

Chapter 14

Performance Analysis based on the
UML SPT Profile1

14.1. Introduction

The change of focus from code to models promoted by OMG's Model Driven
Development (MDD) raises the need for verification of non-functional characteristics of UML
models. Schedulability, performance and scalability are example of such characteristics that
are very important for real time and embedded systems. Over the years, many modeling
formalisms, methods and tools have been developed for performanc e and schedulability
analysis. The challenge is not to reinvent new analysis methods for UML models, but to
bridge the gap between UML-based software development tools and different existing
analysis tools. Traditionally, the analysis models were built "by hand" by specialists in the
field, then solved and evaluated separately with known tools. However, a new trend is starting
to emerge recently, namely the automatic transformation of UML models into different
analysis models.

Different kinds of analysis techniques may require additional annotations to the UML
model. OMG's solution to this problem is to define standard UML profiles for different
purposes. The UML Profile for Schedulability, Performance and Time (STP) [OMG 02]
adopted for UML 1.4 defines an notations regarding schedulability and performance

Chapter written by Dorina C. Petriu, Jinhua Zhang, Gordon Gu and Hui Shen, from the
Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada.

requirements and characteristics (such as resource demands and visit ratios). In order to
conduct quantitative performance analysis of an annotated UML model, one must first
translate it into a performance model, then solve the model in order to check whether the
performance requirements can be met, to analyze different design alternatives, to identify
performance trouble spots and to find solutions for improvement. The transformation from a
UML software model to a performance model is not trivial, as the input and output models are
defined in two different domains, between which a significant semantic gap exists. This
chapter attempts to explain in an intuitive manner how to define the mapping between the
input and output model such as to bridge this gap.

Another issue that is very important in performance modeling, whether the model is build
by hand or automatically, is the validation of the model in order to check if its predictions can
be trusted [JAI 91]. This chapter will also address the model validation problem.

Software Performance Engineering (SPE) is a methodology introduced in [SMI 90] that
promotes the integration of performance evaluation into the software development process
from the early st ages and continuing throughout the whole software life cycle. The STP
Profile [OMG 02] enables the application of the SPE methodology to systems developed with
UML for assessing the performance effects of different design and implementation
alternatives as early as possible. The first step in building a performance model of a software
model is to identify a small set of key performance scenarios, representative of the way in
which the system will be used. The performance model will capture the execution pat h for
each scenario (composed of scenario steps), representing quantitative demands for resources
made in every step (such as CPU execution times and number of I/O operations), as well as
various reasons for queueing delays (such as competition for hardwar e and software
resources). The performance results obtained by solving the model (e.g., response times,
throughput, utilization of different resources by different software components) will help to
identify and fix performance problems and bottlenecks, before poor design decisions are
frozen in the design and implementation [SMI 90].

Since the introduction of SPE, there has been a significant effort to integrate performance
analysis into the software development process by using different performance modeling
paradigms: queueing networks, Petri nets, stochastic process algebras, simulation. A very
good survey of the techniques for deriving performance models from UML models is given in
[BAL 04]. The technique from [COR 00] follows the SPE methodology very closely,
generating the same kind of models as in [SMI 90]. The work from [KAH 01] introduces an
UML-based notation and framework for describing performance models. In [LOP 04] UML
models are transformed into Petri Nets, but the contention for hardware resources is not
considered yet. [CAV 03] presents a transformation from UML to Stochastic Process Algebra.

This chapter presents a set of rules for mapping a UML model annotated with
performance information to a queueing-based performance model named Layered Queueing
Network (LQN) [WOO 95, FRA 95, FRA 00]. The LQN model structure is generated from
the high-level software architecture that shows the high-level architectural components and
their relationships, and from deployment diagrams that indicates the allocation of software

components to hardware devices. The LQN model parameters are obtained from annotated
UML models of key performance scenarios. The goal of this chapter is to illustrate what kind
of mapping rules are necessary for such a transformation, but there is not enough room to go
into details. The authors have implemented so far UML-to-LQN transformations in different
ways: a solution described in [AME 03] uses an existing graph-rewriting tool PROGRES;
another solution presented in [PET 02] implements in Java an ad-hoc graph transformation at
the UML metamodel level; the third solution given in [GUP 02] uses XSLT. A two-phase
XSLT transformation from UML to a simulation model named CSIM was presented in [GUP
03]. As the generated simulation model was a C++ program, the transformation was a
combination of graph transformation techniques for generating high-level model elements,
and regular string grammar techniques for generating detailed code. Another on going
research project at Carleton University proposed a unified intermediate model, named Core
Scenario Model (CSM), between different kinds of design specifications (e.g., different UML
versions) and different kinds of performance models (e.g., queueing-based, Petri nets,
simulation) [WOO 05]. CSM captures the essence of performance specification as expressed
in the SPT Profile, strips away the design details irrelevant to that analysis. The advantage of
CSM is evident when we consider adding a new performance formalism, as it is much simpler
to trans late from CSM to a performance model, than directly from UML.

The next sections presents a brief review of different performance modeling formalisms
and gives an introduction to Layered Queueing Networks (LQN).

14.2. Performance Models

In general, a performance model can be classified either as an analytic or as a
simulation model. While an analytic model captures the essence of the modelled
system as a set of mathematical equations, a simulation model "mimics" the
structure and behaviour of the real system. Some well-known examples of analytic
performance models are Queuing Models (QN) and their extensions, timed Petri nets
and Stochastic Process Algebra. QN models have the advantage that they capture
well the contention for resources. Efficient analytical solutions exists for a class of
QN known as “separable” QN, which makes it possible to solve models of realistic
sizes. Stochastic Petri Nets have the ability to represent concurrent flows better than
QN, but are not as good for modeling resource contention. Another disadvantage is
that their analytical solution suffers from exponential explosion of the state space,
which limits the size of the Petri nets models that can be solved. A more recent class
of performance models, Stochastic Process Algebra, which merges Process Algebra
with Markov Chain models, suffers from the same state explosion problem as the
Petri nets.

