
Abstraction-raising Transformation
for Generating Analysis Models

Antonino Sabetta1, Dorina C. Petriu2, Vincenzo Grassi1, Raffaela Mirandola1,

1 University of “Tor Vergata”, Dept. of Informatics, Systems and Production
Rome, Italy

{sabetta,vgrassi,mirandola}@info.uniroma2.it
2 Carleton University, Department of Systems and Computer Engineering

Ottawa, ON Canada, K1S 5B6
petriu@sce.carleton.ca

Abstract. The verification of non-functional requirements of software models
(such as performance, reliability, scalability, security, etc.) requires the transfor-
mation of UML models into different analysis models such as Petri nets, queueing
networks, formal logic, etc., which represent the system at a higher level of ab-
straction. The paper proposes a new “abstraction-raising” transformation ap-
proach for generating analysis models from UML models. In general, such trans-
formations must bridge a large semantic gap between the source and the target
model. The proposed approach is illustrated by a transformation from UML to
Klaper (Kernel LAnguage for PErformance and Reliability analysis of compo-
nent-based systems).

1 Introduction

OMG’s Model Driven Architecture (MDA) promotes the idea that software deve l-
opment should be based on models throughout the entire software lifecycle [13].
This change of focus from code to models raises the need for formal verification of
functional and non-functional characteristics of UML software models. Over the
years, many modeling formalisms (such as queueing networks, Petri nets, fault trees,
formal logic, process algebras, etc.) and corresponding tools have been developed
for the analysis of different non-functional characteristics (such as performance,
reliability, scalability, security, etc.). The challenge is not to reinvent new analysis
methods targeted to UML models, but to bridge the gap between UML-based soft-
ware development tools and different existing analysis tools.

Each of these analysis models and tools is suited for the evaluation of different
non-functional software properties. In general, an analysis model abstracts away
many details of the original software model, emphasizing only the aspects of inter-
ests for the respective analysis. A transformation whereby a more abstract target
analysis model is generated from a source software model is called here “abstrac-
tion-raising” transformation, as opposed to a “refining” transformation that produces
a more detailed target model (such as the transformations used in MDA).

Traditionally, analysis models were built “by hand” by specialists in the field,
then solved and evaluated separately. However, with the change of focus on models

brought by MDA, a new trend started to emerge, whereby software models are auto-
matically transformed into different analysis models. For example, this kind of ap-
proach was used to obtain a formal logic model for analyzing security characteristics
in [7]. Transformations from UML into different performance models have been
surveyed in [1]. Examples of such transformations are from UML to Layered Queue-
ing Networks in [10, 11], to Stochastic Petri Nets in [2], and to Stochastic Process
Algebra in [3]. More recently, a transformation framework from multiple design
models into different performance models was proposed in [17].

Different kinds of analysis techniques may require additional annotations to the
UML model to express, for instance non-functional requirements and characteris-
tics, or the user's directives for the desired analysis. OMG's solution to this problem
is to define standard UML profiles for different purposes. Two examples of such
profiles are the “UML Profile for Schedulability, Performance, and Time”[14] and
"UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics
and Mechanisms"[15].

The paper proposes a new approach for developing abstraction-raising transfor-
mations from UML to different kind of analysis models in different formalisms
(such as Petri nets, queueing networks, fault trees, formal logic, etc.) In general,
such transformations must bridge a large semantic gap between the source and the
target model, which represent the system at different abstraction levels. The pro-
posed approach is illustrated by a transformation from UML to Klaper (Kernel LAn-
guage for PErformance and Reliability analysis of component-based systems) [6].

2. Conceptual Description of the Transformation Approach

The proposed approach combines two methods that, so far, have been used sepa-
rately in model transformations: relational and graph grammar-based transformations
[5]. In the relational approach, used in the proposal for the QVT standard [12], the
source and target models are each described by its own metamodel; a transformation
defines relations (mappings) between different element types of the source and tar-
get (meta)models. According to [12], a Transformation is a generalization of both
Relation and Mapping. Relations are non-executable bi-directional transformation
specifications, whereas Mappings are unidirectional transformation implementations
used to generate a target model from the source model.

The graph-transformation and relational approaches are compared in [8]. While
the former is based on matching and replacement, the latter is based on matching
and reconciliation. The conclusion is that, is spite of their differences, advantages
and disadvantages, the two approaches are rather similar. More research is needed to
identify which one is more suitable for certain kinds of applications.

