
Approximate Mean Value Analysis based on

Markov Chain Aggregation by Composition

Dorina C. Petriu, C. Murray Woodside

Department of Systems and Computer Engineering
Carleton University, Ottawa, Canada, K1S 5B6

email: {petriu|cmw}@sce.carleton.ca

Abstract

Markovian performance models are impractical for large systems because their state
space grows very rapidly with the system size. This paper derives an approximate
Mean Value Analysis (AMVA) solution for Markov models that represent a com-
position of subsystems. The goal is robust scalable analytical approximation. The
approach taken here is to create approximate aggregated Markov chain submod-
els, each representing a view of the Markov chain for the entire system from the
perspective of a selected set D of tagged components, and to derive mean value
equations from them. The analytic solutions of submodels are then combined using
system-level relationships, which must be identified for each system; this is not au-
tomatic but is usually straightforward. The first point of novelty is the method used
to create the aggregate submodels for different sets D, building up each submodel
by composition of the components in D rather than by aggregating the entire state
space. Another point of novelty is the use of partitioned Markov models to obtain
analytic solutions.

Key words: Performance models, Software performance, Compositional modeling,
Markov Chains, Aggregation by composition, Mean Value Analysis

1 Introduction

Markovian performance models based on system states and transitions are
impractical for large systems because of the very rapid increase of the state
space with system size, also known as state explosion. Different approaches
have been identified to circumvent state explosion, such as:

• hierarchical decomposition into smaller submodels, linked by a high-level
model, or by coordination relationships at their boundaries; the solution is
iterated among the submodels

Preprint submitted to Elsevier Science 24 February 2004

• analytic solutions, usually in some kind of “product form”, developed for
networks of queues and for some classes of Stochastic Petri Nets.

Analytic solutions are the most efficient but even so, large networks of queues
require efficient numerical techniques such as Mean Value Analysis (MVA)
(described for example by Bolch et al in chapters 8 and 9 of [2]). MVA com-
putes mean performance values for subsystems (which are individual queues
in a network) and combines them to give system performance measures. For
systems with no exact analytic solution, approximate MVA (AMVA) has been
developed based on the solutions of individual queues, coordination relation-
ships with other queues, and iteration. These AMVA techniques are efficient
and scalable and are often accurate, although important questions about the
size of errors usually remain unanswered.

This work describes a new approach to obtain an approximate MVA solution
for Markov models that represent a composition of components. The goal is
a robust scalable analytic approximation. Similar to other AMVA solutions,
it solves submodels for their performance measures, and uses system-level
relationships among the performance measures to coordinate the submodels,
through fixed point iterations. The composed system does not have to be
a queueing system, although the examples studied here are special kinds of
servers with queues.

Compositional modeling facilitates the definition of system models, since it
allows practitioners to describe the behaviour of individual components by
state-transition models, and to build the system by composing different com-
ponents in different ways. This approach is simpler, more flexible and less
error-prone than defining the entire system model at once. Components may
be defined using process algebras (e.g. [8,7]), synchronized stochastic automata
networks [15,16] or by applying the so-called process view from the simulation
literature [1]. Formal methods and tools such as TIPP [7] or PEPA [5] can
generate the global system model. However the problem of solving the global
model is still serious due to state explosion. The present work began with a
study of a particular family of components representing software tasks, and a
particular approximate MVA solution technique called “Task-directed Aggre-
gation” (TDA) [9–11]. We propose to generalize this to other component-based
systems, and the particular MVA TDA solution is used as an example to ex-
pound the approach.

The solution proposed in this paper applies to systems that can be broken
down into “processes”, which, according to [1], describe the life cycle of en-
tities that represent such things as customers, servers, resources, etc. The
processes that form a system do not act independently, but need to interact
with each other in different ways. In our approach, each process is described
by an automaton, and the interaction between processes is realized by the

2

means of synchronized transitions (i.e., executed simultaneously by more than
one component) due to a set of shared events. In the domain of Markov pro-
cesses, the term “process” is replaced by “stochastic process” and the term
“automaton” by “stochastic automaton”.

To clarify the approach, let us consider a system (described in more detail
in section 2), consisting of n customers Ci, i = 1, 2, . . . , n, one queue Q and
a server S. Hence, the system is composed of the following set of automata:
{C1, C2, . . . , Cn, Q, S}. Each automaton is in a certain state at any time. For
instance, Ci can either be in state ei (executing on its own), qi (waiting for
service) or ri (in service). The states of Q are essentially given by the order
in which different customers are in the queue, and the states of S indicate
which customer is being served. By combining the states of the automata, one
can derive the states of the entire system. In our example, a global state is a
tuple σ = (σ1σ2σ3σQσS) containing the states of the three clients, the queue
and the server. Naturally, not all state combinations are possible. Different
systems may have different intended behaviours, which are represented by
certain combinations of states. For instance, a desired behaviour for our system
dictates that Ci be in state ri (in service) if and only if the server S is in state
si. Such constraints are enforced by the interaction between automata through
synchronized transitions (when S is ready to move to state si, it forces Ci to
move to state ri).

In order to derive a MVA solution for this system, we note that the waiting
time for a customer Ci is found from its interaction with each other customer
Cj, which can be analyzed one at a time (see section 2.1 for a further dis-
cussion). This leads to the aggregation of states, and an aggregated Markov
chain in which all customers, aside from Ci and Cj, are indistinguishable.
There are n(n − 1) such aggregated submodels, and we consider all of them
for the global solution. There is a difficulty, however: the interactions within
each of the n(n−1) aggregated submodels cannot be obtained exactly, so some
approximations are proposed based on certain independence assumptions.