The simulation models are less constrained in their modeling power, so they can
capture more details. However, simulation models are, in general, harder to build

and more expensive to solve (exercising the model repeatedly and collecting the
results may take minutes or even hours, whereas analytical solutions are usually
obtained in seconds).

A QN model is a collection of service centers that represent system resources, and
customers that represent users or transactions. The customers are moving from
server to server, queueing for service and waiting their turn. QN are used to model
systems with stochastic characteristics. One of the disadvantages of QN is the
restrictions on model assumptions (e.g. service time distributions, arrival process,
etc.) which are often necessary for an analytic solution to exist. A very important
characteristic of QN models is that the functions expressing the queue length and
waiting time at a server with respect to the load intensity are very non- linear. In
order to illustrate this typical non-linearity, let us consider a single service center
characterized by the following parameters: scheduling policy (e.g., FIFO); workload
intensity given by the arrival process (e.g., Poisson arrival with an arrival rate of
0.5/second); service demand per customer (e.g., exponential distribution with mean
of 1.25 seconds). The following performance measures can be determined:

– utilization = proportion of time the server is busy
– residence time = average time spent at the service center by a customer, both

queueing and receiving service

– queue length = average number of customers at the service center
– throughput = rate at which customers pass through the service center.

The performance results for residence time and queue length are shown in Fig. 14.1.

Fig. 14.1. Queue length and residence time in function of the arrival rate

The server reaches saturation at a certain arrival rate, when the utilization is very
close to 1. It is not difficult to understand why the queue length and waiting time are
so non- linear: at low workload intensity, an arriving customer meets low

0

5

10

15

20

0 0.2 0.4 0.6 0.8

Arrival rate

Q
u

eu
e

le
n

g
th

0

5

10

15

20

0 0.2 0.4 0.6 0.8

Arrival rate

R
es

id
en

ce
 T

im
e

competition, so its residence time is roughly equal to its service demand. As the
workload intensity rises, the congestion increases, and the residence time along with
it. When the service center approaches saturation, small increases in arrival rate
result in dramatic increases in residence time [LAZ 84].

In the case of a network of queues, additional parameters are needed to describe
the movement of customers through the network. The service center that will reach
saturation first is called the system bottleneck. If we want to improve the
performance of a QN model, it is important to make changes at the bottleneck center
(either by increasing its capacity or by reducing the demand from the customers). It
is possible to have a QN with multiple customer classes, where each class has its
own workload intensity, service demands and visit ratios. The performance results
are obtained by class; note also that the bottleneck service center may be different
for different classes.

14.2.2. Layered Queueing Networks

LQN was developed as an extension of the well-known Queueing Network model [WOO
95], [ROL 95], [FRA 95], [FRA 00]. The LQN toolset presented in [FAR 95] includes both
simulation and analytical solvers. The main difference with respect to QN is that LQN can
easily represent nested services: a server may become in turn a client to other servers from
which it requires nested services, while serving its own clients.

An LQN model is an acyclic graph, with nodes representing software entities and hardware
devices, and arcs denoting service requests. The software entities, also known as tasks, are
drawn as thick-line rectangles, and the hardware
devices as circles. The nodes with outgoing but no
incoming arcs play the role of clients, the
intermediate nodes with both incoming and
outgoing arcs are usually software servers and the
leaf nodes are hardware servers (such as
processors, I/O devices, communication network,
etc.) A software or hardware server node can be
either a single-server or a multi-server. Each kind
of service offered by a LQN task is modeled as a
so-called entry, drawn as a thin-line rectangle.
Every entry has its own execution times and
demands for other services (given as model
parameters). Each software task is running on a
processor shown as a circle. Also as circles are
shown the communication network delays and the
disk devices used by the Database. The word

service1 service2 Appl

Client
CPU

clientE Client

Query1 Query2 DB

Appl
CPU

DB
CPU

Disk1 Disk2

entries task

device

service1 service2 Appl

Client
CPU

clientE Client

Query1 Query2 DB

Appl
CPU

DB
CPU

Disk1 Disk2

entries task

device

Figure 14.1. LQN model example

"layered" in the LQN name does not imply a strict layering of tasks (for example, tasks in a
layer may call each other or skip over layers). The arcs with a full arrow represent
synchronous requests, where the sender is blocked until it receives a reply from the provider
of service. It is possible to have also asynchronous request messages (shown as a half-arrow),
where the sender does not block after sending a request to the server. Another communication
style in LQN named forwarding allows for a client request to be processed by a chain of
servers instead of a single server. The first server in the chain will forward the request (shown
with a dotted line) to the second server, the second to the third, and so on; the last server will
reply to the client, which is blocked waiting for the reply. (Note that there is no explicit reply
arc in the LQN notation). Each server in the chain becomes idle as soon as it has completed
his part on behalf of a given request. The difference between a forwarding chain and a series
of synchronous requests (e.g., a client calls synchronously a first server, that calls
synchronously a second server, and so on) is that, in the former case, the client receives the
reply directly from the last server in the forwarding chain, whereas in the later case, the
replies travel backwards through the series of servers, until reaching the client. Although not
explicitly illustrated in the LQN notation, every server, be it software or hardware, has an
implicit message queue where incoming requests are waiting their turn to be served. Servers
with more then one entry have a single input queue, where requests for different entries wait
together.