In our proposed approach, we keep the idea that the source and target models are
described by separate metamodels, between which transformations must be defined.
However, in our case the target metamodel represents analysis domain concepts,
which are usually at a higher-level of abstraction than the source model concepts. In
order to define mappings between the source and target models, sometimes it is
necessary to group (aggregate) a large number of source model elements according

to certain rules, and to map the whole group to a single target element. The aggrega-
tion rules correspond to the raising in the abstraction level necessary for bridging
the semantic gap between the source and the target model. Such rules are dependent
on the semantic differences between the source and target model, and are not repre-
sented in the source metamodel.
Therefore, a new mechanism is needed to express the aggregation rules, in addition
to the mechanism for defining the transformation from source to target. We propose
to use a graph grammar [16] for describing the aggregation rules; the terminals of the
graph grammar correspond to metaobjects from the source model, whereas the non-
terminals correspond to more abstract concepts that will be transformed directly in
target model concepts. The proposed transformation approach is illustrated in Fig.1.
Some target model elements can be obtained by a direct mapping from source mod-
els elements, like in a relational transformation, whereas other target elements, rep-
resenting more abstract concepts, correspond to graph-grammar non-terminals ob-
tained by parsing the source model. According to the taxonomy of model transfor-
mations proposed in [9], the abstraction-raising transformation discussed in this
paper is both exogenous (i.e., the source and target models are different) and vertical
(the abstraction level is different).

Figure 1. Principle of the proposed “abstraction-raising” transformation approach

3. Analysis Model for Component-based Systems

In this section, the abstraction-raising transformation approach presented in section
2 is illustrated by applying it to the transformation of a UML model extended with
the SPT Profile to an analysis model named Klaper (Kernel LAnguage for PErform-
ance and Reliability analysis of component-based systems) [6].

 3.1. Description of the Source Model

We assume that the source UML model describes the high-level software archi-
tecture as a component diagram, and the key scenario(s) for performance/reliability
analysis as activity diagram(s), as in Fig. 2.a. We also assume that the information
required for the generation of the analysis model is available from the source UML
model, possibly by means of annotations compliant with one or more profiles [14,
4].

source
model

target
modelsource

model

target
model

Figure 2. Example of abstraction-raising transformation from UML to Klaper

<<component>>

UserInterface

<<component>>
ECommServer <<component>>

DBMSShopping
Cart

Buy DB

browse and
select items

<<PAresource>>
UserInterface

idle

call
get_item

add item
to query

sanitize
query

item list

<<PAstep>>
{PArep= $r}

<<PAstep>>
{PAdemand= ‘assm’,

’mean’, $md4} idle

process
query

log
transaction

generate
page

query

display

a) Source model: component and activity diagrams

c) Klaper model for the ECommServ component

Buy: Service
formalParam = { itemList:integer}
scheduling = ‘FIFO’
isSync = false

ECommServer: Resource
capacity=1
scheduling=‘FIFO’

doTranscation: Activity
internalExecTime = …
isSync = false

genQuery: Activity
internalExecTime= s3.demand
isSync= true

idle: Activity

internalExecTime= …
isSync= false

: ActualParam
value = itemList

: fork

: start

: end

idle: Activity

internalExecTime = …
isSync = false

behaviour

offered
service

m
aps to

b) Parsing and mapping

sanitize
query

c

b1: localcall

a4

call
get-item

sanitize
query

c
a1

add item
to query

a3

a4

demand =
b1.demand
* c.$r

b2: loop

sanitize
querya4

demand =
b2.demand
+ a4.$md4

b3: seqdemand =
a1.$md1+
a2.$md2+
a3.$md3

get_item
a2

<<PAresource>>
ECommServ

<<PAstep>>
{PAdemand= ‘assm’,

’mean’, $md1}

<<PAstep>>
{PAdemand= ‘assm’,

’mean’, $md3}

<<PAresource>>
DBMSShoppingCart

get_item

ShoppingCart

<<PAstep>>
{PAdemand= ‘assm’,

’mean’, $md2}

<<component>>

UserInterface

<<component>>
ECommServer <<component>>

DBMSShopping
Cart

Buy DB

browse and
select items

<<PAresource>>
UserInterface

idle

call
get_item

add item
to query

sanitize
query

item list

<<PAstep>>
{PArep= $r}

<<PAstep>>
{PAdemand= ‘assm’,

’mean’, $md4} idle

process
query

log
transaction

generate
page

query

display

a) Source model: component and activity diagrams

c) Klaper model for the ECommServ component

Buy: Service
formalParam = { itemList:integer}
scheduling = ‘FIFO’
isSync = false

