
Network Latency Impact on Performance of Software
Deployed Across Multiple Clouds

Adnan Faisal, Dorina Petriu, Murray Woodside

Dept. of Systems and Computer Engineering
Carleton University, Ottawa K1S 5B6, Canada

{faisal | petriu | cmw}@sce.carleton.ca

Abstract

In cloud computing, an “edge cloud” may be in-
troduced close to some of the end users, to give
faster service for very demanding applications.
The transactions that require heavy processing
capacity and longer processing times are seen as
more suitable to be carried out at the “core” cloud.
Parts in the core and edge may then have to com-
municate, introducing associated network laten-
cies. An application should be deployed across
edge and core with the aim to reduce the overall
effect of network latencies, in order to meet end
user response time goals. In this paper, we use a
Layered Queueing Network performance model
to explore the impact of network latency and
some possible deployment choices on the respon-
siveness of an application called HCAT (Home
Care Aides Technology). The evaluations show
that the use of the edge cloud may cause perfor-
mance degradation, rather than gain, for some
kinds of applications.

1 Introduction
Cloud computing [1] refers to the applications and
services that run on a distributed network using
virtualized resources and accessed by common
Internet protocols and networking standards. The
distinguishing features of cloud computing in-
clude the notion of effectively limitless virtual

Copyright © 2013 Murray Woodside, Dorina Petriu
and Adnan Faisal. Permission to copy is hereby granted
provided the original copyright notice is reproduced in
copies made.

resources and the transparent usage of physical
systems by the users.

Cloud computing has gained substantial pop-
ularity in the computer industry due to its signifi-
cant cost advantages. Cloud computing has made
it possible to use computing resources (both
hardware and software) as a utility. Cloud service
providers offer web service interfaces to obtain
and configure computing capacity instantly with
minimal friction. But there are some characteris-
tics of cloud computing which are holding it back.
These include issues with transaction control,
security and regulatory compliance and network
latency.

In order to reduce the latency of accessing
highly demanding, dynamic applications, the no-
tion of an extended cloud has been introduced [2].
The extended cloud refers to the use of caching
data on one or more edge clouds to improve the
scalability and efficiency of applications deployed
on the core cloud. The underlying philosophy of
the edge cloud is to move data and possibly some
parts of the application closer to the end-user of
the system. Figure 1 shows the extended cloud
architecture with one core cloud and one or more
edge clouds. The clients use handheld devices to
access the edge cloud which is located possibly in
the same area or city. The edge has the advantage
of low latency, but it has limitations on computing
and storage capacity. Through a powerful back-
bone or dedicated high-speed network, the edge
can exchange information with the core cloud.
Due to its distant location, any request made by
the user takes more time to access the core cloud,
compared to the time it takes to access the edge.

1

Figure 1: Extended cloud architecture (taken from [2])

Researchers who work on edge clouds mostly
concentrate on developing different algorithms for
edge caching that maintains data consistency be-
tween different clouds [3][4][5], partitioning data
between edge and cloud [6], minimizing data ac-
cessing time for content delivery networks [7], etc.
However, we have not found any comparative
study on the end-user response times for various
combinations of edge-cloud application deploy-
ments.

Usually the researchers simply assume that
the use of an edge cloud would improve the over-
all user-experience by reducing end-user response
times. Although it is true that the edge cloud is
located nearer to the users compared to the core
cloud, still its use may reduce the system perfor-
mance in some cases. This is due to the fact that
the edge cannot to do all the processing and stor-
age locally and it must also access the core. This
edge to core communication can add extra latency
to the overall user experience, which may be sig-
nificant depending on the traffic patterns and the
deployment of the application.

In this paper we address this issue of network
latency and demonstrate cases where the use of
edge cloud may either increase or decrease system
response time. To illustrate this we use a distrib-
uted application called HCAT (Home Care Aides
Technology) [10][11], which includes both
streaming video and transaction processing capa-

bilities. Users of the system can make service
requests through their handheld devices (e.g., mo-
bile phone) or sometime through computers, and
the requests may need to go through both edge
and core clouds. We show the impact of various
deployments, data partitioning and network laten-
cies on the system performance. We find out that
the impacts of deployment changes are not always
as we expect them to be.

The performance modeling technique that we
use in this paper is called Layered Queuing Net-
works [8][9], an extended queuing model which
reflects software structure and interprocess com-
munication, and the effects of resources in layered
components.