The first point of novelty is the method used to create the aggregated submod-
els, which builds up the submodel by composing the behaviour of the com-
ponents we want to observe, rather than by generating and aggregating the
entire state space. Our solution is applicable to systems with tightly intercon-
nected components so we cannot use any time-scale decomposition (which only
makes the problem harder). The complexity saving in the proposed method
comes from ”hiding” inside the aggregated states the behaviour of the indistin-
guishable components, rather than by hiding internal component behaviour,
as in other composition-based methods (e.g., [5,7]). The “Markov chain Ag-
gregation by Composition” (MAC) proposed here uses composition techniques
taken from other work in compositional modeling such as [8,6], but the con-
struction of the aggregated MC is novel. Another point of novelty is the use of

3

partitioned Markov models to obtain analytic solutions, as explained in sec-
tion 3.1. Both of these are generalizations of basic ideas implied in [9–11]. The
present paper may be seen as a combination of TDA with the more recent
work on compositional modeling.

Compositional performance modeling is important, and MAC/MVA has the
potential to solve a key practical problem in providing scalable performance
calculations for these models. It gives an approach for deriving mean-value
approximations for models based on stochastic process algebras, composed
stochastic Petri nets, as well as layered queueing networks. The intention of
this paper is to demonstrate feasibility rather than to present a watertight
theory, for which further research is required. Some simplifying assumptions
are satisfied by the example systems studied in the paper.

The accuracy of MAC/MVA is studied experimentally in section 6 by con-
sidering a special kind of multiclass server with “early replies” which is often
used to model software processes. This server is also known as server with
vacations or a “walking” server [14].

2 Component-based System Model

In this section we will consider in more detail the example system introduced
in the first section. Fig. 1 shows how the five components representing three
clients C1, C2, C3, a FIFO queue Q and a server S are interconnected. The
server has a different service time (exponentially distributed with rate µi) for
each client Ci. We will call it a CMC (Closed Multi-Class) server.

Fig. 1. Example of a component-based system

The stochastic automata of the components are shown in Fig. 2. An automa-
ton can be either in an “active” state (the respective component is driving
the system) or in a “passive” state (the component is waiting to be “synchro-
nized” with an event generated by another component). An active state can
be either “timed” (it takes a finite duration defined by the component) or
“instantaneous” (it takes zero time). A transition triggered at the end of an
active state, called ”active transition”, is labeled with a synchronizing event
(shown in bold fonts in Fig. 2). The firing of an active transition may force a

4

Fig. 2. Stochastic automata defining the behaviour of components in a CMC (Closed
Multi-Class) server with three clients

passive transition in another component that is labeled with the same synchro-
nizing event (shown in italic fonts in Fig. 2). Some synchronizing events may
be preceded by a “guard”, which is a system-wide condition given in square
brackets before the event. In our model, the duration of timed active states is
assumed to be exponentially distributed. An active transition fired at the end
of a timed active state has also a rate parameter governing the rate at which
the transition is triggered from the source state (the inverse of the time in the
source state). We have adopted some restrictions on the component automata,
so that no state has more than one outgoing active timed transition (no timed
conflicts inside a component), and when the same transition label appears in
more than one component, only one of them is active.

The automaton of client Ci (see Fig. 2.a) can be in one of the following states:
ei (executing on its own or thinking), qi (queued at the server), and ri (in
service). The transitions are labeled with synchronizing events arri (arrive to
the queue), deq i (dequeue to start service), and done i (service finished). State
ei is active; the client performs some exponentially distributed activity with
rate λi. When the activity ends, the client produces a synchronizing event arri

corresponding to an active transition, which in turn forces a passive transition
labeled with the same event in component Q. The other two client states, qi

and ri, are passive, because their outgoing transitions are driven by the server
through the synchronizing events deq i and done i , rather than by the client
itself.

The queue Q stores the clients waiting for service, but not the one in service.
All states of Q, shown in Fig. 2.b are passive, being synchronized either with
arrival events from the clients or with dequeueing events from the server. The
automaton for the server S, shown in Fig. 2.c, has n = 3 active service states
si for i = 1, 2, 3, exponentially distributed with rates µi. From state idle, the
server will trigger one of the immediate dequeueing events, but only if the
corresponding guard is true. For example, [Ci first] deqi means that if Ci is
the first in queue, then it will be dequeued instantaneously. This is an example

5

Fig. 3. Markov model for the multiclass server system from Fig.1

of an active instantaneous transition.

The composition of components is governed by the sharing of events, as in [8,6]
(or equivalently, by the synchronization of transitions with the same labels,
as in [15,16]), where the shared events are defined in the interfaces between
components. For simplicity in this presentation we shall assume that all events
are shared between all components, however a more structured sharing can be
defined, as described for example in [6]. When all the automata are composed
together, a continuous time Markov chain M is obtained for the system. For
completeness, we should mention that the process of building M directly by
composition, may generate some instantaneous states, which are eliminated
similarly to the elimination of “vanishing states” in GSPN [3]. This issue is
not discussed in detail in the paper because our method avoids, in fact, the
construction of M.

Fig. 3.a shows the Markov model M for the CMC server with 3 clients from
Fig. 1. The notation for a system state σ is a tuple containing the corre-

6

sponding states for each component, with the state of the queue Q shown as
an ordered list of queue contents in square brackets. For example, in state
(q1q2r3[c2, c1]s3) the first two clients are in queue (the second before the first)
and the third is in service. The entire state set of M is denoted by Ω.

The Markov chain model for three clients is quite small and can be solved
directly. However, for an arbitrary number n of clients the state space size
|M(n)| =

∑n
i=0

(n)!
(n−i)!

grows combinatorially with the number of clients n [9],
reaching for instance close to one million states for only nine clients. For this
reason, we prefer to avoid building and solving M directly, and use aggregation
instead.