ECommServer: Resource
capacity=1
scheduling=‘FIFO’

doTranscation: Activity
internalExecTime = …
isSync = false

genQuery: Activity
internalExecTime= s3.demand
isSync= true

idle: Activity

internalExecTime= …
isSync= false

: ActualParam
value = itemList

: fork

: start

: end

idle: Activity

internalExecTime = …
isSync = false

behaviour

offered
service

m
aps to

b) Parsing and mapping

sanitize
query

c

b1: localcall

a4

call
get-item

sanitize
query

c
a1

add item
to query

a3

a4

demand =
b1.demand
* c.$r

b2: loop

sanitize
querya4

demand =
b2.demand
+ a4.$md4

b3: seqdemand =
a1.$md1+
a2.$md2+
a3.$md3

get_item
a2

<<PAresource>>
ECommServ

<<PAstep>>
{PAdemand= ‘assm’,

’mean’, $md1}

<<PAstep>>
{PAdemand= ‘assm’,

’mean’, $md1}

<<PAstep>>
{PAdemand= ‘assm’,

’mean’, $md3}

<<PAstep>>
{PAdemand= ‘assm’,

’mean’, $md3}

<<PAresource>>
DBMSShoppingCart

get_item

ShoppingCart

<<PAstep>>
{PAdemand= ‘assm’,

’mean’, $md2}

<<PAstep>>
{PAdemand= ‘assm’,

’mean’, $md2}

 Although both the parsing and the mapping implied by the proposed transforma-
tion are defined at the abstract syntax level based on the metamodel representation
of the source model, the paper uses only the graphical UML notation for the sake of
conciseness. The example is an e-commerce application designed as a client/server
system with three basic components: a user interface, an e-commerce server com-
ponent and a database (at the top of Fig. 2.a). Due to space limitations, we consider a
single usage scenario, which is part of the checkout procedure, given as an activity
diagram in Fig. 2.a. After the user has selected one or more items, the first client-
server interaction takes place, with UserInterface acting as client of the EComm-
Server. We assume that a server component waits for requests in the “idle” state.
After accepting a client request, ECommServer loops through the items in the shop-
ping cart to prepare a database query, and acts in turn as client in another client-
server interaction, where the DBMS is the server. After getting the required informa-
tion, ECommServer generates a page with the checkout information, sends it to the
UserInteface for display and returns to the “idle” state, where it can accept a new
request.

The SPT Profile is used to identify the main basic abstractions for performance
analysis in the UML model from Fig. 2.a. Scenarios define response paths through
the system, and can have QoS requirements such as response times or throughputs.
Each scenario is executed by a workload, which can be closed or open. Scenarios
are composed of scenario steps that can be joined in sequence, loops, branches,
fork/joins, etc. A step (stereotyped as <<PAstep>>) may be an elementary operation
at the lowest level of granularity, or a complex sub-scenario. Each step has a mean
number of repetitions, a host execution demand, other demand to resources and its
own QoS characteristics, which are given as tagged value. Resource is another basic
SPT abstraction; it can be active or passive, each with its own attributes.

Not all SPT annotations are shown in Fig. 2.a, just a few <<PAStep>> stereotypes
applied to different activities. The tagged value PAdemand gives the CPU demand for
a step. For instance, “PAdemand =’assm’, ‘mean’, $md1, ‘ms’” means that the step has
an assumed mean execution time of $md1 ms (where $md1is a variable). The tagged
value “PArep =$r” gives the average number of loop repetitions. Such quantitative
annotations will be used during the transformation process to compute the parame-
ters of the target model. A more detailed description of the use of SPT profile for
performance analysis is given in [11].

3.2 Description of the Target Model

The target model in this case study is an abstract analysis model expressed in Klaper,
a Kernel Language for Performance and Reliability analysis of component-based
systems [6]. Its purpose is to capture in a lightweight and compact model all the
relevant information for the performance and reliability analysis of component-
based systems, while abstracting away irrelevant details. Klaper was designed as an
intermediate “distilled” language to help bridge the large semantic gap between de-
sign-oriented and analysis-oriented notations, and to mitigate the “N-by-M” problem
of translating N design notation types into M performance/reliability model types.