The rest of the paper is organized as follows.
In section 2 we describe the HCAT software, in
section 3 we give a brief description of the Lay-
ered Queuing Network (LQN) model, in section 4
we discuss the main issues addressed in this paper.
An LQN performance model for the HCAT soft-
ware is described in section 5 and the results of
experiments are discussed in section 6. The paper
concludes by briefly summarizing its contribu-
tions, its limitations and possible future exten-
sions.

2

2 HCAT Model Description

HCAT (Home Care Aides Technology) [10][11]
is a distributed application to help health care pro-
fessionals working in physically dispersed loca-
tions and their patients or clients. HCAT supports
scheduling of services and video contacts, and
storage and retrieval of client-related data. In an
online video-conference, patients and healthcare
professionals from different cities or countries can
communicate with each other, each of them ac-
cessing the system through their nearest edge
cloud.

2.1 Functionality Description
The description of HCAT used here represents a
hypothetical distributed architecture, based on
preliminary descriptions of usage scenarios. The
naming of services and modules were created for
the performance study, and has not been synchro-
nized with the actual software, whose develop-
ment is being completed. The HCAT system
model shown here has four main services:
1. Home Care Information Management

Service, which manages three kinds of in-
formation :

a. Clients and their care plans
b. Home Care Aides (HCAs), their specialties

and their availability. HCAs include every
kind of health care professional.

c. Current schedule of HCA visits to clients.

A HCA using a mobile device can view and man-
age his/her and clients’ information. For example,
he can view his appointments, update his availa-
bility, and after reviewing required documents he
can update clients’ care plan.

2. Scheduling Service: This service suggests
when and where the HCA should go to see
patients. This might be computationally in-
tensive depending on the complexity of the
availability of the HCAs and clients.

3. Synchronous Collaboration Service: Cli-
ents and HCAs may communicate with each
other via video conference. The video confer-
ence is initiated by the head-nurse at client’s
location, preferably at his home. Different

specialist doctors across different cities and
provinces may participate in a video confer-
ence. The HCAs will be able to take notes
and annotate the video in real-time. Video-
conferences are archived for record-keeping
and later-viewing. The video, annotations and
summary of the video-conference becomes
part of the patient record.

4. Central Analysis Service: The HCAT ad-
ministrators use this service to do manage
and monitor clients and HCAs. This include
analyzing and managing clients home care
plans, analyzing performances of HCAs and
support other administrative functionalities in
general.

 A high-level functional architecture of the
above HCAT system is shown in Figure 2.

2.2 Deployment Description
The services described in the previous subsection
might be deployed either in edge or in core or in
both edge and core. Depending on the workload
of the services, they can be migrated between
edge and core. Nevertheless, these services have
default choices of deployment due to their nature
of work.

Base-Case Edge deployment: An instance of the
HCAT application that contains the home care
information management service, scheduling ser-
vice and synchronous collaboration service is as-
sumed to be deployed at the edge. For any edge
cloud, this part of the HCAT application will con-
tain only the data related to the clients located
near to it.

It should be noted that the number of edge
clouds can grow dynamically as hospitals and
clients at new locations can start to join the
HCAT framework. Each edge registers with the
core and some of its data is archived at the core in
a common format.

Base-Case Core deployment: It is assumed that
the central analysis service is deployed at the core.
It is accessed by the system administrators who
use computationally heavy analytical software for
performance evaluation of HCAs and plan man-
agement of the clients.

3

Figure 2: High-level functionality architecture of HCAT

 The other three services (i.e., home care in-
formation management service, scheduling ser-
vice and synchronous collaboration service) are
also deployed between the edge and the core.
Some of the edge queries of these services are
forwarded to the core for processing and storing.
Heavy computations and data storing of these
services take place at the core.

The deployment description above implies
that there are data which are contained only by the
edge and not by the core at a given time. However,
these data would be periodically pushed to the
core for archiving and they would be accessible to
the central analysis service.

In Figure 3 the base-case deployment of the
HCAT application is shown. All four services are
deployed at the core, but the edge has only three
services as it excludes the central analysis service.

3 Layered Queuing
Network (LQN)

The performance models in this paper use
the Layered Queuing Network (LQN) tech-
nique [8][9]. The LQN models are capable to rep-

resent the software components and their deploy-
ment, to capture inter-component communications,
and to analyze resource interactions between lay-
ers of the application.