A server entry may be decomposed in two or more sequential phases of service. Phase 1 is
the portion of service during which the client is blocked waiting for a reply from the server (it
is assumed that the client has made a synchronous request). At the end of phase 1, the server
will reply to the client, which will unblock and continue its execution. The remaining phases,
if any, will be executed in parallel with the client. A more recent extension to LQN [5] allows
for an entry to be further decomposed into activities if more details are required to describe its
execution. The activities are connected together to form a directed graph that may branch into
parallel threads of control, or may choose randomly between different branches. Just like
phases, activities have execution time demands, and can make service requests to other tasks.

The parameters of a LQN model are as follows:

- customer (client) classes and their associated populations or arrival rates;
- for each phase (activity) of a software task entry: average execution time;
- for each phase (activity) making a request to a device: average service time at the device,
and average number of visits;
- for each phase (activity) making a request to another task entry: average number of visits
- for each request arc: average communication delay;
- for each software and hardware server: scheduling discipline.

14.3. UML models with performance annotations

The SPT Profile [OMG 02] contains the Performance Subprofile that identifies the main
basic abstractions used in performance analysis. Scenarios define response paths through the
system, and can have QoS requirements such as response times or throughputs. Each scenario
is executed by a workload, which can be closed or open, and has the usual characteristics
(number of clients or arrival rate, etc.) Scenar ios are composed of scenario steps that can be
joined in sequence, loops, branches, fork/joins, etc. A scenario step may be an elementary
operation at the lowest level of granularity, or may be a complex sub-scenario. Each step has
a mean number of repetit ions, a host execution demand, other demand to resources and its
own QoS characteristics. Resources are another basic abstraction, and can be active or
passive, each with their own attributes. [PET 03] gives a more detailed description of the
Performance Subprofile and the way in which to apply it.

The UML to LQN transformation approach is driven by a set of key performance
scenarios, similar to the SPE methodology [SMI 90]. More exactly, the input UML
model should contain the following information:

1. High- level software architecture represented by one or more collaboration
or components diagrams showing the concurrent (distributed) component instances
and the architectural patterns they participate in.

2. Allocation of high-level software components to hardware devices,
modeled by deployment diagram(s).

3. A set of key performance scenarios annotated with performance
information according to the STP Profile [OMG 02], modeled by interaction or
activity diagrams [AME 03]. (In this paper we are using activity diagrams, as there
is no room for both).

Retrieve

SDiskIO

DEserver

Client
Server

serverclient

a) Software architecture

<<PAresource>
>

<<PAresource>>

1..k

DEclient
<<PAresource>>

1..n

DEclient

<<PAhost>>

ClientCPU

<
<P

A
re

so
ur

ce
>

>
E

th
er

ne
t

<<PAhost>>

ServerCPU

DEserver

<<PAresource>>

Sdisk

<<GRMdeploy>> <<GRMdeploy>>

b) Deployment

Retrieve

SDiskIO

DEserver

Client
Server

serverclient

a) Software architecture

<<PAresource>
>

<<PAresource>>

1..k

DEclient
<<PAresource>>

1..n

DEclient

<<PAhost>>

ClientCPU

<
<P

A
re

so
ur

ce
>

>
E

th
er

ne
t

<<PAhost>>

ServerCPU

DEserver

<<PAresource>>

Sdisk

<<GRMdeploy>> <<GRMdeploy>>

b) Deployment

Figure 14.2. Example of annotated UML model: software architecture and deployment

The UML to LQN transformation is illustrated here by applying it to a case study,
the Document Exchange System (DES), which was implemented by the authors with
reusable frameworks from ACE [ZHA 03]. DES consists of a document exchange
server and multiple clients. There are two types of users: regular clients and system
administrator. A regular client can get the document directory from the server,
upload documents to the server, and retrieve documents stored at the server. The
system administrator can update the existing documents, require the document
directory, and access the log files of the server. Each time a client sends a request,
the log file at the server will be updated. In this case study, we will focus on the
Retrieve Document as the key performance scenario. The UML model with
performance annotations is given in the figures 14.3 and 14.4. Note that the UML
model shown here does not represent the complete design of the DES system, just
the elements necessary for deriving the performance model.

The high-level architecture contains two components working in a Client/Server
pattern. The server component is multithreaded, containing several active objects
that represent the threads (k threads for processing "retrieve" commands from differ-
ent users and one thread for performing disk I/O.)

The stereotype <<PAresource>> is used to indicate those software units that are
running under their own thread of control (in this case, the client component and the
server threads). DES is deployed on a distributed system (a processor for the server
and the rest for the clients) connected through a local area network. The shared
documents are stored on the server’s local disk. A processor is modeled by the
stereotype <<PAhost>>, which has associated tagged values that define its schedul-
ing policy, processing rate, context switching time and performance measures, such
as utilization and throughput. Other non-processing hardware devices are modeled
as <<PAresource>>. The associated tagged values define their capacity, scheduling
policy, time to be acquired/released, and performance measures such as utilization,
throughput, response time and waiting time. Due to space limitations, we give here
just a brief overview of the most important stereotypes and tagged values.

