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Abstract— The compatibility verification between interacting 
components and the conformance verification of their internal 
behavior with the corresponding ports protocol behavior are 
crucial steps for the early identification of unexpected 
messages between components. The behavior models used for 
verification include erroneous behavior along with normal 
behavior, in order to ensure greater accuracy in reliability and 
availability analysis. We use our Component Erroneous 
Behavior Aspect Modeling (CeBAM) approach introduced in 
previous work, which applies aspect-oriented modeling for 
adding erroneous behavior to UML state machines 
representing normal behavior. In this paper we present 
transformation rules for deriving Stochastic Reward Net 
(SRN) from CeBAM representations. The first step is to 
generate SRN for individual component behavior in order to 
check the conformance between component internal behavior 
and their ports protocol behavior. Subsequently, we compose 
the generated SRNs models of the connected components to 
verify their compatibility. We show how to identify 
conformance and compatibility issues during the construction 
and composition of components SRN model by analyzing SRN 
properties (e.g., deadlocks). We illustrate the proposed 
verification approach through a case study modeled according 
to CeBAM. 
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I.  INTRODUCTION 
Software architecture provides a set of high-level 

abstractions for representing structure, behavior and Non-
Functional Properties (NFP) of the software. According to 
[1], component structure, dynamic behavior and allocation 
are the categories of architectural constructs. Component 
Based Development (CBD) applies the “divide and 
conquer” principle to manage system complexity. It 
produces an abstract model that shows the static structure of 
the system in which each component is assigned a specific 
functionality. In addition, each component is a unit of 
composition that interacts with other components through 
predefined interfaces.  

Using the software architecture as a basis for the early 
reasoning and evaluation of the system’s NFP helps to 
reduce the cost and produce software conforming to 
specifications [2]. Software dependability is among one of 
the examples of NFP that need to be evaluated during the 
design phase. This in turn encompasses a set of attributes: 
reliability, availability, maintainability, integrity and safety 
[3]. The quantitative results of these analyses will support 

the developer in making the right decisions for building 
dependable systems. Although different approaches were 
proposed in the literature, in order to address the reliability 
and availability modeling [4], [5], many existing approaches 
do not adequately consider error propagation in predicting 
system reliability [6]. 

Model Driven Development (MDD) is a promising 
approach for software development that changes the focus 
from code to models. This focus on models facilitates the 
analysis of different NFP by using formal analysis models 
obtained by model transformations from the software 
models [7] [8]. In fact, combining MDD and CBD is an 
appealing approach for software development, as it reduces 
the complexity, time, cost and it helps to integrate NFP 
analysis during the design phase. 

In our previous work [7], we presented a framework for 
automating dependability analysis, which considers error 
modeling and failure propagation of a component-based 
system. A component’s internal behavior and its ports’ 
behavior are modeled using the Component Erroneous 
Behavioral Aspect Modeling (CeBAM) approach. In 
CeBAM we model the component’s erroneous behavior as 
an aspect model that is automatically composed with the 
component’s normal behavior. Modeling the erroneous 
behavior of components and verifying the failure 
propagation is a crucial part in our approach. We believe 
that a proper representation of error and failure propagation 
in CBD has an impact on the accuracy of reliability 
(availability) predictions for the system. Moreover, it helps 
developers to take the right decisions based on quantitative 
data such as selecting proper fault tolerance mechanism, 
placing error detection, and using suitable recovery 
approaches. 

In this paper, the focus is centered towards verifying the 
components’ conformance and compatibility. A 
component’s ports behavior described by an extended 
protocol state machine (PSM) must conform to its internal 
behavior modeled using a behavioral state machine (BSM). 
Thus, the goal of conformance verification is to avoid any 
unexpected messages between the component internal 
behavior and its ports, while component compatibility 
verification is to avoid mismatch between connected 
components in terms of provided services or failure 
propagation. A mismatch created when internal component 
failure is raised and not captured in corresponding 
component port or when component failure can not be 
propagated and handled by communicated components. 



 

The proposed verification process is done by 
transforming the components’ BSM and their PSMs to 
Stochastic Reward Net (SRN). Initially we begin by 
transforming each BSM and PSM model separately to SRN, 
and then for each component we compose the obtained SRN 
of component internal behavior with its ports’ SRN for 
conformance verification. Next, we consider component 
compatibility by composing the SRNs of the connected 
ports. The conformance and compatibility violations and 
mismatches are then determined during the composition 
phase, and also by analyzing the generated SRN to identify 
deadlocks. Although model checker techniques can be used 
in such verification process, but dependability analysis 
model (SRN) is utilized in our approach to avoid having 
different models with different properties.  