2.1 System-level Performance Relationships

In order to do an MVA analysis, we need throughputs, waiting times and
certain arrival instant probabilities. For example, in Fig. 1, the flow rate Fi

of Ci arrivals equals the flow rate of Ci departures from the server. This flow
rate can be found as:

Fi = 1/(λ−1
i + wi + µ−1

i) (1)

Here wi is the mean queueing delay of client Ci before being served. Since Ci

must wait for the client in service and for all the other clients waiting in queue
ahead of it, we get:

wi =
n∑

j=1

(Aijµ
−1
j + Bijµ

−1
j) (2)

where the first term gives the time until the client in service completes, and
the second term provides the time needed to serve all other clients. Here the
Aij and Bij are arrival-instant probabilities defined as follows:

Aij = the probability that Ci arriving to the server finds Cj in service
Bij = the probability that Ci arriving to the server finds Cj in queue.

In general, we will collect all such system-level relationships into a set that
typically includes:

• flow identities (flow in = flow out),
• some applications of Little’s result
• waiting times, in terms of system-level probabilities.

7

For example, the A and B probabilities can be computed from the aggregated
Markov Chain models. At the modeler’s discretion, some of these relationships
may be approximate.

3 Markov chain Aggregation by Composition (MAC)

The form of the MVA equation for wi (2) suggests that it is possible to derive
the arrival instant probabilities A and B by analysing the interaction of two
clients at a time with the server and its queue, ignoring the other clients.
Therefore, we will build an aggregated Markov Chain that shows only the
states of Ci, Cj, Q and S, which we name ”tagged” components. The set of
tagged components is denoted by D. For the complete analysis of the system,
we shall build n(n−1) such aggregated submodels, one for each pair of clients
in the system.

As a general strategy, we propose to obtain aggregated M′(D) for various sets
D, such that each aggregated view brings its contribution to the system mean
values, and all the system components and their interactions are covered. A
macrostate of the submodel M′(D) is a 4-tuple σ′ containing the states of the
tagged components from D; σ′ hides the behaviour of the untagged compo-
nents from D̄. The state set of M′(D) is denoted by Ω′. Fig. 3.b illustrates
the aggregated Markov chain M′(D) obtained from the model M in Fig. 3.a
for D = {C1, C2, Q, S}. The darker shaded areas in Fig. 3.a define the states
which are lumped together in Fig. 3.b. For instance, the states (r1q2e3[c2]s1),
(r1q2q3[c2, c3]s1) and (r1q2q3[c3, c2]s1), contained within a darker shading in
Fig. 3.a, are lumped together to create the macrostate (r1q2[c2]s1) in Fig. 3.b.
The aggregation affects also the states of the queue, which will show only the
relative position of the two tagged clients, whereas the position of the untagged
client is hidden. Even though the state of the untagged client C3 ∈ D̄ is not
shown directly in the aggregated state tuple, and its arrival events are hidden
inside the macrostates, the effect of its behaviour is nonetheless represented in
M′(D) indirectly. First, C3 has an effect on the state space of M′(D), by the
fact that in some macrostates the server is in state s3 serving C3 (see the right-
most shaded cluster in the figure). Second, some transitions in M′(D) (shown
with dashed lines in Fig. 3.b) correspond to the beginning/ending of service
for C3 and are the effect of the interaction between the tagged components
and C3.

It is interesting to note that both M from Fig. 3.a and M′(D) from Fig. 3.b
can be partitioned into n+1 subsets of states (enclosed in lightly shaded areas)
based on the server state. The subset of Ω grouping all the states in which the
server is serving client Ci is denoted by Gi, and the subset containing the idle
state by G0. Note also that for each subset Gi in Ω there is a corresponding

8

Fig. 4. Partitioning M′(D): subsets of macrostates

subset G′
i in Ω′.

Even though M′(D) can be obtained from M by aggregation, we intend to
avoid the expensive process of constructing the entire Markov chain and lump-
ing its states. We propose instead to build M′(D) by composing the tagged
components, and to add the missing pieces due to the effect of the untagged
component behaviour. The “aggregation by composition” proposed in this
paper differs from the “compositional aggregation” from [6] in that we will
consider all the states of the components in D, even if they are reached by
interactions with untagged components. For example, if we were to consider
a direct composition of the tagged components D = {C1, C2, Q, S}, we would
obtain only the subsets G ′

1 and G′
2 of M′(D), but would never reach the sub-

set G′
3 where C3 is in service. We shall add this subset, and the transitions

between it and the other subsets. In general, in a system with n clients, only 2
are tagged and n− 2 are untagged. When building the aggregated submodels
by composition, we shall add the subsets for all the untagged clients, in or-
der to capture the relationship between the arrivals of the two tagged clients
when S is serving other clients (needed for the derivation of the arrival instant
probabilities).

The next section will describe how we deal with different transition rates in
M′(D), some of which are known and others unknown.

3.1 Partitioned Submodels

Rather than determining individual unknown rates in the aggregated submod-
els, it is convenient to further simplify the submodels by partitioning them into
subsets such that the aggregated transition rates inside each subset are known
(but may be unknown between subsets). Then we will determine aggregated
transition flows coming to/leaving from the states of a subset from/to outside

9

the subset.

As mentioned before, for n clients, an aggregated submodel M′(D) is parti-
tioned into n subsets G ′

j for j = 1, . . . , n (where client Cj is in service) and
one subset G′

0 (where the server is idle).

The importance of this partitioning resides in the fact that a subset G ′
k has

the same structure and size independent of the number of clients n [9]. The
form of a subset depends only on whether the client in service is tagged or
untagged, as shown in Fig. 4.a and 4.b, respectively. Since M′(D) contains
n + 1 subsets for n clients, its size grows only linearly with n despite the
fact that the original model M grows combinatorially with n. This is the
basic reason for the proposed AMVA algorithm having a lower complexity (as
shown in section 5.4) than the direct solution of M.