The Activity Diagram is stereotyped as an analysis context <<PAcontext>>,
and each activity as a scenario step <<PAstep>>. The first step carries the work-
load stereoptype (a closed workload here <<PAclosedLoad>>) with tags
identifying the workload intensity in number of users, and its overall performance
measures, which can be a requirement, a measurement, an estimation or a prediction.
For ex-ample, in this case the required mean response time for the Retrieve
Document scenario should be 1 second when the system is used for the specified
number of users $Nusers, and the response time predicted by the LQN model will
be stored in the variable $RespT, as shown by the tag:
PArespTime =(‘req’,mean,(1,‘sec’)),(‘pred’,mean,$RespT)

Client RetrieveT SDiskIOT

request
document

wait_S

accept
request

read
request

update
logfile

wait_D

write to
logfile

parse
request

get
document

read
from disk

send
document

recycle
thread

receive
document

<<PAstep>>
{PAdemand=(‘msrd’,

’mean’,(220/$cpuS,’ms’))}

<<PAstep>>
{PAdemand=(‘msrd’,’mean’,
(1.30 + 130/$cpuS,’ms’))}

<<PAclosedLoad>>
{Papopulation =

$Nusers}

<<PAstep>>
{PAdemand=(‘asmd’,’mean’

(0.5,’ms’)),
PAextOp=(‘net1’,1)
PArespTime=
(‘req’,’mean’, (1,’sec’),
(‘pred’,’mean’,$RespT)}}

<<PAstep>>
{PAdemand=(‘asmd’,

’mean’, (1.5,’ms’))}

<<PAstep>>
{PAdemand=(‘msrd’,’mean’,
(35/$cpuS,’ms’))}

<<PAstep>>
{PAdemand=(‘msrd’,’mean’,
(25/$cpuS,’ms’))}

<<PAstep>>
{PAdemand=(‘msrd’,’mean’,

($cdS,’ms’)),
PAextOp=(‘readDisk’,$DocS’)}

<PAstep>>
{PAdemand=(‘msrd’,’mean’,

(0.70,’ms’)),
PAextOp=(‘writeDisk’, $RP’)}

<PAstep>>
{PAdemand=(‘msr’,’mean’,
(170/$cpuS,’ms’))}

<<PAstep>>
{PAdemand=(‘msrd’,’mean’,

($scdC/$cpuS,’ms’)),
PAextOp =(‘net2’,$DocS’)}

<<PAstep>>
{PAdemand=(‘msrd’,’mean’,
($gcdC/$cpuS,’ms’))}

Client RetrieveT SDiskIOT

request
document

wait_S

accept
request

read
request

update
logfile

wait_D

write to
logfile

parse
request

get
document

read
from disk

send
document

recycle
thread

receive
document

<<PAstep>>
{PAdemand=(‘msrd’,

’mean’,(220/$cpuS,’ms’))}

<<PAstep>>
{PAdemand=(‘msrd’,’mean’,
(1.30 + 130/$cpuS,’ms’))}

<<PAclosedLoad>>
{Papopulation =

$Nusers}

<<PAstep>>
{PAdemand=(‘asmd’,’mean’

(0.5,’ms’)),
PAextOp=(‘net1’,1)
PArespTime=
(‘req’,’mean’, (1,’sec’),
(‘pred’,’mean’,$RespT)}}

<<PAstep>>
{PAdemand=(‘asmd’,

’mean’, (1.5,’ms’))}

<<PAstep>>
{PAdemand=(‘msrd’,’mean’,
(35/$cpuS,’ms’))}

<<PAstep>>
{PAdemand=(‘msrd’,’mean’,
(25/$cpuS,’ms’))}

<<PAstep>>
{PAdemand=(‘msrd’,’mean’,

($cdS,’ms’)),
PAextOp=(‘readDisk’,$DocS’)}

<PAstep>>
{PAdemand=(‘msrd’,’mean’,

(0.70,’ms’)),
PAextOp=(‘writeDisk’, $RP’)}

<PAstep>>
{PAdemand=(‘msr’,’mean’,
(170/$cpuS,’ms’))}

<<PAstep>>
{PAdemand=(‘msrd’,’mean’,

($scdC/$cpuS,’ms’)),
PAextOp =(‘net2’,$DocS’)}

<<PAstep>>
{PAdemand=(‘msrd’,’mean’,
($gcdC/$cpuS,’ms’))}

Figure 14. 4. Annotated activity diagram for the RetrieveDocument scenario

Note that in the profile the variables names begin with ‘$’. The PAdemand
tagged value indicates mean execution times on the host processor for the associated
scenario steps. For example, for the activity accept request, the tagged value

PAdemand = (‘msrd’,’mean’,(220/$cpuS,‘ms’))
indicates that the mean measured value for CPU demand is given by the specified
expression in milliseconds, where the variable $cpuS is the host processor speed in
MHz. The following variables are dependent on the file caching mechanism and
document size:

 $gcdC = CPU demand for getting a document from the disk

 $scdC = CPU demand for sending a document to the network

The following variables are application dependent:

 $RP = the size of a request message in data packets (considered 1)

$DocP = document size in data packets (given by the ratio between docu-
ment size and network packet size in bits, rounded up to the closest integer).

14.4. UML to LQN Transformation

The UML to LQN transformation is realized in two big steps. In the first step,
the LQN model structure (i.e., the software tasks, hardware devices and connecting
arcs) are generated from the software architecture and deployment diagrams. In the
second step, the entries (which correspond to task services), phases, activities and
their parameters are derived from scenario descriptions.

