Annotating UML Models with Non-Functional
Properties for Quantitative Analysis

Huascar Espinoza?, Hubert Dubois?, Sébastien Gérard?, Julio Medinab,
Dorina C. Petriu®, Murray Woodside®

2 CEA Saclay, DRT/LIST/DTSI/SOL/L-LSP,

F-91191, Gif sur Yvette Cedex, France
{huascar . espi noza, hubert.dubois, sebastien.gerard}@ea.fr

® Universidad de Cantabria, Departamento de Electronica y Computadores,

Av. Los Castros s/n, 39005 Santander, Spain
nedi naj | @ni can. es

¢ Carleton University, Department of Systems and Computer Engineering

1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
{petriu, cm} @ce.carleton.ca

Abstract. This work is motivated by the recent Request For Proposals issued
by OMG for a new UML Profile named “Modeling and Analysis of Real-Time
and Embedded systems”. The paper describes first some domain concepts for
annotating Non-Functional Properties (NFPs), whose focus is on supporting
temporal verification of UML-based models. Particular emphasis is given to
schedulability and performance analysis for real-time systems. We discuss next
some general requirements for NFP annotations and evaluate how the UML
profiles for “Schedulability, Performance, and Time Specification” and for
“Modeling Quality of Service and Fault Tolerance Characteristics and Mecha-
nisms”, address these requirements. Last but not least, the paper proposes a pre-
liminary framework for describing NFPs by considering the major requirements
previously stated and by analyzing some UML mechanisms to attach NFPs to
model elements.

1 Introduction

The change of focus from code to models promoted by OMG’s Model Driven Archi-
tecture (MDA) raises the need to integrate the analysis of non-functional requirements
of UML models (such as performance, schedulability, reliability, scalability, etc.) in
the development process of Real-Time and Embedded Systems (RTES). Different
kinds of analysis techniques require different annotations in the UML models to ex-
press quantitative and qualitative non-functional requirements and properties.

The focus of this paper is on annotations for quantitative analysis techniques used
for the verification and validation of temporal characteristics of RTES. Such annota-
tions are required to bridge the gap between the domains of software development and
analysis, because they should be usable by software designers but, at the same time,
they also must support the analysis model concepts. This paper discusses the problem

of adding non-functional properties to an UML model, but does not address other re-
lated problems, such as transforming an annotated UML model into an analysis one,
evaluating the analysis model, or reporting the results back to UML models [8].

The solution proposed by OMG to the problem of extending the power of expres-
sion of UML for different application domains is to define standard UML profiles.
Two examples of profiles able to add annotations for non-functional characteristics
are the “UML Profile for Schedulability, Performance, and Time Specification” (SPT)
[11] and the “UML Profile for Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms” (QoS&FT) [13]. In order to upgrade SPT to UML
2.0 and extend its scope with RTES modeling capabilities, a Request For Proposals
(RFP) was issued for a new UML Profile named MARTE (“Modeling and Analysis of
Real-Time and Embedded systems”) [12]. The goals of this paper are to give a first
reflection on the analysis concerns for the upcoming UML MARTE profile and to
promote its standardization at the OMG.

Some of this underlying work is supported by the Accord|yy project [3, 7] and by
the MAST (Modeling and Analysis Suite for real-Time applications) project [10] to
connect UML models of real-time embedded systems with schedulability analysis
tools. A first experimental approach was defined in [15], where the authors have pre-
sented a schedulability analysis model which is semi-automatically derived from a
conception model, and is then analyzed [9]. MAST defines and builds UML concep-
tual models, which align quite well with the SPT profile concepts, for the considera-
tion of timing properties in object-oriented distributed systems.

A rich body of work on performance analysis from UML models has been sur-
veyed in [1]. Examples of UML model transformations to different performance
modeling formalisms are: from UML to Layered Queueing Networks in [8, 16], to
Stochastic Petri Nets in [2], and to multiple performance models in [19].