This paper is organized as follows. Section two presents 
the background of the CeBAM approach. Section three 
explains the case study and how we apply CeBAM. The 
next section describes the proposed approach for component 
conformance and compatibility verification. Then we 
illustrate the derivation and composition of SRN, as well as 
the semantics behind each transformation rule. Section six 
presents examples of our proposed approach applied to the 
case study.  Related works is presented in section seven, and 
then we conclude and summarize our work in progress. 

II. BACKGROUND 
In previous work [7], we presented our long-term 

objective that is to develop a framework based on standard 
modeling languages (such as UML and QVT), which would 
help developers to evaluate the dependability properties 
during a CBD + MDD process, by taking into consideration 
component erroneous behavior and error propagation. We 
believe that including component erroneous behavior in 
dependability analysis and prediction will help developers to 
make the right design decisions. We proposed the CeBAM 
approach, which applies aspect-oriented modeling 
techniques in order to model erroneous behaviors separately 
from the normal behavior. This approach reduces the model 
complexity and improves its readability and modifiability.  

Modeling component behavior using CeBAM can be 
done in two phases [7]. In the first phase we only model the 
normal behavior of both component views (internal and 
external). BSM is used for the component’s internal normal 
behavior and extended PSM is used for the external view. 
The second phase is focused on modeling component 
erroneous behavior separately using two profiles: 
ErroneousBehavior and AspectBSM profile. The outcomes 
of this phase are represented by two aspect models: one for 
the erroneous behavior of the internal view and another for 
the external view. We may need a few iterations to build 
these two models. First we capture the local failures and 
then in the next iteration(s) we may have to add propagated 
failures that originate in other components. The iterations 
will end when all errors/failures have been “propagated”. In 
some cases we may need to use refactoring aspects to 
preserve the run-to-completion semantics of BSM 
transitions. Fig. 2 and Fig. 5a show the final BSM and PSM 
respectively for the case study described in the next section. 

Also, in [9] we present all CeBAM models for the case 
study. 

III. CASE STUDY 
Factory Automation System (FAS) is the case study that 

will be used throughout this paper to illustrate the 
transformation of state machine (behavioral and protocol) to 
SRN. This case study was presented in [10], and our 
objective is to verify the compatibility between the FAS 
components and the conformance of components ports with 
their internal behavior. It is important to mention that this 
step is required before starting dependability analysis (as 
explained in [7]). 

The FAS is an example of a distributed real-time system. 
It consists of three components: Automated Guided Vehicle 
(AGV), Supervisory System and Display System. Each of 
these components represents a subsystem in FAS and they 
interact with each other through predefined interfaces.   Fig. 
1 shows the component’s architectural model. In this figure, 
AGV is the main component in FAS and it consists of 
subcomponents such as motor, arm, sensor and timer. Here 
the Supervisory System sends the command (load/unload) 
to the AGV and the status is reported to the display 
component.  

COMET methodology [10] was used to develop this 
case study. We extend the development of this case study by 
applying the CeBAM approach [7] to model component 
erroneous behavior and error propagation. Due to the 
limited space we select only “move to the station” use case 
to illustrate our transformation approach; more details can 
be found in [9]. 

 

 

Figure 1.  Component structure of case study [10] 

Since the AGV component is the core component of the 
FAS, we choose to model its internal behavior. Initially we 
model the internal behavior and then we apply the 
refactoring aspect according to the CeBAM approach. For 
each transition that has an action we create an intermediate 
state with a do activity corresponding to the action that was 
on the transition. Fig. 2 shows the final internal behavioral 
state machine after applying the refactoring aspect and 
erroneous behavior aspect ([9] has all aspect models). Due 
to limited space, as well as for the sake of simplicity, we 
model just one fault that is raised from the chcekDestination 
method. If this fault is activated, it will change the behavior 
of the AGV from normal behavior to the erroneous behavior 
and since this error is not recoverable it will propagate to 
cause a failure mode of the AGV. Moreover, this failure 
mode will be propagated to the Supervisory System 



 

component throughout the provided interface and it will 
cause another error and failure mode of the Supervisory 
System component according to [3].  

In order to study the error propagation from component 
BSM to its PSM and then to the connected component we 
have to model the port behavior of AGV and the 
Supervisory System components according to CeBAM. Fig. 
5a shows PAGV port behavior model. Hence, we show the 
final model after applying erroneous behavior aspect 
according to the CeBAM approach [7]. The report [9] has 
the complete model list used during iterations of the 
CeBAM modeling approach, as well as other component 
ports models. 

 

 

Figure 2.  Automated guided vehicle component internal behavior 

In the following section we will focus on illustrating the 
transformation of these models to SRN in order to verify the 
conformance and compatibility of the FAS system. 
Consequently, we will not show the modeling and 
transformation of the DAM profile, which will be part of 
our dependability analysis framework as explained in [7]. 

