is not interruptible
and we do not model the acceptance of a new event
dispatched from the event pool. Indeed, fault activation
during exaction of the action is not a new event, but it
belongs to the execution path of that method. On the other
hand, for the do activity in Fig. 4a, we have out transition
connected to the initial place to represent the fact that the do
activity may be interrupted during the execution by other
events. In case of entry activity with just sending signals we
transform it as an immediate transition, since no fault may
be activated during the sending of the message [9].

According to UML standard [11], the exit action will be
executed before exiting the current state and after receiving
the external transition event. For instance, Fig. 4d shows the
execution of the exit action after the out transition. Since the
exit action in this case is a method execution, we have to
model the normal execution and fault activation in the same

manner of do activity and entry action. If the exit action is
just sending signals, then the transformation will be an
immediate transition. Once the exit action is finished, the
component will enter a new state.

Error state and failure mode state represent the
dependability threats of each operation in the component’s
behavior and it shows the fault activated and propagated or
how it may be recovered. These states do not have an
entry/exit action or do activity. Therefore, we transform
each error state and failure mode state to a place in SRN
model, which is connected with fault activation or
propagation transition. Usually an error state is connected
with two interface transitions. One transition represents the
propagation to other error or failure mode manifestation,
while the second one models the recovery transition. These
transitions are timed to represent the delay of error
propagation. More details can be found in [9].

In the CeBAM approach, all transitions of BSM do not
have the action due to the refactoring aspect that moves all
transition actions to a new intermediate state. The objective
of this refactoring aspect, as mentioned earlier, is to model
the fault activation and failure propagation of the transition
action, without violating the “run-to-completion” semantics.
These transitions will be composed with the source state by
the interface transition that matches the name and label. The
initial places of the target state are used as an interface place
in these transformation rules. This illustrates that in all cases
the state machine transition should only be connected to the
initial place of the target state (the striped place in Fig. 4).

For the internal behavior of the AGV component (see
Fig. 2) we apply the transformation rules explained earlier
in order to get the corresponding SRN model as shown in
Fig. 9. In fact, the translation to the SRN is performed in an
iterative fashion. We begin by transforming each state and
transition separately then using the matching interface
places and transition to connect the states and transition,
according to the main software model.

B. Transformation Rules for Extended Protocol State
Machine
A protocol state machine (PSM) is a specialized

behavioral state machine [11]. What makes PSM different is
that the state in the protocol does not have an entry/exit
action or a do activity. In addition, the transition does not
have an action, but it has a pre and a post condition. On the
other hand, the composite state and concurrent regions are
permitted, but the history pseudostate are not. In our
approach we are not using composite states or concurrent
regions. Usually, a protocol state machine describes which
operations of the classifier (i.e. interface or class), may be
called in which states and under which conditions. In other
word, it describes the legal usage of the classifier.

In our previous work [7], we identified the limitations of
the PSM and we have extended it to model the component’s
port behavior. Thus, the CeBAM approach extended to the
PSM to describe the external view of the component by
specifying incoming and outgoing messages through each
port. In fact, this extension helps us to model the failure
propagation between the component interfaces in the CBD

(a) PAGV port behavior

(b) Fragment of transformed SRN with interface places

along with their normal behavior. For instance, required and
provided interfaces may be attached to the component port
(see Fig. 1) and then, by using the extended PSM the order
of operation calls for these interfaces, as well as failure
propagation can be precisely captured (see Fig. 5a). Note
that, the PSM in our approach does not show any behavioral
implementation.

Figure 5. Applying PSM transformation rules on PAGV component port.

All transitions of the extended PSM are atomic
transitions and they possess “run-to-completion-semantics”.
As a result, they may be transformed to the immediate
transition in the SRN model, and their states will be
transformed as places. Fig. 5b shows the implementation of
these rules on the PAGV port of AGV component of this
case study. Note that we show the interface places that will
be used to compose the port’s behavior model with its
internal component’s behavior model and this port with
other component’s ports according to the component
structural model (shaded and striped places to be connected
with the BSM and striped places to be connect with other
components ports).

C. Components Behavior Composition Patterns
The port is the property of a classifier (i.e. component).

It represents a distinct interaction point between classifier
and its environment and its internal behavior [11]. In UML

two types of ports are defined: service ports and behavioral
ports. A behavioral port will possess the implementation of
its classifier and will not be externally visible. In our
approach, we limit ourselves to the service port, since it
lacks implementation and we use extended PSM to capture
the component’s external visible behavior through its
stateful ports. In fact, the port PSM model will precisely
capture both incoming and outgoing messages for normal
and erroneous messages. These messages represent how the
components interact and communicate with each other, as
well as the legal usage of the interfaces attached to the port.