Figure 4 shows a generic layered web ser-
vice application as a simple example. The main
players of LQN are tasks (representing software
processes), which are shown as rectangles, with
two or more parts. The rightmost part defines the
task itself (its name and its thread-pool multiplici-
ty, if greater than 1); the other rectangle parts rep-
resent the task operations, which are called entries,
and are labeled with the host (CPU) demand for
one invocation of the entry. Each task has a host
processor (drawn as an oval). A call from one
entry to another is represented by an arrow la-
beled with the number of calls. Every task and
host is a queuing server, so requests to an entry
first go into the queue for the task owning the
entry, and are served when a task thread becomes
available. An infinite server provides a pure time
delay (without any waiting for the server). It is
modeled as an infinite task running on an infinite
host. Infinite servers are used in this work to rep-
resent network latencies.

4

Figure 3: HCAT deployment architecture

 Figure 4 shows four hosts: ClientP, InternetP,
WebServerP and DbServerP, and four tasks: User,
Latency, WebServer and DbServer. 100 Users each
having 5 minutes think time between requests are
modeled using 100 source tasks running on 100 repli-
cated hosts (UserP). Network latency is modeled by
the infinite threaded Latency task running on an infi-
nitely replicated host InternetP. This task has an entry
for each type of request carried over the network, each
having a pure delay (Z) equal to the network latency
of 100 milliseconds.

Figure 4: An example LQN model of a generic two-
tier web application

The application has two layers defined by the
WebServer and DbServer tasks, providing two ser-

vices simply called Op1 and Op2. Each service has an
entry at each layer, with is appropriate host demand.
The maximum thread pool size is 200 for the Web-
Server task and 150 for the DbServer task. The entry
webOp1 calls dbOp1 twice, and webOp2 calls dbOp2
four times.

4 Issues to be Addressed

This paper addresses three issues for HCAT:
1. The impact of network latency on performance:
When an application is deployed across multiple
clouds and user queries need to travel through those
clouds, the communication that takes place between
the clouds can cause extra latency. In this paper we see
the impact of this extra communication by varying the
network latency between edge and core clouds. We
also see the effect of latency on the other links, i.e.,
between user and edge, and between user and core.
2. The impact of different deployments: We start
examining the system with a default deployment in
which data and computations are split between edge
and cloud. We also examine the system performance
at extreme cases in which the whole application is
deployed solely either at edge or at core cloud.
3. The impact of different data partitioning: In
many distributed applications the lack of data locality
is one of the major reasons for bad performance. In
this paper we vary the number of core data accesses
done from the edge and examine their behavior. We
also examine whether moving data from edge to core
gives any substantial performance benefit.

5

5 Performance Model

To develop a compact performance model, we
consider the functional architecture of HCAT, and
based on its usage profile we aggregate different kinds
of requests to simplify the model. The resulting mod-
ules are represented as LQN tasks and are deployed in
the mobile terminal, edge cloud and core cloud.

5.1 From Functional Model to
Performance Model

Given the four services described in Section 2.1,
the usage profile [10][11] of HCAT identifies the im-
portant types of user requests to be analyzed for per-
formance analysis. From the usage profile it seems
probable that the central analysis service may have a
substantial workload and forms one operation class
(i.e., Central analysis service transactions); the video
streaming for conferencing is distinctive, potentially
heavy and time critical so it forms a second operation
class (i.e., Conference video streaming) . There is an-
other video streaming operation to view a video that
has been stored, which will be treated as a separate
third class (i.e., Video retrieval streaming) because it
has a different traffic pattern. The remaining services
have been lumped together as a mixture of request-
reply transactions (i.e., Transaction handling), apart
from the analysis operations.

This gives four classes of requests in the perfor-
mance model. The flows of requests and data associat-

ed with these traffics are illustrated in Figure 5. The
thicknesses of the lines give estimated volume of data
flow among user and clouds.

5.2 LQN Model Elements
Different combinations of LQN tasks are used to rep-
resent the four classes of requests (See Figure 6).
• Transaction handling class is modeled using a

front-end task HandleXact, supported by a back-
end DataAnalysis task.

• Central analysis service transactions are also
handled by the DataAnalaysis task but without
going through the HandleXact task.