IV. CONFORMANCE AND COMPATIBILITY VERIFICATION 
APPROACH 

In the CBD paradigm, the component is a logical unit of 
abstraction with well-defined interfaces that provide or 
require services from their environment [1]. In our approach 
we assume that the port is the interaction point and that it 
has the needed interfaces to be integrated with other 
components in the system. Interfaces consist of a set of 
public services that may be called by other components in 
the system through their required interfaces. This call may 
be synchronous so as to block the caller until it passes back 
the response, while the asynchronous call starts a new 

thread. In all connection styles the received call will be 
based on the internal component’s behavior since the 
interface has no implementation. 

However, in order to study and analyze the reliability 
(availability) we need to verify the conformance and 
compatibility of the involved components. In conformance 
verification we verify whether the component’s internal 
behavior state machine is conforming to its ports’ protocol 
state machine or not. In other word, we need to check 
whether or not each modeled incoming message on the 
component port has a corresponding transition on the 
internal component’s behavior that can handle the message. 
It should also be verified whether or not each outgoing 
event modeled in the internal component behavior has been 
captured on the port behavior model or not. These events 
may include normal behavior events or erroneous and 
propagation behavior. 

Compatibility deals with the communication between 
components in the system. For two connected components, 
the provided services must be compatible with the requester. 
In fact, using extended PSM as proposed in CeBAM helps 
us to model how components in the system interact with one 
another, by capturing the passing messages through its ports 
in a specific order.  

UML [11] considers the conformance of protocol state 
machine through the ProtocolConformance model element. 
It explicitly assures that a specific state machine is 
conforming to a generic one. Thus, component realization 
must be conforming to its interfaces. Unfortunately, the 
conformance definition in the UML standard is limited and 
there is no clear framework for reasoning and verification. 
As a result, there are many approaches in the literature [12], 
[13] that attempt to address the problem of how to verify the 
components conformance and compatibility. In our 
dependability predication framework we are following state-
based analysis methods based on SRN. In other words, we 
are using the same formal model for conformance and 
compatibility verification, since this, to us seems like a 
logical step before starting the dependability analysis using 
the same SRN model.  

The verification phase should resolve all issues in the 
software model before starting the reliability/availability 
analysis phase. For instance, we need to be certain that any 
manifested internal failure inside a component will be 
propagated to all connected components and that the model 
is free of deadlocks (this is to avoid the impact of such 
issues on the reliability analysis results).  

We identify the conformance or compatibility issues 
during the construction and composition of the SRN models 
obtained by transformation from the software model or that 
have identified deadlocks of the composed model using the 
SPNP tool. The activity diagram of Fig. 3 describes the 
verification process. 

Iteratively for each component in the model, we apply 
transformation rules on its BSM and PSM models, which 
describe its internal and ports behaviors, respectively. Our 
next step is to compose the transformed models of the 
component’s internal behavior with its ports. This 
composition includes normal behavior as well as the 



 

erroneous behavior that connects incoming and outgoing 
messages from the components ports to its internal 
behavioral model. During this step, we may identify some 
conformance issues that must be fixed in the main software 
model before continuing to the next step. For example, in 
the PSM model we have incoming messages representing 
the external failure propagated from another connected 
component, even though the effects of this message is not 
modeled in the component internal behavioral model. 
Consequently, the component internal behavior model is not 
conforming to its port and this mismatch must be repaired in 
order to reflect the external propagated failure into the 
internal behavior model. 

 

 

Figure 3.  Conformance and compatibility verification activities 

Once each of the components’ internal behavior 
conforms to its ports behaviors, we may start the next step, 
which deals with the inter-component compatibility. For the 
connected components, we compose their port behavior 
model (SRN model) to identify incompatibility between 
components for the provided and required services and 
failure propagation. For instance, if there is a service failure 
modeled at one component’s port, it may not necessarily be 
modeled at the connected component. This type of 
incompatibility must be resolved in the main model by 
verifying the conformance again in that component, before 
completing the compatibility verification (Fig. 3). 

V. DERIVING SRN FROM COMPONENTS BEHAVIORAL 
MODEL 

State machine is a behavioral diagram that may be used 
to specify the behavior of a part of a designed system, and it 
is characterized by states and transitions. State represents a 
situation of the component or object when some invariant 
condition holds. For instance, a specific state may represent 
a dynamic condition when a software component is 

performing a series of internal computations activities 
resulting from the external call event, or it may represent a 
static situation when the component is waiting for another 
event to occur [11]. 

UML2 defines three kinds of states: simple state, 
composite state, and submachine state. In addition, UML2 
defines ten different kinds of pseudostates. In our case we 
focus on the initial and final pseudostates, as well as the 
simple state machine that does not have any sub-states or 
regions.