The balance equations for the subsets G′
k are used to derive the solutions

for the arrival instant probabilities A and B. It should be emphasized that
partitioning is a convenience, which has been used in this and other cases,
but this work does not present a general procedure for partitioning. In writ-
ing the balance equations for a subset, the transitions into a subset state
from other subsets are represented as an aggregated in-flow rate, (shown in
Fig. 4.a and 4.b by thick grey arrows). They indicate in-flows with rates in
units of transitions/sec. There are also out-flows indicated by ordinary transi-
tions terminating outside the subset. In the example system considered here,
the subsets have the following properties (proved in [9]) that lead to a mean
value solution.

Property 1. In any subset G ′
k, the transition rates corresponding to “arrival of

Ci”, and “arrival of Cj” events are given by λi and λj , respectively. Also, for
each macrostate in which the server is serving a client Ck, the sum of rates over
all outgoing transitions corresponding to “end of service” events is constant
and equal to µk.

Property 2. The in-flows to a subset G ′
j where a tagged client Cj is in service,

shown in Fig. 4.a can be expressed exactly in terms of system-level mean
values (i.e., arrival-instant probabilities and system throughputs) as follows:

Inflow(qirj[ci]sj) = Bij Fi (3)

Inflow(eirj[]sj) = Fj − Bij Fi (4)

Symmetrical expressions exist for the in-flows to G ′
i.

A sketch of the proof for (3) is that the input flow to (qi rj [ci] sj) comes
from different macrostates of the form (qi qj [cj , ci] sk) for any k, in which

10

Cj was queued ahead of Ci. Retracing back to the moment when Ci arrived
to the queue, this means that Ci found Cj already in the queue. Moreover,
due to flow conservation, all Ci arrivals that have found Cj queued ahead of
them, are still queued when the service for Cj begins by entering the state
(qi rj [ci] sj). From the arrival-instant probability definitions, the frequency of
all possible Ci arrivals that find Cj in the queue equals BijFi.

The proof for the second relationship (4) is based on the fact that the total
input flow to the subset G ′

j equals the frequency of Fj arrivals to the server.

Unfortunately, the in-flows of a subset G ′
k where an untagged client Ck is in

service, shown in Fig. 4.b, cannot be expressed exactly in terms of system
mean values, so some approximations will be used instead.

3.2 Arrival instant probabilities equations from aggregated Markov submodels

The arrival-instant probabilities A and B used in the queueing delay equation
(2) can be expressed in terms of steady-state solution of M′(D), for D =
{Ci, Cj, Q, S}, as the ratio between the frequency of Ci arrivals occurring in
some specific states over the total frequency Fi of Ci arrivals. More exactly,
Aij in (5) is the ratio of the frequency of Ci arrivals that find S serving another
client Cj (computed as the occurrence rate of the transitions leaving all the
states σ′ ∈ Ω′

A with rate λi) over the frequency Fi:

Aij =
∑

σ′∈Ω′
A

λi P(σ′)/Fi (5)

where Ω′
A is the subset of M′(D) states of the form (eiσjσQsj) for any σj and

σQ, and P(σ′) is the steady-state probability that M′(D) is in state σ′.

Similarly, Bij in (6) is the ratio of the frequency of Ci arrivals that find another
client Cj in queue (computed as the occurrence rate of the transitions leaving
all the states σ′ ∈ Ω′

B with rate λi) and the frequency Fi.

Bij =
∑

σ′∈Ω′
B

λi P(σ′)/Fi (6)

where Ω′
B is the subset of M′(D) states of the form (eiqjσQσS) for any σQ

and σS.

The probability Aij defined in (5) can be obtained from the balance equations
for the states of the subset G ′

j , where task Cj ∈ D is in service. Due to Property

11

2, the two balance equations can be written as:

µj P(qi rj [ci] sj) = Bij Fi + λi P(eirj [] sj) (7)

(µj + λi) P(eirj [] sj) = Fj − BijFi (8)

The first arrival probability equation (9) is obtained by a little algebraic ma-
nipulation from (5), (7) and (8):

(µj/λi + 1)Aij + Bij = Fj/Fi for i, j = 1, . . . , n; i �= j (9)

Since arrivals from Ci that find Cj in queue happen in all subsets G ′
k for all

k �= i, j, the probability Bij is computed by summing up its components Bij,k:

Bij =
∑

k �=i,j

Bij,k for i, j, k = 1, . . . , n; i �= j; k �= i, j (10)

where Bij,k is the arrival-instant probability of Ci finding Cj in queue and Ck

in service. By definition, similar to (5) and (6) we have:

Bij,k =
∑

σ′∈Ω′
b

λi P(σ′)/Fi (11)

where Ω′
b is the subset of M′(D) states of the form (eiqjσQsk) for any σQ.

Similarly, we can define B̄ij,k as the probability that a request from Ci arriving
when S is serving Ck, does not find Cj either in queue or in service (i.e., Cj is
executing in state ej):

B̄ij,k = λiP(ei ej [] sk)/Fi (12)

If we can compute B̄ij,k and write Aik by applying definition (5) to the states
of G′

k in Fig. 4.b:

Aik = λi(P(ei ej [] sk) + P(ei qj [cj] sk))/Fi (13)

then Bij,k can be found from the difference. To compute B̄ij,k an approximation
is needed, because the in-flows to the subset G ′

k cannot be expressed exactly
in terms of mean values. We make an independence assumption regarding the
arrivals from Ci and Cj when Ck is in service. More exactly, we assume that
when Ck is in service, the probability that Ci is in state ei (when arrivals
occur) is independent of the fact that Cj is executing or is in queue.