Figure 6. Composition pattern of BSM to PSM for outgoing failure
propagation

According to [11], once the instance of the classifier is
created, a new instance of its ports will also be created,
along with its specific interaction points. A link from the
port instance to the owning classifier instance will be
created in order to forward any incoming requests from the
environment to the owning classifier instance, or to send the
outgoing requests from classifier’s internal instance to the
environment (to other connected components).

In composing the PSM with the BSM for normal
behavior, we apply this semantics by adding an interface
place between the PSM and the BSM. In fact, each provided
service modeled in the component port’s PSM must have a
corresponding transition in the internal component’s
behavior (BSM) with the same event name, because
otherwise the incoming request will not be handled
properly. For the required services to become implemented
in the other component, each activity in the BSM that calls a
provided service must have a corresponding transition in the
PSM with the same event name, because likewise this
request will also not be passed to the connected component.
These conditions must hold for all communication types
(i.e. operation calls, signals and failure propagation). In Fig.
9 of the case study, we shows how we compose the BSM to
its port’s PSM for the normal behavior by only using
interface places (gray striped places).

As explained earlier, the PSM captures the legal usage
of the interfaces (provide/required) attached to the
component’s ports and it does not show any
implementation. In fact, the implementation of the provided
service is implemented as an internal component behavior.
In case of the fault activated in the internal component
behavior, it will be propagated to the interface’s
implementation causing a new error type and failure mode.
Accordingly, this propagation will be shown in the port’s
PSM, since it describes the interface usage and it captures

its states, being either normal or erroneous. In other words,
any internal failure that does not get recovered will be
propagated to the component’s ports, and then to the
connected components. In Fig. 9 and Fig. 10 of the case
study we show a failure manifested at the internal behavior
as it propagates to the port, causing a new error and failure
mode.

In order to show the error propagation composition from
the BSM to the PSM in the transformation rules, we
introduce an intermediate SRN connection subnet that
connects the failure mode’s place on the BSM to the fault
activation transition in the PSM. For the external propagated
failure from the PSM to the BSM, we will use the same
connection subnet. Fig. 6 shows the propagation
composition of that manifested failure in the BSM and
propagated out to the corresponding PSM. For the external
failure that is propagated from the other connected
component, we use the same connection subnet as it
explained in [9]. Note that the T_propagateOut is a timed
transition that represents the propagation delay. We assume
that this event is never lost, since it will be passed within
same component that is deployed in a single machine.

Figure 7. Service request composition pattern between two components
ports (Asynchronous style)

The communication between the different instances of
the UML state machine is handled by the underlying event
pool, and it is usually not modeled [11]. A caller object i.e.
component instance, can call an operation of another object
by sending an event. An implicit event pool of the called
object will receive this event. At a later point in time, the
event will be dispatched from the event pool to the state
machine where it will either trigger a transition, or it may be
discarded. Actually, the UML 2 does not specify the
semantics of the selection criteria or the priority of the event
from the event pool.

In our transformation rules, the event pool is considered
for each provided service or incoming signals. We have thus
created a request mailBox place that is attached to each
incoming operation call transition, and a signals mailBox
place for each incoming signal. A send place is attached to
each of the outgoing transitions that represent the buffering
of the outgoing requests at the connector before passing it to
the connected component port. Moreover, we add a timed
transition (T_lost) from the send place to represent the loss
of the request due to the communication channel. In fact,
this transition may be replaced with a connection
availability subnet that models the availability of the

network connection. Note that for our current work, we do
not consider the deployment.

The send and the mailBox places are connected by a
T_send transition that has a guard to check that it is the
provided service in a state that may readily consume and
process the request. As shown in Fig. 7, in order to connect
provided and required service between two components, we
need to construct an intermediate SRN subnet consisting of
a send place for the outgoing requests and a mailBox place
for the incoming requests. These two places are then
connected by a T_send transition. This composition pattern
is used only if the two components are communicating in
asynchronous style. Another synchronous communication
style that waits for the return value or the completion of the
execution signals explained in more depth in [9].

Figure 8. Failure propagation between component ports.

According to [3], if an internal fault is activated but not
properly handled inside the component, then this fault will
end up in a failure mode, which will be propagated to its
corresponding port and to the other components that depend
on it. To model the failure propagation between
components, we need to add a SRN intermediate subnet that
links the failure mode of the provided interface to the
connected required interface. As a result, for every failure
mode of the provided service, we have to have an incoming
transition on the required interface that model and capture
the external failure propagation. This transition will cause a
new error state and failure mode of the caller component.
Fig. 8 shows how we compose the failure mode of the
provided service with the external propagated failure
transition of the required interface by adding an
intermediate SRN subnet that consists of a propagate timed
transition to model the propagation delay between
components and the failure mailBox place. Failure
propagation events could be lost due to the communication
channel. To model this, we have added a timed transition
connected to the mailBox place.