Other UML profiles for different quantitative analyses have already been proposed
in the literature, such as a reliability profile in [4], a profile with formal semantics
dedicated to real-time modeling named OMEGA in [6], and a profile for real-time
constraints with OCL in [5].

The paper is organized as follows. Section 2 describes the domain model for non-
functional property annotations for quantitative analyses. Section 3 presents a list of
requirements for NFP annotations. Section 4 compares briefly the advantages and dis-
advantages of the SPT and QoS&FT Profiles. Section 5 presents our proposal for a
framework for NFP annotations for MARTE, which realizes the domain model intro-
duced in Section 2. Finally, the conclusions are presented in Section 6.

2 Domain Model for Non-Functional Properties Annotations
2.1 Domain Model

The model of a computing system describes its architecture and behavior by means of
model elements (e.g., resources, resources services, behavior features, logical
operations, configurations modes, modeling views), and the externally visible
properties of those model elements. When we refer to properties, this includes the

functional and also the non-functional properties. Functional properties describe what
a system model does, and non-functional properties how it does it.

In the context of model-driven development approaches for real-time and
embedded systems, modeling of Non-Functional Properties (NFPs) is essential for the
quantitative analysis of the system (see Figure 1). NFPs provides information about
different characteristics, as for example throughput, delays, overheads, scheduling
policies, correctness.

Quantitative analysis techniques are used to verify early NFPs of interest (e.g., re-
sponse times, utilization, queue sizes) based on other available NFPs (e.g., worst case
execution times -WCET-, deadlines). The analysis techniques considered in this paper
belong to the two following analysis domains: Schedulability and Performance. Fur-
ther work will also cover WCET Analysis. Schedulability analysis uses mathematical
means (e.g., RMA-based techniques) to predict whether a set of software tasks meets
its timing constraints and to verify its temporal correctness. Performance analysis uses
statistical techniques (e.g., queuing theory, Petri Nets, etc.) to determine whether a
system will meet its performance requirements (such as response time or throughput).

Due to the abstraction involved in the construction of a model, only some NFPs are
relevant to a certain Quantitative Analysis. In other words, a given Quantitative
Analysis uses a set of NFPs which establish the ontology of the analysis domain.

1 \L +modeledQuantity

+dimension

System] " Quantity —[Basic Quantity
*modeledSystem 1 +relevantDimension

Derived Quantity

Performance
Analysis
Schedulability
Analysis

WCET Analysis

*

+describedBy 1

Model Element }m’iq Model Quantitative
lodel Element ode t
* +owner Analysis

+analyzedBy /\1..* +analysis

*

* +requiredNFP

Annotated |Fownes 1 Annotated 1 -
Model EI t Model NFP
odel Element | « 5 yner ode +annotatedModel modeledBy
* | +annotatedElement *

+nonFunctionalAnnotation

Figure 1. Domain model for Non-Functional Property annotations

According to measurement theory, physical Systems (see Figure 1) are character-
ized along different dimensions that correspond to a set of measurement Quantities,
which can be Basic or Derived. The most used Basic Quantities are length, mass,
time, current, temperature and luminous intensity. The units of measure for the basic
quantities are organized in systems of measures, such as the universally accepted
Systeme International (SI) or International System of Units. Values are expressed in
the same unit and can be compared. Derived Quantities (e.g., area, volume, force, fre-
quency, etc.) are obtained from the Basic Quantities by known formulas.

A Model of a System (which is considered here to be expressed in UML) can be
extended by standard UML mechanisms with additional semantic expressing concepts
from a given analysis domain. An Annotated Model contains Annotated Model Ele-
ments, which are UML model elements extended by standard UML mechanisms. For
example, some typical performance-related Annotated Model Elements are: Step (a
unit of execution as defined in the SPT profile), Scenario (a sequence of Steps), Re-
source (as defined in the General Resource Model of SPT), Service (an operation of-
fered by a Resource or by a component of some kind, which may be further defined
by a Scenario).