P (ei|ejsk) = P (ei|sk) (14)

12

By the general multiplication rule we can write:

P (eiejsk) = P (ei|ejsk) P (ej|sk) P(sk) (15)

By replacing (14) in (15) we obtain:

P (eiejsk) =P (ei|sk) P (ej|sk) P(sk) =

=
P(eisk) P(ejsk)

P(sk)
(16)

P(eisk) can be expressed, by using (9), as follows:

P(eisk) = P(eiejsk) + P(eiqj [cj]sk) = Fiλ
−1
i Aik (17)

There is a similar expression for P(ejsk):

P(ejsk) = Fjλ
−1
j Ajk (18)

P(sk) represents the lumping of all macrostates from G ′
k, thus:

P(sk) = Fkµ
−1
k (19)

From (16), (17), (18), (19) and definition (12) for B̄ij,k1 we obtain:

Bij,k = Aik − Ai,kAj,k(Fjλ
−1
j)/(Fkµ

−1
k) (20)

for i, j, k = 1, . . . , n; i �= j; k �= i, j

The equations for the arrival-instant probabilities A and B of the CMC system
are (9), (10) and (20). They will be solved iteratively, together with the mean
value equations for Fi (1) and wi (2) by the approach of simultaneous displace-
ments (analogous to Jacobi’s method), similar to the algorithm described in
section 5.4.

4 Summary of Steps in MAC/MVA

The MAC/MVA approach has six major steps:

a) Mean value breakdown at the system level. At the level of system compo-
nents and flows of tokens, representing customers, messages, requests etc.,

13

identify a set P of average performance measures and a set R of relation-
ships between them. The relationships in R are (typically) flow and delay
identities, and mean value delay equations.

b) Define state-transition models for components. For each component, create
a model in which transitions are labeled with synchronizing events and (in
some cases) with rate parameters.

c) Create the MAC submodels. Define sets D1, D2, . . . of components as a basis
of aggregation, chosen to provide estimates of the measures in P . Form the
composed state-transition model ST (D) for each set D. From this, create
the aggregated submodel M′(D), with “UNK” transition rates representing
interactions with components not included in D.

d) Partition the MAC submodels so that the partitions (subsets) have known
transition rates inside, but may have unknown transition rates between
partitions. These rates are estimated by either exact or approximate mean-
value considerations.

e) Solve each partition or each submodel analytically for its mean performance
measures, in terms of its parameters. This gives a set of equations for each
submodel for a vector of measures which may also depend on measures from
other submodels.

f) Collect together the MVA equations, consisting in general of mean-value
equations from each submodel, and system-level relationships and solve
these equations, for instance by fixed point iteration.

5 MAC/MVA for a multi-class FIFO server with early reply (CMC-
ER)

The MAC/MVA strategy will be applied to a more complex queueing system
representing a kind of server found in software systems such as web services
systems [18,4,13]. The clients are software tasks such as browsers running in
workstations, or applications in network servers. The n clients send request
messages to a certain server. The service offered to each client starts by exe-
cuting a so-called first phase of service, after which the server replies to the
client. The performance optimization of this type of server, however, has led
to sending the reply early, before all the work of the server is completed; the
remaining work is called the second phase, and must be performed before the
next client request can be handled, as described in [4]. We will call this ex-
ample a Closed Multi-Class server with Early Reply (CMC-ER). Servers with
early replies are common in practice. The second phase work includes delayed
writes to storage, logging, billing, buffer cleanup, and preparing the server for
the next request.

The components of this system are the same as shown in Fig. 1, except that
the server has two phases of service which are exponentially distributed with

14

Fig. 5. Models for the CMC-ER server with early reply

rates µi1, and µi2. The client automaton is unaffected, showing that the client
returns to the state ei after receiving its reply; the queue is also the same. The
server model is now as shown in Fig. 5.a.

This server was studied first in [14] under the name of “walking server”, and
in other work is called a “server with vacations”. In software systems the
second phase is not due to gaps in operation, but it represents working time
deliberately introduced to increase the concurrency in the system. There is no
closed-form solution for the multiclass closed “walking server”, so analysis of
systems with these servers must use numerical approximations; some of these
approximations were described in [18,4].

15

5.1 System Level Performance Measures for CMC-ER

The performance measures Fi and wi are similar to those defined for the
previous example. As before, the throughput Fi of the client Ci is given by
(1), but with µi replaced by µi1. The waiting time is modified to include the
effects of the second phase as follows:

wi =
n∑

j=1

[Ai,j1(µ
−1
j1 + µ−1

j2) + Ai,j2 µ−1
j2 + Bij(µ

−1
j1 + µ−1

j2)] (21)

where A and B are arrival-instant probabilities; Bij is defined as for CMC,
and Ai,jp is defined as:

Ai,jp = the probability that a request from Ci arriving to S finds it busy in
phase p serving a request from another client Cj (i.e., rate of arrivals of Ci

when server S is in state sip over Fi)

Thus we can write a slightly different definition for A, including the phases,
whereas (6) is still valid for B:

Ai,jp =
∑

σ′∈Ω′
A

(λi P(σ′)/Fi (22)

where Ω′
A is the subset of M′(D) states of the form (eiσjσQsjp) for any σj

and σQ. The following relationship follows immediately from the definition of
Ai,jp:

n∑

j=1

2∑

p=1

Ai,jp ≤ 1 (23)

The derivation of Bij is similar to the CMC example, but modified to account
for second phases. A Ci arrival may find S completing a second phase started
earlier by itself (state si2). By the same arguments as used above we can derive:

Bij = Bij,i2 + Bij,j2 +
∑

k �=i,j

∑

p

Bij,kp (24)

for i, j, k = 1, . . . , n; i �= j; k �= i, j

where Bij,kp is the arrival-instant probability of finding Cj in the queue and
Ck in service in phase p, defined as:

Bij,kp =
∑

σ′∈Ω′
b

λi P(σ′)/Fi (25)

16

where Ω′
b is the subset of M′(D) states of the form (eiqjσQskp) for any σQ.