Comp

<<PAhost>>

XCPU

<<GRMdeploy>>

Comp
<<PAresource>>1..n

Comp (1)

Active
<<PAresource>>

Active (2)

XCPU<<PAhost>>

XCPU
(3)

<<PAresource>>

Ydisk
Ydisk (4)

<<PAresource>>

Comp

XCPU

(5)

<<PAhost>>

XCPU

<<GRMdeploy>>

<<PAresource>>

Thread

XCPU

(6)

Thread

Comp

<<PAhost>>

XCPU

<<GRMdeploy>>

Comp
<<PAresource>>1..n

Comp (1)Comp
<<PAresource>>1..n

CompComp (1)

Active
<<PAresource>>

Active (2)Active
<<PAresource>>

ActiveActive
<<PAresource>>

ActiveActive (2)

XCPU<<PAhost>>

XCPU
(3)XCPU<<PAhost>>

XCPUXCPU
(3)

<<PAresource>>

Ydisk
Ydisk (4)<<PAresource>>

Ydisk
Ydisk (4)

<<PAresource>>

Comp

XCPU

(5)

<<PAhost>>

XCPU

<<GRMdeploy>>

<<PAresource>>

Thread

XCPU

(6)

Thread

Figure 14.5. Mapping the UML model structure to LQN

14.4.1. Mapping the structure

Some of the mapping rules for the structural elements are shown in Fig.14.5.
Rules (1) and (2) are mapping components or active object labeled with the tag
<<PAresource>> to LQN software tasks (multiplicity is taken into account to
generate replicated tasks or multi-servers). Rules (3) and (4) are mapping processing
and non-processing nodes into LQN devices. Rules (6) and (7) show the mapping of
the deployment relationship labeled <<GRMdeploy>> (shown in black) between a
processor and a software element (both shown in gray); in (6) the component that
generated the LQN task is directly involved in the deployment relationship, whereas
in (7) the active object generating the task is indirectly involved through its encapsu-
lating component.

However, the mapping is not always bijective, as in the above rules. A more
complex case is the mapping of communication networks, as illustrated in Fig.
14.7.c. The approach is to generate for each message that travels through the
network a LQN service centre for the network (named here Ethernet) and a LQN
pseudo-tasks (i.e., net1 and net2). In the next transformation phase, a new entry will
be added to each pseudo- task will be added an entry that will visit the network
server once for every packet of the message (see fig. 14.8). In the example from
Fig. 14.8, the communication delay suffered by clientE’s request is modeled by
net1 and its entry net1E, which makes n1 visits to the Ethernet server (where n1
represents the number of packets for the request message). Similarly is modeled the
server’s reply. Note that a LQN forwarding chain starts from clientE that makes
a blocking request and waits until it receives the reply. (Forwarding arcs are drawn
as dotted lines). Each server in the chain, net1, Retrieve and net2 will process the
request in turn, and forward it to the next server; after completing its service, a
server is free to do something else. The last server in the chain, net2, replies to
clientE, even though the reply arc is not explicitly shown in the LQN diagram.

14.4.2. Mapping the behaviour

Detailed LQN model elements (i.e., entries, phases, activities) and their
execution time demands and visit ratio parameters are obtained from annotated
UML scenarios (as in Fig. 14.4). These scenarios must be consistent with the
behavioural aspect of the architectural patterns used in the system. For example, in
the case of the Client-Server pattern, it is expected that the instance playing the role
of client will send a request to the server, which will process it and send a reply
back. Optionally, the server may continue the work on behalf of the request after the
reply was sent back. Fig. 14.6 illustrates the mapping of the scenario steps
describing the client-server inter-action into entries and phases.

A task entry is generated for each kind of service offered by the corresponding
software component instance. By default, each task has an entry, which starts in
phase 1. The services invoked by the clients of an instance are identified by looking
at the messages received by the instance in every scenario considered for perform-
ance analysis. In Fig.14.6, the activity diagram is divided into subsets corresponding
to different entries and phases (the shaded areas). Phase 1 of a server entry begins at
the beginning of a request and ends just before sending back the reply. Phase 2 con-
tains the work to complete the service after the sending of the request. In any phase,
the server may make nested services to other servers. The Client has a single phase
in this example. For each subset of steps corresponding to a certain LQN element
(phase or activity), compute the execution time S from the CPU demands of the con-
tained scenario steps as follows: S = Σi=1,n ri si, where ri is the number of repetitions
and si the host execution time of scenario step i.

LQN activities are optional, and are not discussed in this paper due to space limi-
tations (see [FRA 00]). More architectural patterns and the corresponding rules for
translating them into LQN are described by the authors in [PET 00], [PET 02].

The application of the mapping rules to the case study system is illustrated in
Fig. 14.7 and 14.8. The newly generated elements are shown in each right hand side
of the figure in black and the already existing one in gray. Figures 14.7 .a and 14.7.b
illustrate de generation of task, respectively device nodes and their relationships.
Note that, at this stage, LQN request arcs are generated between LQN tasks; later,
these arcs will be replaced with requests between entries. Figure 14.7.c illustrates
the effect of the network delays, as explained in section 14.4.1. Figure 14.8 shows
the result of generating entry and phase details from the activity diagram.

User

continue

request
service

and reply

waiting

WebServer

complete
service (opt)

do something

e1, ph1 e2, ph1

e2, ph2

...

Client

work

request
service

serve request
and reply

Server

wait for reply Client
CPU

e1
[ph1]

Client

CPU
Server

e2
[ph1, ph2]

Server

User

continue

request
service

and reply

waiting

WebServer

complete
service (opt)

do something

e1, ph1 e2, ph1

e2, ph2

...