An Annotated Model Element has certain non-functional characteristics represented
by NFPs. The annotations are specified by the designer in the UML model and at-
tached to different model elements. Examples are: the total delay of a Step when exe-
cuted (including queueing delays), the utilization of a Resource, the response time and
throughput of a Service, etc.

2.2 Quantitative and Qualitative NFPs

In general, a NFP can be either qualitative or quantitative, as shown in Figure 2. Most
of the NFPs used for quantitative analysis (such as performance or schedulability) are
quantitative, but some properties may be qualitative.

NFP

QuantitativeNFP QualitativeNFP

+value

L 1 function
Realization - Measure
domain 0.*

Figure 2. Domain model for Quantitative and Qualitative NFPs

A Quantitative NFP is measurable, countable, or comparable, and can be repre-
sented by an amount which is a numerical value. When the system is simulated or
executed, a given Quantitative NFP may be characterized by a set of Realizations and
Measures (see Figure 2). Realizations (also called Sample Functions) represent a set
of values that occur for the Quantitative NFP under consideration at run-time (for in-
stance, measurements collected from a real system or a simulation experiment). A
Quantitative NFP may be realized once or repeated times over an extended run. In a
cyclic deterministic system, in which each cycle has the same values, a single Reali-
zation is sufficient to characterize completely the Quantitative NFP. In performance
analysis with random traffic, a long run producing long sequences of values may be
necessary in order to obtain accurate evaluation results.

A Measure is a (statistical) function (e.g, mean, max, min, median, variance, stan-
dard deviation, histogram, etc.) characterizing the set of Realizations. Measures may
be computed either directly by applying the desired function to the set of Realizations

values, or by using theoretical functions of the probability distribution given for the
respective Quantitative NFP.

In any case, even Realization sets are not annotated directly on the UML model
(too much information!) They are represented instead in an abstract way through the
corresponding Measures, which should be annotated on the UML model.

On the other hand, a Qualitative NFP refers to inherent or distinctive characteris-
tics that are not easy to measure directly. In general, a Qualitative NFP is denoted by
a label (e.g., “bronze”, “silver” and “gold” level of service) representing a high-level
of abstraction characterization that is meaningful to the analyst and the analysis tools.
More specifically, a Qualitative NFP takes a value from a list of allowed values (e.g.,
an enumeration data type), where each value identifies a possible alternative. When
looking in more detail at a Qualitative NFP, it may be possible to define it in function
of a set of criteria, which may be in turn qualitative or quantitative. Some Qualitative
NFPs have precisely-known meanings that can be interpreted by the analysis domain,
for example the choice of a scheduler type for a processor, or the choice of a statisti-
cal distribution for the latency of a network. In both of these examples, the full speci-
fication of the property requires not only a qualitative value, but also some quantita-
tive parameters, as for instance:

Schedul er-type = roundRobi n(quant uni ze)
Lat ency-val ue = ganmma(nean, variance)

3. Requirements for NFP annotations

In our context, “annotation” is a process of attaching information to selected UML
model elements. We must be able to annotate NFPs to structural elements such as ob-
jects and nodes, as well as behavioral elements such as lifelines, execution-
occurrences, messages, activities and transitions. We identified different requirements
for attaching NFPs to model elements which are described in the rest of the section.

3.1 Variables and Expressions

In most quantitative evaluations, some of the expressed quantities are derived from
other quantities. This particularity is so fundamental to quantitative studies that it
must be provided in the annotations discussed in this paper. As a motivating example,
let us suppose that there is a characteristic size (call it $dataSize, in bytes) of a data
structure that is stored, retrieved, processed and passed in messages. The CPU cost of
operations, the delay for transmitting messages, the memory space required for stor-
age, are all functions of $dataSize. It is much easier as well as more informative, to
define these quantitative properties by expressions; also, the evaluation is more robust
to changes in the design or the usage of the system, that could change the value of
SdataSize. We can call $dataSize an independent parameter of the evaluation.