VI. CONFORMANCE AND COMPATIBILITY VERIFICATION
EXAMPLES

The purpose of this work is to identify the mismatch
between the connected components, their internal behavior,
and their ports. In fact, this is a mandatory step in our
dependability analysis approach that helps to fix all
components mismatch behaviors that impact the reliability
prediction results of the system. The verification process is
performed in two phases. First, during the construction of

the analysis model (SRN) we identify the dangling model
elements, which are not connected to other model elements.
These non-connected model elements may represent the
failure propagation not modeled in the connected
component, or a service not utilized correctly. Second, once
the analysis model is constructed, we study the properties of
the SRN model, such as deadlocks and dead transitions. By
interpreting the results from these two phases, we may trace
back the location of the mismatch and fix it in the software
model, and then run the verification process again until we
get the correct model that may be used for the reliability
analysis.

Figure 9. Example of conformances issues in internal behavior of AGV
component (deadlock and dangling provided service).

PN analysis tools, such as SPNP [15], identify deadlocks
as soon as they are found and they terminate the analysis
execution. We utilize this feature to identify the
conformance issues that are not identified during
construction. For example, Fig. 9 shows a fragment of an
analysis model of an AGV component and its ports that are
connected to the Supervisory System and Display System
components. The AGV component sends a request to the
display system component through a RDisplay port. This
call is synchronous, but the reply message is not defined in

the PDisplay and RAGV ports. As a result, the internal
behavior of the AGV component will wait forever for the
reply from Display System component. This issue can be
identified as a deadlock using the SPNP tool.

Another example of conformance issue is that, if the
incoming message is modeled in the component port (PSM)
and there is no corresponding event in the component’s
internal BSM behavior model, then that message will not be
handled (possibly lost) and it will keep the requester waiting
forever, especially if the call style is synchronous. Fig. 9 is
an example of such issue identified in the case study. The
stop service (T_incoming_stopCmd) is modeled in the AGV
component port (PAGV), and it is has no corresponding
event modeled in its internal component’s BSM behavior
model.

Figure 10. Example of components compatibility issues (unused provided
service and nonpropagated failure)

For the compatibility verification, Fig. 10 shows the
generated SRN model from the PAGV port of an AGV
component wired with the RAGV port of the Supervisory
System component. During construction, we have identified
two incompatibility issues. The first is a dangling and
absorbing place that does not connect to any transition. This
indicates that the failure in the PAGV port is not being
propagated to the RAGV port. We, therefore consider this as
incompatibility between these ports. In fact, the ultimate
goal of our research is to study the effects of the failure
propagation between components on the system’s reliability
and how we can add a fault tolerance mechanism to handle
this failure. In order to get an accurate reliability prediction,
we must solve this issue in the software model and repeat
the verification process as it is explained early in section
four of this paper.

Second, the stop service of the AGV component is not
linked to the connected component. This non-connected
provided service is either extra, or not needed within its
context. It may also mean that the required interface does
not model it correctly to use it. As a result, this mismatch
must be fixed in the software model before starting the
reliability analysis.

VII. RELATED WORKS
Using formal models in verifying components’

compatibility has been employed in different approaches. In
[12] the focus is on the component’s interface that modeled

using labeled PN. Components are compatible if the
composition of the components model is free of deadlocks.
However, assuming the conformance between the internal
component’s behavior and its interfaces, it is not helpful in
making a reliability prediction without considering failure
propagation. This assumption is avoided in our approach.

A similar approach is presented in [13]. The evaluation
is done as part of the development environment tool called
SEA. System behavior is obtained automatically by
combining all BSM of all connected components to be then
transformed to PN. In this approach, we notice that the
application of BSM resulting from the union of the
individual component BSM will not scale up for large
application. In our approach of dependability analysis, we
focus on the critical scenarios and we use SRN to have a
more compact analysis model. Also, we consider
component internal and ports behaviors in verification
process for both normal and erroneous behaviors

Our transformation approach of state machines was
inspired by [14]. The authors present a set of transformation
rules from the UML state machine to Deterministic and
Stochastic PN. Their objective is to analyze system
dependability that is build based on MARTE and DAM
profiles [8]. We differentiate our approach in many cases
[9]. For instance, they assume implicitly that the receiver
state machine will lose an incoming signal if it is not in a
state that is ready to handle that signal. In our case, we have
taken a different approach. As mentioned earlier, a state
machine has an event pool that collects the event and
dispatches it when the state machine is in a correct state. As
a result, in our approach we model the buffering in the
connector subnet. Moreover, the losing event will happen
only if the communication link is down.

The work in [16] derive SRN from a guarded BSM for
their dependability analysis. They only consider simple BSM
without actions or activities. Moreover, their approach for
modeling faults is limited in comparison with our approach
that captures propagation. In fact, in the literature different
approaches proposed to derive PN from BSM for different
purposes, but none of them consider failure propagation.
More detailed discussion can be found in [9].