Client

work

request
service

serve request
and reply

Server

wait for reply Client
CPU

e1
[ph1]

Client

CPU
Server

e2
[ph1, ph2]

Server

Figure 14.6. Mapping the Client/Server pattern behaviour to LQN

b) Generating LQN devices from physical resources (processors and I/O devices)

Retrieve

SDiskIO

DEserver

Client
Server

serverclient

a) Generating LQN tasks from software architecture

<<PAresource>>

<<PAresource >>

1..k

DEclient
<<PAresource>>

1..n

DEclient

Retrieve

SDiskIO

DEclient
DEclient

Retrieve

SDiskIO

Client
CPU

Server
CPU

Sdisk

<<PAhost>>

ClientCPU

<
<P

A
re

so
ur

ce
>

>
E

th
er

ne
t

<<PAhost>>

ServerCPU

DEserver

<<PAresource>>

Sdisk

<<GRMdeploy>> <<GRMdeploy>>

c) Effect of the communication network: introducing LQN tasks net1 and net2 along
the paths followed by the messages transferred over the Ethernet network

DEclient

Retrieve

SDiskIO

Client
CPU

Server
CPU

Sdisk

DEclient

<<PAhost>>

ClientCPU

<<
P

A
re

so
ur

ce
>>

E
th

er
ne

t

<<PAhost>>

ServerCPU

DEserver

<<PAresource>>

Sdisk

<<GRMdeploy>> <<GRMdeploy>> net1

net2

dummy
CPU

Ethernet

b) Generating LQN devices from physical resources (processors and I/O devices)

Retrieve

SDiskIO

DEserver

Client
Server

serverclient

a) Generating LQN tasks from software architecture

<<PAresource>>

<<PAresource >>

1..k

DEclient
<<PAresource>>

1..n

DEclient
<<PAresource>>

1..n

DEclient

Retrieve

SDiskIO

DEclient

Retrieve

SDiskIO

DEclient
DEclient

Retrieve

SDiskIO

Client
CPU

Server
CPU

Sdisk

<<PAhost>>

ClientCPU

<
<P

A
re

so
ur

ce
>

>
E

th
er

ne
t

<<PAhost>>

ServerCPU
<<PAhost>>

ServerCPU

DEserver

<<PAresource>>

Sdisk
<<PAresource>>

Sdisk

<<GRMdeploy>> <<GRMdeploy>>

c) Effect of the communication network: introducing LQN tasks net1 and net2 along
the paths followed by the messages transferred over the Ethernet network

DEclient

Retrieve

SDiskIO

Client
CPU

Server
CPU

Sdisk

DEclient

<<PAhost>>

ClientCPU

<<
P

A
re

so
ur

ce
>>

E
th

er
ne

t

<<PAhost>>

ServerCPU

DEserver

<<PAresource>>

Sdisk

<<GRMdeploy>> <<GRMdeploy>>

DEclient

<<PAhost>>

ClientCPU

<<
P

A
re

so
ur

ce
>>

E
th

er
ne

t

<<PAhost>>

ServerCPU

DEserver

<<PAresource>>

Sdisk

<<GRMdeploy>> <<GRMdeploy>> net1

net2

dummy
CPU

Ethernet

Figure 14.7. Generating the LQN model structure from software architecture and
deployment diagram

DEclient Retrieve SDiskIO

request
document

wait_r

read
request

update
logfile

wait_d

parse
request

get
document

accept
request

accept
request

send
document

write to
logfile

read from
disk

send
document

entry clientE
phase 2

entry retrieveE
phase 1

entry retrieveE ph 2

entry writeE
phase 1

entry readE
phase 1

DEclient Client
CPU

Sdisk

Ethernet

clientE
[ph2]

net1 dummy
CPU

net1E

Retrieve sever
CPU

retrieveE
[ph1,ph2]

net2net2E writeE
[ph1]

readE
[ph1] SDiskIO

DEclient Retrieve SDiskIO

request
document

wait_r

read
request

update
logfile

wait_d

parse
request

get
document

accept
request

accept
request

send
document

write to
logfile

read from
disk

send
document

entry clientE
phase 2

entry retrieveE
phase 1

entry retrieveE ph 2

entry writeE
phase 1

entry readE
phase 1

DEclient Client
CPU

Sdisk

Ethernet

clientE
[ph2]

net1 dummy
CPU

net1E

Retrieve sever
CPU

retrieveE
[ph1,ph2]

net2net2E writeE
[ph1]

readE
[ph1] SDiskIO

Figure14.8. Generating entry and phase details

14.5. Performance Model Validation

Model verification and validation cover different aspects of assessing the
“goodness” of a performance model (i.e., how close the model is to the real system)
[JAI]. Validation is ensuring that the assumptions about the behaviour of the real
system used in developing the model are reasonable in that, if correctly
implemented, the model would produce results close to that observed in the real
system. Verification is ensuring that the model is correctly implemented and does
what is intended to do (similar to debugging). In our transformation from UML to
LQN, we consider that the consistent application of the transformation rules
presented in the previous section produces a correct model.

Sensitivity of the LQN model to I/O time for
5 KB message size

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14

no. of clients

re
sp

on
se

 t
im

e
(m

s)

measured

LQN(short I/O)

LQN (long I/O)

Fig. 14.9. Sensitivity to I/O time for 5KB
messages

Sensitivity of the LQN model to network delay
for 5 KB message size

0

10

20

30

40

50

60

0 5 10 15
no. of clients

re
sp

o
n

se
 t

im
e

(m
s)

measured

LQN(0.1214 ms)

LQN(0.2248 ms)

Fig.14.10. Sensitivity to network delays for
5KB messages

Sensitivity of the LQN model to I/O time for 50
KB message size

0

20

40

60

80

100

120

0 5 10 15
no. of clients

re
sp

o
n

se
 t

im
e

(m
s)

measured

LQN(short I/O)

LQN(long I/O)