According to [11] state machines have three kinds of 
transitions: local transitions, internal transitions, and 
external transitions. Local transitions are used in composite 
state. It can not only leave any state but it may enter a new 
state (i.e. entering a new sub-state). Internal transitions will 
not cause a state change since the source and target states 
are the same. External transitions represent the transition 
between states (i.e. simple states). They have an 
event[condition]/action label that captures how the software 
component in a specific state receives the dispatched event 
and then evaluates the condition to start the action, if the 
condition is right. The transition action has the “run-to-
completion” semantics, which means that the software 
component will not enter the target state until the action is 
successfully completed and no other event may be accepted 
during execution of the action associated with that 
transition. A special kind of external transition is the 
completion transition (done) that does not have an event or 
action and it is triggered when the activity of the state has 
finished execution. 

 Therefore, the limitation of our approach is that the 
hierarchical states and history are not supported. States can 
have optionally entry/exit actions and do activity. Entry 
action is executed when entering the state while the exit 
actions is executed when leaving the state. A do behavior is 
executed after an entry behavior and it continues as long as 
the state is active. Both actions (entry/exit) have “run-to-
completion” semantics which means that those actions are 
uninterruptable and once they have started no other new 
events may be executed. On the other hand, do activity does 
not have “run-to-completion” semantics. In our approach we 
respect and preserve this semantics and we do not consider 
fault activation and failure propagation as new events, since 
it will be a part of the execution path of state actions. For 
instance, an entry activity that contains a method execution 
will not be interrupted by another call until it has finished its 
execution. However, during the execution, a fault may be 
activated to change the component’s state from a normal to 
an erroneous state. Fault activation in this case is not a new 
incoming event dispatched from an event pool of that state 
machine, but it is changing the execution path of the activity 
that we precisely model in our modeling approach 
(CeBAM).  

As mentioned before, we use the behavioral state 
machine to describe the internal behavior of each 
component in the system. In order to capture the erroneous 
behavior of the activity on state transition without violating 
the “run-to-completion” semantics, we introduce the 
refactoring aspects[7]. This will add new intermediate states 
and will move the transition action activity to be a do 



 

 

 

 
 

(a) Simple state with just do activity executed locally with return value 

 
 

 
(b) Simple state with do activity executed remotely (synchronous style) 

 

 
 

(c) Simple state with just entry action that executed locally 

 

 
 

(d) Simple state with exit action executed locally after out transition 
Legends 

     
 

Figure 4.   Graphical transformation rules for behavioral state machine.

activity of the new state. As a result, the do activity is 
interruptible and does not have a “run-to-completion” 
semantic allowing us to model the fault activation and 
transition from that new introduced state. Moreover, after 
applying the refactoring aspect on the original behavioral 
state machine, the refactored model will only have 
transitions with events or completion (done) transitions. 

In the following section we will describe the informal 
semantics of how we derive the SRN from the refactored 
behavioral states machine that captures the internal software 
components behavior (normal and erroneous). In the 
literature, different approaches are suggested to translate the 
state machine to Petri net for the analysis such as [12]-[14].  

Our approach of deriving SRN from BSM is inspired by 
[14], but in this transformation we do not show how to 
derive the dependability attributes of Dependability 
Analysis and Modeling profile (DAM) [8] from the BSM or 
PSM model to the SRN; we simply concentrate on how to 
iteratively build the SRN model from BSM and PSM for the 
compatibility and conformance verifications. 

A. Transformation Rules for Behavioral State Machine 
Simple state in our approach may represent a normal or 

erroneous behavior of the component. Normal state may 
have optional entry/exit actions and/or do activity that 
model method execution or signals. Erroneous states (error 
and failure modes), conversely, does not have any actions or 
activity since they capture the components dependability 
threats and error propagation.  

Accordingly, for the normal behavior we define the 
different generic transformation rules shown in Fig. 4 that 
cover selected possible cases of a simple state. In [9] we 
presents all possible transformation rules with more details. 
In order to compose the translated model elements we adopt 
the idea of interface transitions and places that are presented 

in [14]. We have interface transition and places that connect 
simple state with the transitions based on matched names. 
We have three types of interface transitions: completion 
execution interface transition (done) that will be triggered 
once the state activity is completed and it no longer has any 
triggering events, the out interface transition that represents 
the transition between two states with a triggering event, 
and the recovery interface transition is associated with the 
initial place of the target state and it represents recovery 
from the erroneous state. 

Legends in Fig. 4 describe the SRN model elements and 
how we graphically differentiate between different 
transitions and place types. To facilitate things, we 
concatenate the labels along with the states and transitions 
name in order to help identify the errors in composition and 
to trace them back to the conformance and composition 
issues in the main software model. 