From this example, it is easy to see that an important requirement is to be able to
annotate NFPs not only with concrete values, but also with variable names and ex-
pressions. However, defining variable names in the annotation space raises the ques-
tion of scope. For instance, it should be possible to combine views and diagrams cre-
ated separately into a single analysis, where the same name may have been used more

than once. Some way to disambiguate these names is necessary. The scoping mecha-
nisms should also handle the problem of UML models that are simultaneously anno-
tated for multiple kinds of analysis.

Another requirement drawn from the above example is that there is a need for in-
dependent evaluation parameters that may affect many other NFPs through depend-
encies, which in turn can be expressed through functional relationships. These evalua-
tion parameters need to be attached to the analysis as a whole, either at the level of a
UML diagram or at the level of a collection of diagrams.

3.2 Sources of NFPs

It is a peculiarity of the NFPs that the same property may be defined separately from
different sources. An obvious example is required values, versus achieved values, but
additional subdivisions may arise. For example, the achieved value may be measured
in a certain test (there may be more than one of these for the same NFP), or be esti-
mated by an analytic model. Values may be stated for different execution environ-
ments. Input attributes may take assumed values based on the expertise of the de-
signer/analyst, and there may be more than one of these (e.g., for worst-case and best-
case, or representing the expertise of different parties). The ability to designate differ-
ent sources and to compare the values given by different sources is fundamental to the
full exploitation of the evaluation methodology.

It would be desirable to support user-definable sources, apart from the strings de-
scribed to convey details. However, for tool support it seems desirable to define a list
of standard codes for required and achieved values. It should clearly be possible to de-
fine as many versions of a single NFP, from different sources, as necessary. The ca-
pability for defining details could be used to list the results of a series of tests or
model analyses representing different platforms, or different imposed load levels.

The purpose of expressing different sources is to gather the maximum information
from the designer side. Automated analysis tools will have to filter the values accord-
ing to the kind of data needed for the current analysis.

3.3 Usability of NFPs

Other requirement for NFP annotations is a tradeoff between usability and flexibility.
Usability suggests the merit of defining a set of standard NFPs for a given analysis
domain, so they can be easily referred to and, consequently, every user of the annota-
tions means the same thing. For NFPs with well-known variants, a set of definitions
can be standardized, which cover the important cases with differently-named meas-
ures; these can be translated if necessary by domain specialists for the use of an
analysis tool with different names. However there are some NFPs whose meaning is
model-dependent. This requires a capability for users to define their own NFPs. Thus
flexibility and expressive power requires that the users have the capability to define
their own quantitative measures, but usability requires a set of standard measures that
can be used in straightforward way.

4. Comparing the SPT and QoS&FT Profiles

As mentioned, the background for MARTE comes from two existing profiles: SPT
and QoS&FT. While SPT is specifically customized for the real-time systems domain,
QoS&FT profile has a broader scope that includes all kinds of QoS properties. The
MARTE RFP asks for a full compliance with the UML profile for QoS&FT. It is true
that the QoS&FT profile already defines a framework to express NFPs. However, it
exist some strong reasons to define a different framework in the context of MARTE:

In general, the term “QoS” is associated to the aptitude of a service for providing a
suitable quality level to the different demands of its clients. The NFPs considered
here have a larger extent, and may describe the internals and externals of the sys-
tem, some of them directly related to the users of resource services and their QoS
perception and others not.

The QoS&FT profile supports modeling of NFPs, with statistical qualifiers and
measurement units. However, it ignores some necessary attributes such as
measurement sources, property versions, variables, and values defined by
mathematical expressions.

The QoS&FT profile provides a flexible mechanism to store pre-defined QoS
Characteristics. However, it requires too much effort for the users due to its three-
step annotation process: a) define a QoS Catalog with the most common QoS
Characteristics for each analysis domain, b) derive a Quality Model for each appli-
cation by instantiating template classes from the catalog and c) annotate UML
models with QoS Constraints and QoSValues (which imply the creation of extra
objects required just for annotation purposes).