Fig.14.11. Sensitivity to I/O time for 50KB
messages

Sensitivity of the LQN model to network delay
for 50 KB message size

0

20

40

60

80

100

120

140

0 5 10 15

no. of clients

re
sp

o
n

se
 t

im
e

(m
s)

measured

LQN (0.2296 ms)

LQN (0.1726 ms)

Fig.14.12 Sensitivity to network delays for
50KB messages

Therefore, the verification of the model is taken care of by making sure that the
transformation algorithm is correctly implemented. However, model validation is a
more difficult matter, as we want to check whether the LQN model produces
performance results close to a real system. For this purpose, the LQN model
generated in the previous section was validated against measurements on a real
implementation [ZHA 03]. The following steps were performed: a) designed the
system with UML; b) implemented the system by using reusable frameworks; c)
measured the system in a networked environment; d) used measured resource
demands to annotate the UML model; e) generated the LQN model; f) solved the
LQN model, g) compared the LQN results with overall performance measurements
obtained from the real system, and h) used the LQN model to gain some insight into
the performance of the DES system. Note that the order of steps does not follow the
SPE methodology, where the performance model should be built and solved before
the complete system is implemented and can be measured.

Two kinds of measurements were performed for the DES system. Detailed re-
source demands (such as CPU times) for various activities were measured for a sin-
gle client and the server running both on a PIII 933 MHz workstation with 256 MB
RAM, under the Win2000 environment. These values were used to annotate the
UML model and to derive the parameters for the LQN model. End-to-end response
times were obtained for the DES system with a variable number of clients (up to 15)
running on a measurement network composed of 14 Dell 266 MHz workstations
with 128 MB RAM, under the NT 4.0 environment. The workstations are connected
through a 100Mbps Ethernet hub. One workstation was used for the server, and the
other for the clients. Each average value shown on the graphs was obtained over 100
samples. Even so, the measurement curves shown below are not smooth as expected;
however, they are accurate enough to validate the LQN model.

In general, performance measurements are difficult and time consuming. The
discrepancy between the models and the measurements can be caused by a number
of reasons: (1) inaccurate models that did not capture all the performance features of
the system, such as inaccurate representation of the architecture, or missing logical
resources; (2) inaccurate parameters used for the model, due to resource demand
errors or to inappropriate measurement tools; (3) end-to-end measurement errors.

In our case, we could measure quite accurately the CPU demands, but had more
problems with the I/O times and network delays, due to the lack of appropriate tools,
and to the use of two different platforms for detailed and overall measurements.
Therefore, we studied how sensitive are the LQN results to these parameters (see
Figures 14.9 to 14.12).

For the case of smaller message sizes of 5 KB, the LQN results are very sensitive
to the time spent for I/O operations on the server disk as seen in Fig.14.9. (The two
curves correspond to a "short" I/O time, as measured on a single workstation and to
a "long" one, which is its double). On the other hand, The 5 KB model is completely

insensitive to the Ethernet packet service time, as seen in Fig.14.10. This is due to
the fact that for small messages, the DES system is "server-bound" as opposed to
"network-bound". The server is the bottleneck, and all the resource demands at the
server have a big impact on the overall performance.

In contrast, the performance of the retrieval of 50 KB documents varies greatly
with the Ethernet packet service times (Fig.14.11), but is insensitive to the I/O time
parameter (Fig.14.12). This is due to the fact that for larger message the DES system
is network-bound. Any effort to improve to the system in this case should be
targeted to a faster network.

Effect of multithreading

0

20

40

60

80

100

120

140

160

0 10 2 0 30

no. of clients

re
sp

o
n

se
 t

im
e

(m
s)

1 thread

5 threads

20 threads

Fig.14.13. Multithreading the server for 5KB
messages

Effect of caching

0

20

40

60

80

100

120

0 1 0 20 30

no. of clients

re
sp

o
n

se
 t

im
e

(m
s)

cached

non-cached

Fig.14.14. Effect of file caching for 5 KB
messages

One of the advantages of performance modeling is that it can be used to investigate
some situations that are hard or even impossible to measure directly. We used the
LQN model to investigate the effect of multithreading in the case of 5 KB messages,
where the server is the bottleneck. It can be seen from Fig. 14.13 that the increase in
the number of threads has a strong effect on performance at first, but after a point
the returns are diminishing fast. The model can help to decide on the appropriate
multithreading level. Another factor that can be studied very conveniently with the
LQN model is the effect of file cashing at high contention levels (see Fig.14.14). We
were unable to control or even to measure the cash hit ratio in the real system, so the
model can give us useful insight into this matter.

14.6. Conclusions

Our experience with the UML Performance Profile shows that it is relatively
easy to understand, and that it provides enough performance annotations for

generating LQN models. However, there are some aspects in which the Performance
Profile may be improved. Firstly, the Profile supports well the construction of
performance models starting from a set of scenarios, but it does not support other
paradigms to the same extent (e.g., building Petri Nets models from state machines).
Secondly, an additional tagged value for expressing directly the size of messages
would be useful. (We have gotten around this problem by using the number of
packets contained in a message instead). Thirdly, it may be desirable to be able to
define a workload over a set of scenarios, and to give the probability of choosing
each scenario in the set. This would involve adding performance annotations to the
use case diagram. These improvements could be considered when the STP Profile
will be upgraded for UML 2.0.

Another conclusion from this work is that the graph transformation formalism is
very powerful and modular by nature. We found it appropriate for transforming
UML models into other kind of models that can be described by a graph (such as
LQN). However, whe n the generated model is represented by code (as in the case of
some simulation models), a combination of graph and string grammars can be
employed as follow: graph transformation techniques for generating higher-level
constructs, and string grammars for generating detailed code associated with each
construct.