In all transformation rules we consider the local fault 
occurrences and the fault activation of every state. For 
instance Fig. 4a shows the translation of a simple state with 
the do activity executed locally and sends a return value. 
This activity may be executed successfully or exceptions 
may be raised during the execution that will change the 
component’s behavior from normal to erroneous, as it 
propagates to the caller and then to the connected 
components. To capture this semantics we add two timed 
transitions that connect the initial place. In fact, this place 
(P_init_<stateName>) represents the entrance of the simple 
state. The first timed transition (T_do_<methodName>) 
captures the correct execution of the activity, while the other 
timed transition (T_localFaultOccurrences) captures the 
fault occurrences of do activity. When the first one is 
enabled, it will gain the tokens of the initial place. For 
instance, if the fault occurrences are enabled first, then all 
tokens will be moved to the faulty place, which means that 



 

all pending requests of that activity will fail. The SRN 
multiplicity on arc that depends on marking and shown as 
(#) on the arc is utilized here to model the failure of all 
pending requests due to exceptions. 

To compose this state with a connected transition, we 
use matched out or done interfaces transition to be 
composed with the state transition to the next simple state, 
according to the software model. Similarly local fault 
activation interface transition will be composed with 
matched erroneous transition to the erroneous state in the 
error propagation chain. In some cases the error may be 
recovered and the system can be restored to a specific state. 
To model the recovery, we add timed interface transition 
connected to the initial state as explained in [9]. 

Software components interact with each other in two 
styles: synchronous and asynchronous. Fig. 4b show 
synchronous styles and we note that the do activity in this 
case is modeled as an immediate transition, which 
represents the calling of a remote method implemented by 
another connected component. As mentioned earlier, the 
internal behavior state machine will send or receive the 
messages to other connected component only through its 
ports. Moreover, we have different interface places (shaded 
and striped places): 1) one for sending the request; 2) one 
for receiving the replay from the called method; and 3) in 
case the called method fails during the execution, the failure 
will be propagated to the caller. All these interface places 
will be used to connect the component port behavior to the 
internal behavior during the BSM and PSM composition.  

Fig. 4c shows a simple state with entry activity. The 
entry activity, in this case, is a local method execution that 
may raise an exception during the execution. In order to 
model the normal execution and local fault activation 
semantics, we add two timed transitions connected to the 
initial place that represents the entrance of the state. First, 
the transition model’s execution time for the method is 
represented, and second, the fault occurrences are 
represented. In the case of an entry action that calls a 
method’s implementation remotely, the transformation will 
be same as the do activity translation (Fig 4b). In these 
transformation rules of the entry action, we do not violate 
the “run-to-completion semantic” since the transition that 
represents the execution of the method is not interruptible 
and we do not model the acceptance of a new event 
dispatched from the event pool. Indeed, fault activation 
during exaction of the action is not a new event, but it 
belongs to the execution path of that method. On the other 
hand, for the do activity in Fig. 4a, we have out transition 
connected to the initial place to represent the fact that the do 
activity may be interrupted during the execution by other 
events. In case of entry activity with just sending signals we 
transform it as an immediate transition, since no fault may 
be activated during the sending of the message [9].  

According to UML standard [11], the exit action will be 
executed before exiting the current state and after receiving 
the external transition event. For instance, Fig. 4d shows the 
execution of the exit action after the out transition. Since the 
exit action in this case is a method execution, we have to 
model the normal execution and fault activation in the same 

manner of do activity and entry action. If the exit action is 
just sending signals, then the transformation will be an 
immediate transition. Once the exit action is finished, the 
component will enter a new state. 

Error state and failure mode state represent the 
dependability threats of each operation in the component’s 
behavior and it shows the fault activated and propagated or 
how it may be recovered. These states do not have an 
entry/exit action or do activity. Therefore, we transform 
each error state and failure mode state to a place in SRN 
model, which is connected with fault activation or 
propagation transition. Usually an error state is connected 
with two interface transitions. One transition represents the 
propagation to other error or failure mode manifestation, 
while the second one models the recovery transition. These 
transitions are timed to represent the delay of error 
propagation. More details can be found in [9].  

In the CeBAM approach, all transitions of BSM do not 
have the action due to the refactoring aspect that moves all 
transition actions to a new intermediate state. The objective 
of this refactoring aspect, as mentioned earlier, is to model 
the fault activation and failure propagation of the transition 
action, without violating the “run-to-completion” semantics. 
These transitions will be composed with the source state by 
the interface transition that matches the name and label. The 
initial places of the target state are used as an interface place 
in these transformation rules. This illustrates that in all cases 
the state machine transition should only be connected to the 
initial place of the target state (the striped place in Fig. 4). 