• Conference video steaming is modeled by the
AVInOutStream task, which receives a video
stream from one mobile and redirects it to a set of
$nVC-1 other mobiles ($nVC = average number
of participants in a video conference).

• Video retrieval streaming (for review of archived
videos) is modeled by the task AVOutStream task
which retrieves a video file from storage and
sends it to one mobile that receives it via the
GetVideo task. Video archiving and retrieval was
added to this model of HCAT as a possibly inter-
esting consequence of having videos available for
review.

 Edge

Ed

 Core

 Mobile Platform

AV
Capture

AV
Viewer

Transaction
Handler

(t d) Edge
Data

Conference
Streaming

Retrieval
Streaming

Analysis
(HEAVY)

Data Storage and Archive HEAVY

TTiimmee--ccrriittiiccaall
SSttrreeaammiinngg

User
Interface

Figure 5: Information flow for the four classes of operations, indicated by shadings

6

Each mobile device has an interface task MobileApp
which accepts transaction requests from the user and
triggers system operations, a task Camera to capture
video frames in the mobile and send them to
AVInOutStream, and a task VideoViewer to receive
and display a video stream. Traffic generated due to
the video conference service goes from the source
mobile to all other mobiles via a conference server,
and the video files are also archived.

All tasks in the model can be replicated. It is as-
sumed that each video stream is handled by a dedicat-
ed concurrent task, even within the mobile (thus, a
conference with four participants would have four
active video streaming tasks, one to send the image
from that mobile, and three to receive streams from
other mobiles).
 The transaction stream in the usage profile in-
cludes transactions to set up video conferences, re-
trieve videos, and to do small archive retrievals, as
well as scheduling and care-support transactions. Ad-
ditional tasks are proposed to support edge/core opera-
tions:
• A video cache task VCache in the edge to capture

conference videos for archiving, and to store re-
trieved videos while they are being viewed.

• DataAnalysis task is split among edge and core
and two different tasks DataAnalysisE and
DataAnalysisC are made. Both of these
DataAnalysis tasks have their local storages for
storing and retrieving data. These local storages
are called DataStorageE and DataStorageC for
edge and cloud respectively.

• To represent network latencies we have think
times, between a pair of communicating entries
(which are not shown for clarity in Figure 6). For
mobile to edge latency, this think time is repre-
sented by the variable $me, for core to edge laten-
cy by $ce, and for mobile to core by $mc.

• There is one more task called Clock in the LQN
model. This is a timing task to control the rate of
operations in the video streams, otherwise the de-
fault model semantics would pull the frames out
as fast as possible.

5.3 Model Description
The task mobileApp represents the HCAT appli-

cation running on the mobile device. Through the in-
teract entry, the mobile makes requests which are
grouped into four classes. Two of these classes are
transaction classes and the other two are video classes.
The transaction classes include requests for central

analysis transactions and requests for other transaction
operations. On the other hand, the two video classes
include requests for capturing / sending / receiving
video in a conference, and requests for receiving an
archived video.

The parameters of the model are entirely hypo-
thetical, but have been chosen to represent potentially
possible values. This is consistent with the purpose of
the analysis, to identify possible problems and the
situations in which they might arise.

The assumed usage of the four services was
modeled over an average interval of 10 minutes, mak-
ing service requests to:
• Home care information management and schedul-

ing services, lumped together as Transaction han-
dling, 1 transaction on average;

• Central analysis service, .01 request (average), or
about one per day over all users;

• Synchronous-collaboration service (video confer-
ence service), 0.16 requests (average), or about
one per hour;

• Video retrieval, 0.08 requests (average), or about
one per two hours.

 Central transaction analysis requests go to the
doAnalysisC entry in the Core, where its host demand
is given by the variable $doBA (do big analysis) set to
30,000 ms (i.e., 5 minutes). This is intended to repre-
sent something like a data-mining operation, and it
causes a large number of accesses to the core data-
base’s getXactDataCC entry. This large number of
accesses is represented by the variable $nBDA (num-
ber of big data accesses), set to 10,000. The host de-
mand of getXactDataCC is represented using the
variable $hXD (handle transaction data) which is set to
200 ms. Transaction handling requests go from mobile
to edge and are handled by the HandleXact task’s
acceptXact entry with host demand $hX (handle trans-
action) which is set to a small value (10 ms), as this
represents a small transaction.