5.2 Markov model for CMC-ER: aggregation and partitioning

The aggregation of the Markov model may be performed similarly to the CMC
system. For the general case with n clients, the aggregated submodel M′(D)
for D = {Ci, Cj, Q, S} has n + 1 subsets, as follows:

• subset G′
0 containing the state in which the server S is idle;

• subsets G′
i and G′

j containing the states in which S is serving the tagged
client Ci and Cj, respectively; each such subset contains seven aggregated
states, as shown in Fig. 5.b;

• subsets G′
k, for k = 1, . . . , n and k �= i, j containing states in which S is

serving an untagged client Ck ∈ D̄; each subset G ′
k contains ten states, as

shown in Fig. 5.c.

The in-flows are defined as for the CMC system. The reasoning to determine
A is exactly the same as in CMC, except that Ai,i2 is not zero, because Ci

can overtake its own previously-initiated second phase of service. Bij will be
derived by summing its components over the various server states as in (24).

An auxiliary arrival-instant probability used in the derivation process is the
probability B̄ij,kp that a request from Ci arriving when S is serving Ck in
phase p, does not find Cj either in queue or in service. The following relation
is immediately obtained from the probability definitions:

Ai,kp = Bij,kp + B̄ij,kp (26)

5.3 Arrival-instant probability equations for CMC-ER

In this paper, the balance equations of the subsets G ′ from Fig 5.b and 5.c
are solved analytically to derive the arrival-instant probability equations, by
using the definitions (22), (24), (25) to eliminate the macrostate probabilities.
The in-flow rates are calculated as for the CMC case. However, it is worth
mentioning that another possible solution approach with the same complexity
is to solve numerically the balance equations for the subsets G ′

i, i = 1, . . . , n
of M′(D), then to apply the definitions (22), (24), (25) for computing the
arrival-instant probabilities A and B.

The set of simultaneous equations for the arrival-instant probabilities are listed
here. All equations are exact, except equation (32) that is the only approxi-

17

mation.

Ai,i2 =
λi

λi + µi2
for i = 1, . . . , n (27)

(
µj1

λi

+ 1)Ai,j1 + Bij =
Fj

Fi

for i, j = 1, . . . , n; i �= j (28)

Ai,j2 =
µj1

λi + µj2
Ai,j1 for i, j = 1, . . . , n; i �= j (29)

Bij,i2 =
λi

λi + µi2
· Fj

Fi
[Bji + (1 +

µi1

λi + λj + µi2
)Aj,i1] (30)

for i, j = 1, . . . , n; i �= j

Bij,j2 =
λj

(λi + λj + µj2)
Ai,j2 for i, j = 1, . . . , n; i �= j (31)

Bij,k1 = Ai,k1 −
Fjλ

−1
j

Fkµ
−1
k1

Ai,k1Aj,k1 (32)

for i, j, k = 1, . . . , n; i �= j; k �= i, j

Bij,k2 = Ai,k2 − µk1

λi + λj + µk2

(Ai,k1 − Bij,k1) (33)

for i, j = 1, . . . , n; i �= j; k �= i, j

Bij = Bij,i2 + Bij,j2 +
∑

k �=i,j

∑

p

Bij,kp (34)

for i, j, k = 1, . . . , n; i �= j; k �= i, j

Equations (32) and (33) are used only when n > 2. Thus, for two clients the
solution is exact.

5.4 MAC/MVA algorithm for CMC-ER

Equations (1) for Fi, (2) for wi and (27)–(34) for the arrival-instant proba-
bilities represent a set of nonlinear equations that are solved iteratively by
the approach of simultaneous displacements (analogous to Jacobi’s method)
as follows:

a) Initialize all Fi, Bij with some feasible values;
b) Compute new values for Ai,i2 (eq. 27), Ai,j1 (eq. 28), Ai,j2 (eq. 29), Bij,kp

(eqs. 30–33), Bij (eq. 34);

18

c) Update the arrival-instant probabilities using an under-relaxation strategy,
i.e. probnew = γ(probold + probcomputed)

d) Determine new values wi (eq. 2) and Fi (eq. 1);
e) Repeat steps b), c) and d) until the total change in the arrival-instant

probabilities values is less than a given tolerance.

In our experience, we found that a value of 0.5 for the under-relaxation coef-
ficient γ worked the best.

Complexity. The number of equations for the arrival-instant probabilities
used in step (b) of the algorithm depends on the number of clients n as follows:

• n equations of form (27)
• n(n − 1) equations of each of the forms (29)–(31), (34)
• n(n − 1)(n − 2) equations of each of the forms (32), (33)

The reduction in the order of computational complexity of the MAC/MVA
algorithm compared to the complexity of the exact solution is a consequence
of the approximation used by the algorithm, which reduces the problem of
building and solving a Markov chain with O(n!) states to the problem of
solving iteratively a system of O(n3) nonlinear equations.

Complexity when clients are grouped into classes. The previous algorithm,
derived for the case where each client is different from the others, can be easily
generalized for the case where the clients can be grouped into classes, such that
each class contains statistically identical clients, and in total there are c client
classes. By symmetry, the number of arrival-instant probability equations is
reduced to O(c3) from O(n3), depending on the number of classes instead of
the number of clients.

No theoretical proof has been found for the uniqueness of the solution or the
convergence of the MAC/MVA algorithm. However, the algorithm was applied
to several hundred models in order to assess its accuracy and convergence, as
presented in section 6.