For the internal behavior of the AGV component (see 
Fig. 2) we apply the transformation rules explained earlier 
in order to get the corresponding SRN model as shown in 
Fig. 9. In fact, the translation to the SRN is performed in an 
iterative fashion. We begin by transforming each state and 
transition separately then using the matching interface 
places and transition to connect the states and transition, 
according to the main software model.  

B. Transformation Rules for Extended Protocol State 
Machine 
A protocol state machine (PSM) is a specialized 

behavioral state machine [11]. What makes PSM different is 
that the state in the protocol does not have an entry/exit 
action or a do activity. In addition, the transition does not 
have an action, but it has a pre and a post condition. On the 
other hand, the composite state and concurrent regions are 
permitted, but the history pseudostate are not. In our 
approach we are not using composite states or concurrent 
regions. Usually, a protocol state machine describes which 
operations of the classifier (i.e. interface or class), may be 
called in which states and under which conditions. In other 
word, it describes the legal usage of the classifier. 

In our previous work [7], we identified the limitations of 
the PSM and we have extended it to model the component’s 
port behavior. Thus, the CeBAM approach extended to the 
PSM to describe the external view of the component by 
specifying incoming and outgoing messages through each 
port. In fact, this extension helps us to model the failure 
propagation between the component interfaces in the CBD 



 

 
 

 
 

(a) PAGV port behavior 
 

 

 
 

(b) Fragment of transformed SRN with interface places 
 

 

along with their normal behavior. For instance, required and 
provided interfaces may be attached to the component port 
(see Fig. 1) and then, by using the extended PSM the order 
of operation calls for these interfaces, as well as failure 
propagation can be precisely captured (see Fig. 5a). Note 
that, the PSM in our approach does not show any behavioral 
implementation.  

Figure 5.  Applying PSM transformation rules on PAGV component port. 

All transitions of the extended PSM are atomic 
transitions and they possess “run-to-completion-semantics”. 
As a result, they may be transformed to the immediate 
transition in the SRN model, and their states will be 
transformed as places. Fig. 5b shows the implementation of 
these rules on the PAGV port of AGV component of this 
case study. Note that we show the interface places that will 
be used to compose the port’s behavior model with its 
internal component’s behavior model and this port with 
other component’s ports according to the component 
structural model (shaded and striped places to be connected 
with the BSM and striped places to be connect with other 
components ports).  

C. Components Behavior Composition Patterns 
The port is the property of a classifier (i.e. component). 

It represents a distinct interaction point between classifier 
and its environment and its internal behavior [11]. In UML 

two types of ports are defined: service ports and behavioral 
ports. A behavioral port will possess the implementation of 
its classifier and will not be externally visible. In our 
approach, we limit ourselves to the service port, since it 
lacks implementation and we use extended PSM to capture 
the component’s external visible behavior through its 
stateful ports. In fact, the port PSM model will precisely 
capture both incoming and outgoing messages for normal 
and erroneous messages. These messages represent how the 
components interact and communicate with each other, as 
well as the legal usage of the interfaces attached to the port. 

 

 

Figure 6.  Composition pattern of BSM to PSM for outgoing failure 
propagation 

According to [11], once the instance of the classifier is 
created, a new instance of its ports will also be created, 
along with its specific interaction points. A link from the 
port instance to the owning classifier instance will be 
created in order to forward any incoming requests from the 
environment to the owning classifier instance, or to send the 
outgoing requests from classifier’s internal instance to the 
environment (to other connected components). 

In composing the PSM with the BSM for normal 
behavior, we apply this semantics by adding an interface 
place between the PSM and the BSM. In fact, each provided 
service modeled in the component port’s PSM must have a 
corresponding transition in the internal component’s 
behavior (BSM) with the same event name, because 
otherwise the incoming request will not be handled 
properly. For the required services to become implemented 
in the other component, each activity in the BSM that calls a 
provided service must have a corresponding transition in the 
PSM with the same event name, because likewise this 
request will also not be passed to the connected component.  
These conditions must hold for all communication types 
(i.e. operation calls, signals and failure propagation). In Fig. 
9 of the case study, we shows how we compose the BSM to 
its port’s PSM for the normal behavior by only using 
interface places (gray striped places). 

As explained earlier, the PSM captures the legal usage 
of the interfaces (provide/required) attached to the 
component’s ports and it does not show any 
implementation. In fact, the implementation of the provided 
service is implemented as an internal component behavior. 
In case of the fault activated in the internal component 
behavior, it will be propagated to the interface’s 
implementation causing a new error type and failure mode. 
Accordingly, this propagation will be shown in the port’s 
PSM, since it describes the interface usage and it captures 



 

its states, being either normal or erroneous. In other words, 
any internal failure that does not get recovered will be 
propagated to the component’s ports, and then to the 
connected components. In Fig. 9 and Fig. 10 of the case 
study we show a failure manifested at the internal behavior 
as it propagates to the port, causing a new error and failure 
mode. 