ResourceService

BehaviourWorkload

Step

Control Start Stop Activity

Branch Fork Join Acquire Release ServiceCall

+prev

+next

ActualParam

+offeredService0..*

+resource

1

1

1..*

+usedService

0..*

0..*

0..*

0..*

{ordered}0..*

+nestedActivity

0..*

1..*

0..1

+calledService
0..1

Figure 3. Klaper metamodel (adapted from [6])

This “N-by-M” problem is reduced to a less complex task of defining N+M trans-

formations: N from different design notations to Klaper, and M from it to different
analysis models. (In this paper, we consider only one transformation, from UML 2 to
Klaper). Klaper has been defined in [6] as a MOF-compliant metamodel to allow the
exploitation of existing transformation facilities in the context of MDA. A diagram
of the metamodel is shown in Fig.3. The domain model underlying Klaper considers
that a system is an assembly of interacting Resources, where a resource may offer
(and possibly require) Services. Thus, Klaper Resources can represent both software
components and physical resources like processors, communication links or other
physical devices. Each offered Service is characterized by a list of formal parame-
ters that can be instantiated with actual values by other resources requiring that ser-
vice. The Behaviour of (offered) services is modeled as a graph of Steps that can be
simple “internal” Activities (i.e. operations that do not require any services offered
by other resources), or Activities with one or more associated ServiceCalls ad-
dressed to other Resources, or Control nodes (Begin/End, Fork/Join, etc.). An in-
teresting feature of Klaper is that service parameters are meant to represent abstrac-
tions (for example expressed in terms of random variables) of the “real” service
parameters (see [6] for more details).

3.3. Model Transformation

From a high level perspective, the mapping from UML to Klaper can be described as
follows. UML components (from component diagrams) and nodes (from deploy-
ment diagrams) are mapped onto Klaper resources. The corresponding offered and
required services are derived from the provided and required interfaces for each
component. The behaviour of each offered service is derived from a suitable UML
activity or state diagram, that either specifies the local component behaviour or the
global system behaviour. Due to space constraints, we do not describe in this exam-

ple the mapping of UML nodes to Klaper resources, nor the derivation of the behav-
iour that models the interactions between components (i.e. connectors). The attrib-
utes of Klaper elements defined in [6] are mainly derived from the information pro-
vided by the SPT [14] and reliability stereotypes [4] given in the UML source model.

Many of the mappings from UML to Klaper are straightforward, in that they can
be described as one-to-one relations between elements of the two metamodels; for
instance each UML component is mapped to a Klaper resource, each provided inter-
face of a UML component is mapped to a service offered by the resource
corresponding to that component, each required interface is mapped to a service
call, and so on. However, there are cases where a group of elements in the source
model represents, as a whole, an abstraction that will be mapped to a single Klaper
element. To illustrate more clearly this idea, let us examine the derivation of the
Klaper model for the ECommServ component (see Fig. 2.c).

In general, the behaviour is represented in the analysis model at a higher level of
abstraction than in the source model; this comes from the nature of the transforma-
tion from a software design to a performance model. Thus, we do not need to trans-
late each and every UML activity to a Klaper step, but would like to aggregate
unnecessary details. For instance, we may decide that all the activities executed in a
single swimlane between the receiving of a message and the sending of the next
message (as shown in the shaded fragment in Fig. 2.a) should be grouped and
mapped, as a whole, to a single Klaper activity (shown by the “maps-to” arrow in Fig.
2). We may also want to aggregate, in the same block, calls to local passive objects.
The fragment shown in Fig. 2.a is rather simple, but in principle can have any number
of activities connected in different ways in sequence, branches, loops, etc. Since the
UML metamodel does not define a concept (metaclass) corresponding to a “block of
activities” as described above, there is no single element in the source metamodel
that can be mapped to an element in the target metamodel. We propose to describe
the above aggregation rules by the means of a few graph grammar rules (see Fig. 4).