On the other hand, the SPT profile provides a straightforward annotation mecha-

nism through predefined stereotypes end tagged values, and supports already some of
the requirements for NFP annotations, such as symbolic variables and expressions
through its specialized Tag Value Language (TVL). Table 1 compares different fea-
tures of the two profiles.

Requirement SPT Profile QoS Profile
Annotation process Light-weight Heavy-weight
Allows for user-defined measures No (measures are predefined) Yes (targeted for user-defined

measures)

Type for time values RTtimeValue No
User-defined delay measure No No
between an arbitrary pair of events
Expressions for defining quantitative Yes No
NFPs Part of the TVL language
Quantitative variables and Yes No
independent evaluation parameters Part of the TVL language
Expressions for defining constraints Limited Yes

Full power of OCL

Table 1: Comparison of SPT and QoS&FT profiles

In summary, we can say that SPT’s modeling method and annotation style are really
simple for users (namely light-weight), but its structure is not flexible enough to allow
for new user-defined QoS properties or for different analysis techniques. Conversely,
the QoS&FT profile’s annotation style is more complicated for users (namely light-
weight), but its structure is more flexible because of the library style for defining QoS
properties, OCL constraints to describe complex QoS functions, and useful qualifiers
for QoS properties. In our work, we intend to provide a flexible and straightforward
framework for MARTE while adopting the best modeling practices from both pro-
files.

5. Proposed Framework for MARTE NFP annotations

In this section, we describe our proposal of a NFP modeling framework intended to
meet the major requirements stated in Sections 2-4. Figure 3 shows the core UML
metamodel to support major NFPs descriptions.

* \;+referTo 1 +ownes\;~ 0-1 | owner

+storedinto « +setOf +groupedBy
NFP_Library < NFP NFP_ Category
+owns 1. * -
+parent | |
P ! BasicNFP *+ypedB NFP_Type
ComplexNFP -) . .) * 1 -
i statisticalQualifier: StatisticalQualifierKinds [1] +constrainedBy | *
+child direction: DirectionKinds [1]

* +d|men5|on0f‘1 . +constrainedSpec, |, .

1
+owns NFP.

+valuedBy ValueSpeci_fication

Figure 3. Core NFP: Abstract Syntax

A given Quantitative Analysis domain uses a set of NFPs which are organized in a
NFP Library. For instance, in the case of software performance analysis, the NFPs are
throughput, response time, utilization, CPU execution demand, etc. Likewise, NFPs
can be grouped into NFP Categories, similarly to the way in which the QoS Charac-
teristics are grouped into QoS Categories in the QoS&FT profile.

The Core NFP package provides the capability of annotating model elements by
Complex NFP or directly by Basic NFP. The first one is just a constructor, and the
second one the concrete holder of NFPs. For instance, we could represent the Arrival
Pattern property as a data structure (i.e., Complex NFP) that has a number of attrib-
utes: Pattern, Period, Minimum Arrival Time, etc. (i.e., Basic NFPs) which will be as-
sociated to a concrete value. A Basic NFP can represent either a quantitative property
(ultimately a value and a unif) or a qualitative property (e.g, enumeration type or
string). Also, a Basic NFP can be a realization (e.g., a set of values) or a statistical
function (mean, variance, etc.).

Thus, Complex NFPs (e.g., response latency, processor throughput, correctness)
are a generalization of QoS Characteristics described in the QoS&FT Profile. Basic
NFPs (e.g. event period, minimum arrival time, WCET, deadline, scheduling opti-

mally criterion) corresponds to the QoS Dimensions of the QoS Profile. We adopt the
attributes Statistical Qualifier (e.g., max, min, mean, variance) and Direction (e.g. in-
creasing, decreasing) from the QoS profile, but we remove the Unit attribute because
we are interested on defining the units at the user model level.

Each Basic NFP has a NFP Type that constrains the specification of their values.
At level of user models, we can apply different versions of NFP Value Specifications
for each Basic NFP.