In order to show the error propagation composition from 
the BSM to the PSM in the transformation rules, we 
introduce an intermediate SRN connection subnet that 
connects the failure mode’s place on the BSM to the fault 
activation transition in the PSM. For the external propagated 
failure from the PSM to the BSM, we will use the same 
connection subnet. Fig. 6 shows the propagation 
composition of that manifested failure in the BSM and 
propagated out to the corresponding PSM. For the external 
failure that is propagated from the other connected 
component, we use the same connection subnet as it 
explained in [9]. Note that the T_propagateOut is a timed 
transition that represents the propagation delay. We assume 
that this event is never lost, since it will be passed within 
same component that is deployed in a single machine. 
 

 

Figure 7.  Service request composition pattern between two components 
ports (Asynchronous style) 

The communication between the different instances of 
the UML state machine is handled by the underlying event 
pool, and it is usually not modeled [11]. A caller object i.e. 
component instance, can call an operation of another object 
by sending an event. An implicit event pool of the called 
object will receive this event. At a later point in time, the 
event will be dispatched from the event pool to the state 
machine where it will either trigger a transition, or it may be 
discarded. Actually, the UML 2 does not specify the 
semantics of the selection criteria or the priority of the event 
from the event pool. 

In our transformation rules, the event pool is considered 
for each provided service or incoming signals. We have thus 
created a request mailBox place that is attached to each 
incoming operation call transition, and a signals mailBox 
place for each incoming signal.  A send place is attached to 
each of the outgoing transitions that represent the buffering 
of the outgoing requests at the connector before passing it to 
the connected component port. Moreover, we add a timed 
transition (T_lost) from the send place to represent the loss 
of the request due to the communication channel. In fact, 
this transition may be replaced with a connection 
availability subnet that models the availability of the 

network connection. Note that for our current work, we do 
not consider the deployment.  

The send and the mailBox places are connected by a 
T_send transition that has a guard to check that it is the 
provided service in a state that may readily consume and 
process the request. As shown in Fig. 7, in order to connect 
provided and required service between two components, we 
need to construct an intermediate SRN subnet consisting of 
a send place for the outgoing requests and a mailBox place 
for the incoming requests. These two places are then 
connected by a T_send transition. This composition pattern 
is used only if the two components are communicating in 
asynchronous style. Another synchronous communication 
style that waits for the return value or the completion of the 
execution signals explained in more depth in [9]. 

 

 

Figure 8.  Failure propagation between component ports. 

According to [3], if an internal fault is activated but not 
properly handled inside the component, then this fault will 
end up in a failure mode, which will be propagated to its 
corresponding port and to the other components that depend 
on it. To model the failure propagation between 
components, we need to add a SRN intermediate subnet that 
links the failure mode of the provided interface to the 
connected required interface. As a result, for every failure 
mode of the provided service, we have to have an incoming 
transition on the required interface that model and capture 
the external failure propagation. This transition will cause a 
new error state and failure mode of the caller component. 
Fig. 8 shows how we compose the failure mode of the 
provided service with the external propagated failure 
transition of the required interface by adding an 
intermediate SRN subnet that consists of a propagate timed 
transition to model the propagation delay between 
components and the failure mailBox place. Failure 
propagation events could be lost due to the communication 
channel. To model this, we have added a timed transition 
connected to the mailBox place. 

VI. CONFORMANCE AND COMPATIBILITY VERIFICATION 
EXAMPLES 

The purpose of this work is to identify the mismatch 
between the connected components, their internal behavior, 
and their ports. In fact, this is a mandatory step in our 
dependability analysis approach that helps to fix all 
components mismatch behaviors that impact the reliability 
prediction results of the system. The verification process is 
performed in two phases. First, during the construction of 



 

the analysis model (SRN) we identify the dangling model 
elements, which are not connected to other model elements. 
These non-connected model elements may represent the 
failure propagation not modeled in the connected 
component, or a service not utilized correctly. Second, once 
the analysis model is constructed, we study the properties of 
the SRN model, such as deadlocks and dead transitions. By 
interpreting the results from these two phases, we may trace 
back the location of the mismatch and fix it in the software 
model, and then run the verification process again until we 
get the correct model that may be used for the reliability 
analysis. 

 

Figure 9.  Example of conformances issues in internal behavior of AGV 
component (deadlock and dangling provided service). 