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC), through its Discovery and Strategic Grant programs.

References

[AME 03] AMER, H., PETRIU, D.C., Software Performance Evaluation: Graph Grammar-based

Transformation of UML Design Models into Performance Models, submitted for publ, 2003.

[BAL 04] S. BALSAMO, A. DI MARCO, P. INVERARDI, M. SIMEONI, "Model-based performance
prediction in software development: a survey" IEEE Transactions on Software Engineering,
Vol 30, N.5, pp.295-310, May 2004.

[CAV 03] CAVENET, C., GILMORE, S., HILLSTON, J., KLOUL, L. AND STEVENS, P. "Analysing
UML 2.0 activity diagrams in the software performance engineering process," in Proc. 4th
Int. Workshop on Software and Performance (WOSP 2004), pp. 74-83, Redwood City, CA,
Jan 2004.

[COR 00] CORTELLESSA, V., MIRANDOLA, R., Deriving a Queueing Network based Performance
Model from UML Diagrams, in Proc. of 2nd ACM Workshop on Software and Performance,
pp.58-70, Ottawa, Canada, Sept. 2000.

[FRA 95] FRANKS, G., HUBBARD, A., MAJUMDAR, S., PETRIU, D.C., ROLIA, J., WOODSIDE, C.M.,
A toolset for Performance Engineering and Software Design of Client-Server Systems,
Performance Evaluation, Vol. 24, Nb. 1-2 (1995) 117-135.

[FRA 00] FRANKS, G., Performance Analysis of Distributed Server Systems, Report OCIEE-00-
01, Ph.D. Thesis, Carleton University, Ottawa, Canada (2000).

[JAI 91] JAIN, R., The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling, Wiley - Interscience, New
York, NY, April 1991.

[GUP 03] GU, G.P., PETRIU, D.C. ,“Early Evaluation of Software Performance based on the UML
Performance Profile”, Proc. of the 13th Annual IBM Centers for Advanced Studies
Conference CASCON’2003, pp. 214-227, Toronto, Canada, (2003.)

[GUP 02] GU, G.P., PETRIU, D.C., "XSLT transformation from UML models to LQN perfor-
mance models", Proc.of the 3rd ACM Workshop on Software and Performance WOSP'02,
pp.227-234, Rome, July 2002.

[KAH 01] KAHKIPURO, P., UML-Based Performance Modeling Framework for Component-
Based Distributed Systems, in: R.Dumke et al.(eds), Performance Engineering, LNCS Vol.
2047, Springer, Berlin Heidelberg New York (2001) 167-184.

[LAZ 84] E. D. LAZOWSKA, J. ZAHORJAN, G. S. GRAHAM, K. C. SEVCIK, Quantitative System
Performance: Computer System Analysis Using Queueing Network Models, Prentice-Hall,
Inc., 1984.

[LOP 04] J.P. LOPEZ-GRAO, J. MERSEGUER, J. CAMPOS, "From UML Activity Diagrams To
Stochastic Petri Nets: Application To Software Performance Engineering," in 4th Int.
Workshop on Software and Performance (WOSP 2004), Redwood City, CA, (2004), 25-36.

[PET 00] D.C. PETRIU, SHOUSHA, C., JALNAPURKAR, A., Architecture-Based Performance
Analysis Applied to a Telecommunication System, in: IEEE Transactions on Software Eng.,
Vol.26, No.11, pp. 1049-1065, 2000.

[PET 02] D.C. PETRIU, H. SHEN, "Applying the UML Performance Profile: Graph Grammar
based derivation of LQN models from UML specifications", in Computer Performance
Evaluation - Modelling Techniques and Tools, (T.Fields, P. Harrison, J. Bradley, U. Harder,
Eds.) LNCS Vol. 2324, pp.159-177, Springer, 2002.

[PET 03] D.C. PETRIU, C.M. WOODSIDE, “Performance Ana lysis with UML”, chapter in UML for
Real: Design of Embedded Real-Time systems (L. Lavagno, G. Martin and B.Selic, Eds.),
ISBN 1-4020-7501-4, Kluwer Academic Publishers, 2003.

[ROL 95] ROLIA, J.A., SEVCIK, K.C., The Method of Layers, IEEE Trans. on Software
Engineering, Vol. 21, Nb. 8, pp. 689-700, 1995.

[OMG 02] OBJECT MANAGEMENT GROUP, UML Profile for Schedulability, Performance and
Time, OMG Adopted Specification ptc/02-03-02, 2002.

[SCH 02] SCHMIDT , D.C., HUSTON, S. D., C++ Network Programming Vol 2: Systematic Reuse
with ACE and Frameworks, Addison-Wesley, 2002.

[SMI 99] SMITH, C.U., Performance Engineering of Software Systems, Addison Wesley,1990.

[WOO 95] WOODSIDE, C.M., NEILSON, J.E., PETRIU, D.C., MAJUMDAR, S., The Stochastic
Rendezvous Network Model for Performance of Synchronous Client-Server-like Distributed
Software, in IEEE Transactions on Computers, Vol.44, Nb.1, pp. 20-34, 1995.

[WOO 05] WOODSIDE, C.M., PETRIU, D.C., PETRIU, D.B., SHEN,H., ISRAR,T, MERSEGUER,J.
"Performance by Unified Model Analysis (PUMA)", submitted to ACM Workshop on
Software and Performance WOSP'05, to be held in Palma, Spain , July 2005.

[ZHA 03] ZHANG, JINHUA "Applying the UML Performance Profile to systems built with reusable
frameworks", Masters' Thesis, Carleton University, Ottawa, Canada, 2003.