6 MAC/MVA Experimental results for CMC-ER

The accuracy of the MAC/MVA algorithm introduced in section 5.4 was in-
vestigated by comparing its results with exact results for smaller models (up
to seven clients) and with simulation results for larger models. The exact so-
lutions were obtained with the GreatSPN package for Generalized Stochastic
Petri Nets [3]. The simulations results were obtained with 99% confidence
interval of less than ±0.5%.

19

The following factors were found to affect the accuracy of MAC/MVA algo-
rithm: the achieved server utilization, the imbalance between server entries,
the imbalance between clients, and the number of clients. Two imbalance fac-
tors are defined:

Rs = server imbalance ratio, the ratio between the longest and the shortest
service time among all server entries (taken as the sum over the two phases)

Rc = client imbalance ratio, the ratio between the longest and the shortest
client execution time.

Several test suites were designed to study the impact of different factors on
accuracy. Each test suite generates a curve plotted in one of Figures 6–9, and
contains a set of cases (models) with the same imbalance Rs and Rc, as follows:

• the server is the same for all cases in a suite (the same number of entries
and the same service times)

• the client service times are varied from case to case with the same propor-
tionality factor, giving the same Rc for all cases.

The following percentage errors were plotted in function of the achieved server
utilizations for various test suites:

• Average Throughput Error (ATE): the average relative error in absolute
value of all clients throughputs ATE =

∑n
i=1 ei/n, where the “relative error

in absolute value” ei of client i throughput was computed as the difference
between the approximate and exact throughput in absolute value, expressed
as a percentage of the exact throughput ei = 100 |(approxi−exacti)|/exacti.

• Maximum Throughput Error (MTE) the highest relative error in absolute
value among the client throughputs MTE = max(e1, e2, . . . , en).

In all cases, the errors are small when the server is lightly utilized, grow with
the utilization to a peak between 0.85 and 0.95 %, and then become smaller
when approaching saturation. This implies that the independence assumption
made in section 3.2 that the arrivals of Ci are independent on whether another
client is executing or is in queue works better at a lighter load. However, when
the server is highly utilized, the clients spend more time in the queue and
some dependencies between client behaviour seem to manifest themselves in
the system. As the system has a FIFO queue, it is not surprising that the
shorter clients are more affected than the longer ones (the former are more
dependent on the later).

The first experiment studies the impact on accuracy of various imbalance
ratios for test suites with 7 clients, as shown in Figures 6 and 7. The worst
case was found to be a combination of server and client imbalance, where the
service times of clients and server entries grow linearly from the shortest to the
longest, and the shorter client calls the shorter entry, etc. (The service time

20

0

1

2

3

4

5

6

7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
T
E

[
%
]

server utilization

client and server imb.(Rc=Rs=10)
server imb.(Rc=1 Rs=10)
client imb.(Rc=10 Rs=1)

balanced (Rc=Rs=1)

Fig. 6. ATE in function of server utilization for unbalanced and balanced test cases
with 7 clients

0

1

2

3

4

5

6

7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
T
E

[
%
]

server utilization

client and server imb.(Rc=Rs=10)
server imb.(Rc=1 Rs=10)
client imb.(Rc=10 Rs=1)

balanced (Rc=Rs=1)

Fig. 7. MTE in function of server utilization for unbalanced and balanced test cases
with 7 clients

of each entry is equally split between phases). The largest error corresponds
to the shortest client. The balanced suite fares best in terms of average error
ATE, and, with a single exception in terms of maximum error MTE. When
comparing various degrees of client and server imbalance, where both Rc and
Rs are simultaneously varied from 1 to 10, we observed (as expected) that a
larger imbalance produces a larger error.

The number of clients has also a strong impact on accuracy. Figures 8 and 9
show the ATE and MTE in function of server utilization for unbalanced test
suites with 3, 5, 7, 14, 21 and 28 clients, respectively (all with imbalance Rc =
Rs = 10). The errors grow with n, but at a decreasing rate, so a given increase

21

in the number of clients has a stronger impact for cases with a few clients
than with many clients. This is to be expected since, in general, independence
approximations such as the one used for equation (32) work better for large
numbers of clients. We can conclude that the MAC/MVA algorithm works
reasonably well even for a large number of clients.

0

2

4

6

8

10

12

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
T
E

[
%
]

server utilization

n=28
n=21
n=14
n=7
n=5
n=3

Fig. 8. ATE in function of server utilization for unbalanced test cases with different
numbers of clients

0

2

4

6

8

10

12

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
T
E

[
%
]

server utilization

n=28
n=21
n=14
n=7
n=5
n=3

Fig. 9. MTE in function of server utilization for unbalanced test cases with different
numbers of clients

The overall complexity of the MAC/MVA algorithm is dependent not only
on the computational complexity of each iteration (which is O(n3), as shown
in section 5.4), but also on the number of iterations required. It is quite diffi-
cult to predict the number of iterations necessary for the solution of a given

22

model. Experiments have shown that the feasible values chosen for initializa-
tion in the first step of the algorithm do not have an important impact on the
final results. As the iteration progresses, the intermediate values for through-
puts and arrival-instant probabilities are not guaranteed to remain feasible at
any time. However, the experiments have shown that they do converge toward
feasible values. We have observed that enforcing the relationship (23) when
the sum from the first term becomes greater than 1 has a positive effect on the
convergence, especially when the server is close to saturation. Some cases of
oscillatory convergence have been observed for test cases with a very saturated
server, when the nonlinear system of equations becomes ill-conditioned. This
is not surprising, since the linear system of balance equations of the MC model
becomes ill-conditioned itself at very high levels of saturation. From experi-
ence, the convergence of the MAC/MVA algorithm is obtained quickly (15 to
30 iterations) for the cases where the server is not saturated, but the number
of iterations grows when the server approaches saturation. This phenomenon
is stronger in unbalanced systems.