VIII. CONCLUSION AND FUTURE WORK
This paper presents the second phase of the proposed

automated dependability prediction framework [7]. It
focuses on the verification of conformance and
compatibility of components modeled by the CeBAM
approach. We show how we derive and compose SRN
models from component’s internal behavior and its port
behavior, and we explain the semantics of each
transformation rule. Using a case study we demonstrate how
we identify conformance and compatibility issues during the
composing of the SRN models and by analyzing the
properties of PN.

Currently we are developing a tool that automates the
proposed approach by using QVT Operational [17]. We are
also working on extending the transformation rules to
include the DAM profile [8] in order to analyze the system
reliability and availability. Next we plan to add to the

system a fault tolerance mechanism, and to predict its effect
on the system in terms of reliability and availability.

ACKNOWLEDGMENT
Authors acknowledge the support provided by Albaha

University and the Ministry of Higher Education, KSA. This
research was partially supported by NSERC, Canada.

REFERENCES
[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in

Practice, 3rd ed. Addison Wesley, 2012.
[2] G. N. Rodrigues, D. S. Rosenblum, and S. Uchitel, “Reliability

prediction in model-driven development,” Model Driven Engineering
Languages and Systems, pp. 339–354, 2005.

[3] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,”
Dependable and Secure Computing, IEEE Transactions on, vol. 1, no.
1, pp. 11–33, 2004.

[4] S. Bernardi, J. Merseguer, and D. C. Petriu, “Dependability modeling
and analysis of software systems specified with UML,” Computing
Surveys (CSUR, vol. 45, no. 1, Nov. 2012.

[5] A. Immonen and E. Niemelä, “Survey of reliability and availability
prediction methods from the viewpoint of software architecture,”
Softw Syst Model, vol. 7, no. 1, pp. 49–65, Jan. 2007.

[6] H. Aysan, S. Punnekkat, and R. Dobrin, “Error modeling in
dependable component-based systems,” Annual IEEE International
Compu, pp. 1309–1314, 2008.

[7] N. A. Mokhayesh Alzahrani and D. C. Petriu, “Modeling Component
Erroneous Behavior and Error Propagation for Dependability
Analysis,” Proceedings of the 16th International System Design
Languages Forum Model-driven dependability engineering (SDL
2013), pp. 124–143, Apr. 2013.

[8] S. Bernardi, J. Merseguer, and D. C. Petriu, “A dependability profile
within MARTE,” Softw Syst Model, vol. 10, no. 3, pp. 313–336,
Aug. 2009.

[9] N. A. Mokhayesh Alzahrani and D. C. Petriu, “Derivation of
Stochastic Reward Net (SRN) from Component Erroneous Behavior
Model for Compatibility and Conformance Verification,” Technical
Report SCE-13-02,Dept. of Systems and Computer Engineering,
Carleton University, Canada, May 2013.

[10] H. Gomaa, “Software Modeling and Design,” Cambridge University
Press, Feb. 2011.

[11] OMG, “OMG Unified Modeling Language - Superstructure 2.3,”
May 2010.

[12] D. C. Craig and W. M. Zuberek, “Compatibility of Software
Components - Modeling and Verification,” presented at the
Proceedings of the International Conference on Dependability of
Computer Systems, 2006.

[13] N. S. Teixeira and R. P. E. Silva, “Compatibility Evaluation of
Components Specified in UML,” presented at the Computer Science
Society, 30th International Conference of the Chilean, pp. 90–99,
2011.

[14] J. Merseguer and S. Bernardi, “Dependability analysis of DES based
on MARTE and UML state machines models,” Discrete Event
Dynamic Systems, vol. 22, no. 2, pp. 163–178, 2012.

[15] G. Ciardo, J. Muppala, and K. Trivedi, “SPNP: stochastic Petri net
package,” presented at the Proceedings of the Third International
Workshop on Petri Nets and Performance Models, pp. 142–151,
1989.

[16] G. Huszerl, I. Majzik, A. Pataricza, K. Kosmidis, and M. Dal Cin,
“Quantitative analysis of UML statechart models of dependable
systems,” The Computer Journal, vol. 45, no. 3, pp. 260–277, 2002.

[17] OMG, “Query View Transformation (QVT) v1.1,” Apr. 2008.

	I. Introduction
	II. Background
	III. Case Study
	IV. Conformance and Compatibility Verification Approach
	V. Deriving SRN from Components Behavioral Model
	A. Transformation Rules for Behavioral State Machine
	B. Transformation Rules for Extended Protocol State Machine
	C. Components Behavior Composition Patterns

	VI. Conformance and Compatibility Verification Examples
	VII. Related Works
	VIII. Conclusion and Future Work
	Acknowledgment
	References