PN analysis tools, such as SPNP [15], identify deadlocks 
as soon as they are found and they terminate the analysis 
execution. We utilize this feature to identify the 
conformance issues that are not identified during 
construction. For example, Fig. 9 shows a fragment of an 
analysis model of an AGV component and its ports that are 
connected to the Supervisory System and Display System 
components. The AGV component sends a request to the 
display system component through a RDisplay port. This 
call is synchronous, but the reply message is not defined in 

the PDisplay and RAGV ports. As a result, the internal 
behavior of the AGV component will wait forever for the 
reply from Display System component. This issue can be 
identified as a deadlock using the SPNP tool. 

Another example of conformance issue is that, if the 
incoming message is modeled in the component port (PSM) 
and there is no corresponding event in the component’s 
internal BSM behavior model, then that message will not be 
handled (possibly lost) and it will keep the requester waiting 
forever, especially if the call style is synchronous. Fig. 9 is 
an example of such issue identified in the case study. The 
stop service (T_incoming_stopCmd) is modeled in the AGV 
component port (PAGV), and it is has no corresponding 
event modeled in its internal component’s BSM behavior 
model. 

 

 

Figure 10.  Example of components compatibility issues (unused provided 
service and nonpropagated failure) 

For the compatibility verification, Fig. 10 shows the 
generated SRN model from the PAGV port of an AGV 
component wired with the RAGV port of the Supervisory 
System component. During construction, we have identified 
two incompatibility issues. The first is a dangling and 
absorbing place that does not connect to any transition. This 
indicates that the failure in the PAGV port is not being 
propagated to the RAGV port. We, therefore consider this as 
incompatibility between these ports. In fact, the ultimate 
goal of our research is to study the effects of the failure 
propagation between components on the system’s reliability 
and how we can add a fault tolerance mechanism to handle 
this failure. In order to get an accurate reliability prediction, 
we must solve this issue in the software model and repeat 
the verification process as it is explained early in section 
four of this paper. 

Second, the stop service of the AGV component is not 
linked to the connected component. This non-connected 
provided service is either extra, or not needed within its 
context. It may also mean that the required interface does 
not model it correctly to use it. As a result, this mismatch 
must be fixed in the software model before starting the 
reliability analysis. 

VII. RELATED WORKS 
Using formal models in verifying components’ 

compatibility has been employed in different approaches. In 
[12] the focus is on the component’s interface that modeled 



 

using labeled PN. Components are compatible if the 
composition of the components model is free of deadlocks. 
However, assuming the conformance between the internal 
component’s behavior and its interfaces, it is not helpful in 
making a reliability prediction without considering failure 
propagation. This assumption is avoided in our approach. 

A similar approach is presented in [13]. The evaluation 
is done as part of the development environment tool called 
SEA. System behavior is obtained automatically by 
combining all BSM of all connected components to be then 
transformed to PN. In this approach, we notice that the 
application of BSM resulting from the union of the 
individual component BSM will not scale up for large 
application. In our approach of dependability analysis, we 
focus on the critical scenarios and we use SRN to have a 
more compact analysis model. Also, we consider 
component internal and ports behaviors in verification 
process for both normal and erroneous behaviors   

Our transformation approach of state machines was 
inspired by [14]. The authors present a set of transformation 
rules from the UML state machine to Deterministic and 
Stochastic PN. Their objective is to analyze system 
dependability that is build based on MARTE and DAM 
profiles [8]. We differentiate our approach in many cases 
[9]. For instance, they assume implicitly that the receiver 
state machine will lose an incoming signal if it is not in a 
state that is ready to handle that signal. In our case, we have 
taken a different approach. As mentioned earlier, a state 
machine has an event pool that collects the event and 
dispatches it when the state machine is in a correct state. As 
a result, in our approach we model the buffering in the 
connector subnet. Moreover, the losing event will happen 
only if the communication link is down.  

The work in [16] derive SRN from a guarded BSM for 
their dependability analysis. They only consider simple BSM 
without actions or activities. Moreover, their approach for 
modeling faults is limited in comparison with our approach 
that captures propagation. In fact, in the literature different 
approaches proposed to derive PN from BSM for different 
purposes, but none of them consider failure propagation. 
More detailed discussion can be found in [9]. 

VIII. CONCLUSION AND FUTURE WORK 
This paper presents the second phase of the proposed 

automated dependability prediction framework [7]. It 
focuses on the verification of conformance and 
compatibility of components modeled by the CeBAM 
approach. We show how we derive and compose SRN 
models from component’s internal behavior and its port 
behavior, and we explain the semantics of each 
transformation rule. Using a case study we demonstrate how 
we identify conformance and compatibility issues during the 
composing of the SRN models and by analyzing the 
properties of PN. 

Currently we are developing a tool that automates the 
proposed approach by using QVT Operational [17]. We are 
also working on extending the transformation rules to 
include the DAM profile [8] in order to analyze the system 
reliability and availability. Next we plan to add to the 

system a fault tolerance mechanism, and to predict its effect 
on the system in terms of reliability and availability. 
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