In Figure 4, we show the domain model for different Basic NFP types. NFP_type
includes the general attributes source (e.g., required, estimated, calculated) and Lan-
guage used for specifying the textual notations of the Value Specification. In the same
way, specific NFP types use a set of pre-defined units (e.g., ms, s, kB/s). Units are at-
tributes of most Quantitative NFP and it is important that standard forms are used. For
space reasons, we do not show here the predefined units (e.g., duration units, size
units). In order to complete the description of different types, the values of each par-
ticular Basic NFP will be specified according to its NFP Type.

The NFP Type concept proposed here allows for the definition of types for anno-
tating NFP values similar to the RTtimeValue type in SPT. However, we propose to
use a different taxonomy (Figure 4).

NFP_Type

valueSpecificationLanguage: String [1]
source: SourceKinds [0..1]

]

NFP_InstantType NFP_DurationType NFP_RateType NFP_Probability Type NFP_SizeType
value: String [1] value: String [1] value: String [1] value: String [1] value: String [1]
unit: InstantUnitKinds [1] | | unit: DurationUnitKinds [1] | | unit: RateUnitKinds [1] unit: ProbabilityUnitKinds [1] | | unit: SizeUnitKinds [1]

Figure 4. NFP Types: Abstract Syntax

In order to define the legal lexical atoms to specify NFP values, we use the model
presented in Figure 5. A value can be specified as a constant value (NFP Constant), as
a variable (NFP Variable) or as an expression (NFP Expression).

NFP Constant is a literal expression that represents a constant. In addition to the
Literal constants supported by UML, we include List and Real constants. List con-
stants are literals of heterogeneous types that can be combined into a list of items be-
tween a set of parentheses, with individual items separated by commas. Notice that,
here, we do not define the grammar for the syntax of textual annotations.

NFP Variable can be used as placeholders for results from analysis tools in the
UML annotations, or to support relationships between different NFPs. We adopt the
SPT’s syntax “$string” for variable names in the annotation domain, to distinguish
them from names used in the UML model itself.

NFP Expressions are used to derive NFPs from other NFPs. An expression can be
a simple constant or variable, or it can be a compound expression formed by combin-
ing expressions through operators. From an analysis point of view, allowing for NFP
Expressions makes the analysis more flexible and more robust to change.

+ListElements

{ordered}

[+operand

e vtespec

‘ *

]

NFP_Constant

NFP_Variable

0.1 .
‘ +expression

varName: String

NFP_Expression

body: String [1..*] {ordered}

+ownerList

0.1

NFP_StringConstant

NFP_IntegerConstant

NFP_RealConstant

NFP_BooleanConstant

NFP_ListConstant

body: String

body: Integer

body: Real

body: Boolean

Figure 5. NFP Value Specification Abstract Syntax

Next, we have to define the mechanism for attaching the MARTE annotations to
UML model elements while providing flexibility and usability as discussed in Section
3.3. We consider two potential mechanisms: Tagged Values and Constraints. Tagged
values are value slots associated to attributes of specific UML stereotypes, hence, one
tagged value characterizes just one model element. On the other hand, a constraint is a
condition expressed in natural language text or in a machine readable language (e.g.,
OCL) for declaring some semantics of one or various model elements. This is useful
if we define NFPs that involve more than one element (for instance, a delay between
two different events). Thus, we are interested in supporting both mechanisms.
Figure 6 illustrates the alternative in which tagged values are used for annotating
NFPs (only a simplified version is shown).