For seven clients (the largest model solved exactly with the GreatSPN pack-
age), the solution time was about two orders of magnitudes faster for the
MAC/MVA algorithm, than for the numerical solution of the system Markov
model M by the GreatSPN package.

7 Conclusions

The compositional approach described here for creating aggregated submodels
avoids on one hand the effort of building the whole Markov model of the
system, and on the other hand, the effort of aggregating from a very large
state space. This has been applied earlier to exact aggregation for lumpable
systems, essentially corresponding to systems with symmetries (references are
given in [6]). The innovation here is to:

• create ad hoc approximate aggregated models for different component based
systems,

• give a systematic approach to making the analysis simpler and more scal-
able, by partitioning the submodels even after aggregation,

• give a systematic approach to generating the approximation as a Mean Value
Analysis, by combining solutions of the submodels with system level mean
value relationships.

Because the solution is found through mean values, equilibrium state prob-
abilities do not need to be computed. Some modeling judgement is required
to complete the aggregated submodels and find the mean value relationships.
More than one approximation can undoubtedly be found. Clearly it is easier

23

to find the mean value equations if the submodel partitions are small and
repetitive.

Accuracy is adequate, as shown in Section 6. For the CMC server in Section
3, without a second phase, results not included here showed somewhat better
accuracy.

The examples shown here can easily be generalized to include classes with
more than a single client, and to servers with priorities and other kinds of
queueing discipline. The model for a single server has also been embedded in a
network of servers, with iteration among the servers, to solve layered queueing
problems [11,12]. The approach has been applied to systems with collections
of similar components (the clients here), and this makes the solutions simpler,
but in principle the approach applies to heterogeneous systems as well.

There is promise in this work for a general scalable technique for approximate
numerical analysis of all kinds of systems defined by composition of compo-
nents, using process algebras, stochastic automata or composable Petri Nets.

Acknowledgments

This research was supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC). The authors would like to thank the
anonymous reviewers of various versions of the paper and the Special Editor
for their helpful comments and suggestions.

References

[1] J.Banks, J.S. CarsonII, B.L. Nelson, D.M. Nicol, Discrete-Event System
Simulation, 3rd Edition, p.72, Prentice Hall, 2000.

[2] S. G. G. Bolch, H. de Meer, K. S. Trivedi, Queueing Networks and Markov
Chains, John Wiley and Sons, 1998.

[3] G. Chiola, M. A. Marsan, G. Balbo, and G. Conte, “Generalized Stochastic Petri
Nets: A Definition at the Net Level and Its Implications”, IEEE Transactions
on Software Engineering, vol. 19, no. 2 pp. 89-107, February 1993.

[4] G. Franks, M. Woodside, ”Effectiveness of early replies in client-server systems,”
Performance Evaluation, vol. 36–37, pp. 165-183, August 1999.

[5] S. Gilmore, J. Hillston, ”The PEPA Workbench: A Tool to Support a
Process Algebra Based Approach to Performance Modelling,” in Proc. Seventh

24

Intern. Conf. on Modelling Techniques and Tools for Computer Performance
Evaluation, Vienna, 1994.

[6] H. Hermanns, Interactive Markov Chains, LNCS. Vol. 2428, Springer, Berlin,
2002.

[7] H. Hermanns, U. Herzog, U. Klehmet, M. Seigle, and V. Mertsiotakis,
”Compositional Performance Modeling with the TIPPtool”, Performance
Evaluation, vol. 39, no. 1-4 pp. 5 - 35, 2000.

[8] J. Hillston, A Compositional Approach to Performance Modelling Cambridge
University Press, Cambridge,1996.

[9] D. C. Petriu, Approximate Solution for Stochastic Rendezvous Networks by
Markov Chain Task-Directed Aggregation. PhD thesis, Dept. of Systems and
Comp. Engineering, Carleton University, Ottawa, Canada K1S 5B6, May 1991.

[10] D. C. Petriu and C. M. Woodside, “Approximate MVA from Markov model
of software client/server systems,” in Proc. of The Third IEEE Symposium on
Parallel and Distributed Processing, (Dallas, Texas), December 1991.

[11] D. C. Petriu, Approximate Mean Value Analysis of Client–Server Systems
with Multi-Class Requests, Proc. of the ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, Performance Evaluation
Review, Vol.22, nb.1, pp. 77-86, May 1994.

[12] D. C. Petriu, S. Chen, “Approximate MVA for Client–Server Systems with
Nonpreemptive Priority”, Proc. of Int. Workshop on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS’95),
pp.155-162, Jan. 1995.

[13] C. Shousha, D. C. Petriu, A. Jalnapurkar, and K. Ngo, ”Applying Performance
Modelling to a Telecommunication System,” in Proc. of First International
Workshop on Software and Performance (WOSP98), October 1998, pp. 1-6.

[14] C. H. Skinner, “A priority queueing model with a server walking time”
0perations Research, Vol.15, Nb.2, pp. 278-285, 1967.

[15] W. Stewart, Introduction to the Numerical solution of Markov Chains,
Princeton University Press, Princeton, New Jersey, 1994.

[16] W. Stewart, K. Atif, B. Plateau, ”The Numerical Solution of Stochastic
Automata Network”, European Journal of Operational Research, Vol. 86, pp.
503–525, 1995.

[17] C. M. Woodside, “Throughput calculation for basic Stochastic Rendezvous
Networks,” Performance Evaluation, vol. 9, pp. 143–160, 1989.

[18] C. M. Woodside, J. E. Neilson, D. C. Petriu, and S. Majumdar, ”The Stochastic
Rendezvous Network Model for Performance of Synchronous Client-Server-like
Distributed Software,” IEEE Transactions on Computers, vol. 44, no. 1 pp.
20-34, January 1995.

25