By applying the grammar rules in an appropriate order, we can eventually reduce a
“correct” activity diagram to the starting symbol ‘AD’. In the parsing process, a set
of non-terminals are generated, which correspond to more “abstract” constructions
found in the source model. The rules are applied for reduction as follows: when a
subgraph matching the right hand side (rhs) of a rule is found in the host graph (i.e.,
in the source model possibly rewritten by previous rules), the matching subgraph is
removed and is replaced by the left hand side (lhs) of the rule, according to the em-
bedding policy. More precisely: a) the edges attached to nodes of the rhs that are
kept in the lhs are preserved (they represent the “context”); b) the edges that are left
dangling (because of the removal of some node from the lhs) are removed; c) if a
node in the rhs is rewritten as one node in the lhs, then all the edges attached to the
former are redirected to the latter (this applies to non-injective morphisms too).
The graph grammar is structured so that high level constructs, such as loops, condi-
tional constructs, sequences and client-server interactions, are discovered through
parsing. To this purpose the concept of a “block” has been introduced and formally
defined in the grammar by rule 2. Most of the rules are recursive, raising the abstrac-
tion power of the proposed technique.

AD block P

rule 1

rule 2

block P loop Pcond Pseq P

CS P

block

P

block

InitialNode

P

block

P

ActivityFinalNode

block
Action P

rule 2.a rule 2.b rule 2.c rule 2.d

rule 2.f rule 2.g rule 2.h rule 2.i

rule 5

loop

P

block

block

PDecisionNode DecisionNode

rule 2.l

1

2
3

1

2
3

1

2
3

1

2
3

1

2
3

1

2

3 1

2

3 2

1

3

1

2
3

1,2

1

2

3
1

2

3

rule 6

block

P

Fork Join

Join Forkblock

P

1 2

43

6
5

rule 4
cond

P

block

block

PDecisionNode DecisionNode1

2

3
1

2

3

rule 3
seq

P

block block

P
1

2

3 1

2

3

Legend

P

is a shortcut for a ControlFlow element

is a shortcut for a Partition element

Action P
localcall P

rule 2.e

1

2
3

rule 7

localcallP

1

2

3

block

block

block PP 3

2

1

CS

P

1

2

3

4

5

Figure 4. Graph grammar

Basic constructs such as sequences, conditional blocks and loops are defined, in

terms of blocks and terminal symbols, by rules 3, 4 and 5. Rule 6 is used to recog-
nize the asynchronous client-server interactions and rule 7 reduces calls to passive
objects. Remarkably, each of the blocks in the right hand side of the grammar rules
can represent structures as simple as an elementary action or as complex as a big
block that could contain in turn other client-server interactions and arbitrarily nested
conditions, loops and sequences.

Fig. 2.b illustrates how the rules are applied in order to aggregate the activities
from the shaded fragment to a single block. In order to keep the figure clear, a few
details of the transformation steps were omitted. In the first step, rule 2.d is applied

to each of the actions to rewrite them as blocks. Then blocks a1, a2 and a3, are re-
duced by rule 7 to a localcall non-terminal (b1). Non-terminal elements have their
own attributes, computed from the elements in the right-hand side of the reduction
rule, possibly by considering also the stereotypes and tagged values attached to them.
In this example, the attribute demand of b1 (which represents the average CPU exe-
cution time required for this block) is computed as the sum of the mean execution
times for the activities a1 a2 and a3 (given as SPT performance annotations in
Fig.2.a). In the second step, rule 2.e transforms the localcall non-terminal into a
block, and then the loop can be parsed by rule 5 yielding b2. The attribute demand
for b2 is computed, by multiplying the demand of the loop body with the number of
repetitions. In step 3 the loop is rewritten as a block (rule 2.c) and then rule 3 col-
lapses the sequence of blocks (b2, a4) into b3.

This node, obtained by parsing a complex structure, will be mapped to a single
Klaper element (also given in grey in Fig. 2.c). A simplified Klaper model of the
component ECommServer offering the service Buy, is described by the graph of
steps from start to end given in Fig. 2.c. After the service, the component will re-
main idle.

The example shows that the abstraction-raising transformation from UML to Kla-
per aggregates away details that are not important for performance/reliability
analysis, but maintains enough information so that the analysis results (such as re-
sponse times for services under different workloads, throughputs, utilization of dif-
ferent resources, queue lengths, time to failure, etc.) can be imported back in the
UML models, by using the mapping between the elements of the source and target
models. The example also illustrates how the graph grammar rules can be used to
impose and verify additional well-formedness constraints on top of the standard
UML metamodel.