«profile »
NFP_Annotation

« profile »
SchedulabilityAnalysis

NFP_Annotation
UML_Extensions

« metaclass »

« metaclass »

DataType Property
« type »
ComplexNFP

« ype » /
BasicNFP /

«modelLibrary »
NFP_Types

N

« apbiy »

« DataType »
NFP_DurationType

SchedulabilityAnalysis
UML_Extensions

« metaclass »
Activity

A

« stereotype »
Response

latency [*]: Latency
efficiency [*]: Efficiency

« modelLibrary »
NFP_LibraryForSchedulabilityAnalysis

« complexNFP »
Latency

« basicNFP » WCET: NFP_DurationType
{statisticalQualifier=max, direction=increasing}
« basicNFP » deadline: NFP_DurationType
{statisticalQualifier=max}

« complexNFP »
Efficiency

« basicNFP » slack: NFP_DurationType
isticalQualifier=min}

« basicNFP » missRatio: NFP_RateType

{statisticalQualifier=max, direction=decreasing}

value: String [1]
source: SourceKinds [0..1]
unit: DurationUnitKinds [1]

N

L ilityAnaly

« abply »

« DataType »
NFP_RateType

value: String [1]
source: SourceKinds [0..1]
unit: RateUnitKinds [1]

« T »

regulateSpeed -

latency={WCET(5.0,ms calc),
deadline(6.2,ms,req)}
efficiency={slack(1.0,ms,calc),
missRatio(80,%,req)}

Figure 6: Applying Tagged Values for annotating NFPs

Here, we include a partial view of the NFP Annotation profile, including the NFP
types used in our example. The Complex NFP concept is extended to UML DataType,
and the Basic NFP one to UML Properties. Thus, Complex NFPs become structured
types which are compounded of Basic NFP.

In the example from Figure 6, the NFP annotation profile is applied to a NFP li-
brary for Schedulability Analysis. Most features of Basic NFPs are declared in this li-
brary, as well as their assigned NFP types. Furthermore, the Complex NFPs defined
here are used, in turn, as fypes of generic attributes associated to stereotypes for
Schedulability Analysis. For instance, the response stereotype has the generic attrib-
utes efficiency and latency, which are typed with the corresponding Complex NFPs.

Finally, we are able to apply the Schedulability Analysis profile, and consequently
the underlying NFP library to user models. This structure allows users to attach com-
plex structures of NFPs to UML model elements in a standardized way. Moreover,
user-defined NFPs can be added by modifying the existing libraries.

6 Conclusions

This paper defines a framework for annotating NFPs that are necessary for different
kinds of quantitative analyses. The relationships between NFPs annotations and UML
model elements are discussed. Based on the domain concepts, a list of requirements
for attaching NFPs annotations to UML model elements is established. A summary of
how the existing SPT and QoS&FT profiles meet these requirements is also pre-
sented. The goal is to understand and clarify the premises for some of the require-
ments in the MARTE RFP, in order to refine them and to make sure that they are con-
sistent, complete and capture all the expressive power needed for a future MARTE
solution.

The proposed approach for NFPs annotations involves the adoption of some useful
structural concepts (e.g., libraries, categories) and qualifiers (e.g., statistical qualifiers,
units) from the UML profile for QoS&FT, as well as its library style (i.e., catalogs)
for defining domain-specific NFPs. However, some considerations to reduce its in-
herent complexity and to facilitate the modeling process are taken. Additionally, some
key features provided by the SPT profile are adopted. For instance, we formalize, by
means of MOF metamodels, some concepts supported by the TVL syntax to annotate
constant, variable and expression values. In this manner, we intended to provide a
flexible and straightforward framework for supporting a wide variety of NFPs annota-
tions while adopting best modeling practices of both UML profiles.

Acknowledgements

The research of the Carleton team is supported by the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC). The CEA team is partially supported by
the PROTES project of the CARROLL French Research program. Huascar Espinoza
is supported by the Programme AlBan of the European Union, scholarship No.
E04D028544BO.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M., “Model-based performance predic-
tion in software development: a survey” IEEE Transactions on Software Engineering, Vol
30, N.5, pp.295-310, May 2004.

S. Bernardi, S. Donatelli, and J. Merseguer, “From UML sequence diagrams and state-
charts to analysable Petri net models” in Proc. of 3rd Int. Workshop on Software and Per-
formance (WOSPO02), pp. 35-45, Rome, July 2002.

CEA, I-Logix, Uppsala, OFFIS, PSA, MECEL, ICOM, "UML based methodology for real
time embedded systems," version 1.0, April 2003, Project IST 10069 AIT-WOODDES.

V. Cortellessa, A. Pompei, “Towards a UML profile for QoS: a contribution in the reli-
ability domain”, In Proc. 4th Int. Workshop on Software and Performance WOSP'2004,
pp-197 - 206, Redwood Shores, California, 2004.

S. Flake, W. Mueller, “A UML Profile for Real-Time Constraints with the OCL” In J. M.
Jezequel, H. Hussmann, S. Cook (Eds.) UML2002, Dresden, Germany LNCS (2460), pp.
179 — 195, Springer Verlag 2002.

S. Graf, Ileana Ober, Iulian Ober “Timed annotations in UML”, accepted to STTT, Int.
Journal on Software Tools for Technology Transfer, Springer Verlag, 2004

A. Lanusse, S. Gérard, F. Terrier, “Real-time Modelling with UML: The ACCORD Ap-
proach”, In Proceedings of the UML’98, Springer Verlag LNCS 1618.

L. Lavagno, G. Martin, and B. Selic, "UML for Real. Design of Embedded Real-Time
Systems," Kluwer Academic Publishers, 2003.

D. Lugato, C. Bigot, Y. Valot “Validation and automatic test generation on UML models:
the AGATHA approach”, In Proceedings of the Workshop FMICS, ENTCS 66 n°2, 2002.
J.L. Medina, M. Gonzalez Harbour, and J.M. Drake, “MAST Real-Time View: A Graphic
UML Tool for Modeling Object-Oriented Real-Time Systems” Proceedings of the 22nd
IEEE Real-Time Systems Symposium (RTSS 2001), London, UK, IEEE Computer Soci-
ety Press, pp. 245-256, December 2001.

Object Management Group, “UML Profile for Schedulability, Performance, and Time”,
Version 1.1. 2005. OMG document: formal/05-01-02.

Object Management Group, “UML Profile for Modeling and Analysis of Real-Time and
Embedded systems (MARTE)”, RFP. 2005. OMG document: realtime/05-02-06.

Object Management Group, “UML Profile for Modeling Quality of Service and Fault Tol-
erance Characteristics and Mechanisms”, 2004. OMG document ptc/04-09-01.

J. C. Palencia and M. G. Harbour, “Exploiting Precedence Relations in the Schedulability
Analysis of Distributed Real-Time Systems”, Proceedings of the 20th Real-Time Systems
Symposium, IEEE Computer Society Press, pp 328-339, December 1999.

T.H. Phan, S. Gérard and D. Lugato. “Schedulability Validation for UML-modeled real-
time systems with symbolic execution and jitter compensation”. ERCT Workshop, 2003.
D.C. Petriu, "Performance Analysis with the SPT Profile", in Model-Driven Engineering
for Distributed and Embedded Systems, (S. Gerard, J.P. Babeau, J. Champeau, Eds), pp.
205-224, Hermes Science Publishing Ltd., London, England, 2005.

B. Selic, “A Generic Framework for Modeling Resources with UML”, IEEE Computer,
Vol.33, N. 6, pp. 64-69. June, 2000.

Sha, L., Abdelzaher, T., Arzen, K., E., Cervin, A., Baker, T., Burns, A., Buttazzo, G.,
Caccamo, M., Lehoczky, J., Mok, A., K., “Real Time Scheduling Theory: A Historical
Perspective”, Real-Time Systems Journal, Vol. 28, No, 2-3, pp. 101-155, 2004.

C.M. Woodside, D.C. Petriu, D.B. Petriu, H. Shen, T. Israr, J. Merseguer, “Performance
by Unified Model Analysis (PUMA)”, In Proc. of 5th Int. Workshop on Software and Per-
formance WOSP'2005, pp.1-12, Palma, Spain, July 2005.