4 Conclusions

This paper tackles the problem of abstraction-raising transformation for deriving
analysis-oriented models from design specifications of component-based software
systems. The proposed approach addresses the need to bridge the significant seman-
tic gap that usually exists between the software design domain (source) and the per-
formance/reliability domain (target). We propose to separate the concern of parsing
the source model for extracting higher-level of abstraction concepts from the con-
cern of mapping between the source and target model, which could be realized by
traditional MDA techniques. A graph grammar is used to parse the source model and
to extract higher-level of abstraction constructs that are semantically closer to the
target domain. Our proposal can be seamlessly integrated into standard MOF-based
transformation frameworks, as the parsing and the extension of the source model can
be realized as a pre-processing step of a “conventional” model transformation pipe-
line.

Acknowledgements

This work was done during Antonino Sabetta’s visit to Carleton University, Ottawa, with the
financial support of NSERC Canada through its Discovery and Strategic Grants, of the MIUR-
FIRB project “PERF: Performance evaluation of complex systems” and of the MIUR project
“Model driven design and analysis of adaptable software architectures”.

References
1. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M., "Model-based performance predic-tion

in software development: a survey" IEEE Transactions on Software Engineering, Vol 30, N.5,
pp.295-310, May 2004.

2. S. Bernardi, S. Donatelli, and J. Merseguer, "From UML sequence diagrams and statecharts to
analysable Petri net models," in Proc. of 3rd Int. Workshop on Software and Performance
(WOSP02), Rome, July 2002, pp. 35-45.

3. C. Cavenet, S. Gilmore, J. Hillston, L. Kloul, and P. Stevens, "Analysing UML 2.0 activity
diagrams in the software performance engineering process," in Proc. 4th Int. Workshop on
Software and Performance (WOSP 2004), Redwood City, CA, Jan 2004, pp. 74-83.

4. V. Cortellessa, A.Pompei, “Towards a UML profile for QoS: a contribution in the reliability
domain”, In Proc. 4th Int. Workshop on Software and Performance WOSP'2004, pp.197 - 206,
Redwood Shores, California, 2004

5. K. Czarnecki and S. Helsen, "Classification of Model Transformation Approaches",
OOPSLA’03 Workshop on Generative Techniques in the Context of MDA, 2003.

6. V. Grassi, R. Mirandola, A.Sabetta, “From Design to Analysis Models: A Kernel Language for
Performance and Reliability Analysis of Component-based Systems”, In Proc. 5th Int. Work-
shop on Software and Performance WOSP'2005, pp. 25-36, Palma, Spain, July 2005.

7. J. Jürjens, P. Shabalin, "Automated Verification of UMLsec Models for Security Require-
ments", Proceedings of UML 2004, Lisbon, Portugal Oct. 11–15, 2004.

8. J.M. Kuster, S. Sendall, M. Wahler, “Comparing Two Model Transformation Approaches”,
Proc. Workshop on OCL and Model Driven Engineering, October, 2004.

9. T. Mens, K. Czarnecki, P. Van Gorp, “A Taxonomy of Model transformations”, in Proc. of
Dagstuhl 04101 Language Engineering for Model-Driven Software Development (J. Bezivin,
R. Heckel eds), 2005.

10. D.C. Petriu, H.Shen, “Applying the UML Performance Profile: Graph Grammar based deriva-
tion of LQN models from UML specifications”, in Computer Performance Evalua-tion: Model-
ling Techniques and Tools, (T. Fields, P. Harrison, J. Bradley, U. Harder, Eds.) LNCS 2324,
pp.159-177, Springer, 2002.

11. D. C. Petriu, C. M. Woodside, "Performance Analysis with UML," in UML for Real, (B. Selic,
L. Lavagno, and G. Martin, eds.), pp. 221-240, Kluwer, 2003.

12. OMG, QVT-Merge Group, "Revised submission for MOF 2.0 Query/Views/Transformations
RFP”, version 1.0, April 2004.

13. OMG, “MDA Guide”, version 1.0.1, June 2003.
14. OMG, “UML Profile for Schedulability, Performance, and Time”, version 1.0, formal/03-09-01,

September 2003.
15. OMG, "UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and

Mechanisms (QoS)", Adopted Specification, ptc/2004-06-01, June 2004.
16. Schürr, A., Programmed Graph Replacement Systems, in G.Rozenberg (ed): Handbook of

Graph Grammars and Computing by Graph Transformations, pp. 479-546, 1997.
17.Woodside, C.M, Petriu, D.C., Petriu, D.B., Shen, H, Israr, T., and Merseguer, J. “Perform-

ance by Unified Model Analysis (PUMA)”, In Proc. 5th Int. Workshop on Software and Per-
formance WOSP'2005, pp.1-12, Palma, Spain, July 2005.