If the request received by acceptXact is only a
store request to the core then the access to StoreXact
entry is needed with probability 0.2. The service de-
mand of this entry is $hXD (storing transaction data =
200 ms). On the other hand, acceptXact can receive
requests for data analysis, and a fraction 0.6 of these
requests are completely processed locally by
doAllAnalysis (service demand $doSA = 100 ms) ac-
cessing local database getXactDataE (service demand
$hXD = 200 ms) twice for each request.
 A fraction 0.2 of the requests coming from
acceptXact go to doAnalysisE are also completely pro-
cessed at the edge but they require core data access.

7

Figure 6: LQN model of the HCAT System. Parameters such as $hXD are defined in the text.

Requests for home care management service are ex-
amples of such services.Each request coming to
doAnalysisE requires 10 accesses to getXactDataE and
$nSDA (no. of small data analysis) accesses to core’s
getXactDataEC entry.

The default value of $nSDA is 200. This value is
varied in the experiments to determine the impact of
fetching different volumes of data from core to edge.
 The video handling model is based on some as-
sumptions. A video conference is assumed to be 5
minutes long on average, with a frame rate of 24

8

frames/s, resulting in a total of $nvf = 7200 frames in
5 minutes. This gives a frame interval of about 42 ms.
 Initially a video is captured by the camera of the
mobile, represented by the entry captureStream with a
total service demand (over the whole 5 minutes) of
$captureExec and an accumulated interframe delay of
Z=$captureThink. The values of $captureExec is set to
10 ms/frame, or 72000 ms. From caputureStream,
$nvf frames are forwarded to viewInOutFrame (ser-
vice demand $hInOut = ($nVC - 1)*$hvf, where $nVC
is the number of conference participants). These re-
quests are further forwarded to the viewer cameras
viewFrame. In the experiments, we assume that
though many conferences can take place concurrently,
but in a single video conference only 3 mobiles partic-
ipate on average, therefore $nVC = 3. Also, from
captureStream one request is forwarded to store the
video at the core’s persistent storage via edge’s
archiveVideo entry (service demand handling video
file $hvF = 12,000 ms).
 A mobile can either retrieve stored video or view
an ongoing conference. A stored video is retrieved by
downloading it as a large file (possibly in .wmv or .avi
format) In order to download the video file, a request
is sent to the edge’s retrieveVideoFile entry (service
demand hX that we used previously). This entry makes
request to retrieve the file from cache via the
getFileIntoCache entry (service demand $hVF intro-
duced previously). The file is brought into cache from
core using the getVideoFile entry.

In case of a video viewed by the mobile, it has to
be viewed frame by frame. A 5 minute video frame
has $nvf (7200) amount of frames, each having a dura-
tion of $dvf (duration of video frame = 42 ms). These
frames are forwarded from Clock to the edge’s stream
controller (i.e., AVoutStream task) for processing;
handling each of these video frames require $hvf (10
ms) amount of processing time. This framing mecha-
nism is represented in the model using the entries
getVideo, sendFrame and viewOutFrame. If the video
is to be viewed by mobile, then it has to be fetched by
the stream controller from cache and needs to be for-
warded to mobile’s VideoViewer task. In the LQN
model, the view operation is carried out by mobile’s
viewFrame entry.

The base-case number of users was set at 150,
and then varied in the experiments to test the system
under different workloads. A compressed 5 minute
long video is assumed to be 600 Mb in size and is pro-
cessed both at the edge and at the core at a rate of
10Mbps.

We use think time parameters to represent net-
work latency between every pair of communicating
tasks that are not located in the same cloud. There are
three variables: for mobile to edge it is $me = 50 ms,
mobile to core $mc = 200 ms, edge to core $ec = 50

ms. These values were varied during the experiments
to test the system under different latencies.

5.4 Default Deployment
Description

The following deployment is taken as the default de-
ployment:
• HandleXact on the edge
• AVInOutStream and AVOutStream on the edge
• VCache on the edge
• DataAnalysis partly on the edge and partly on the

core
• DataStorage partly on the edge and mostly on the

core.
 The deployed LQN model of HCAT is shown
in Figure 6. During the experiments, the deployment
is varied to see the effect of different task migrations.

6 Experimental Results
A number of experiments were performed with the
model. We have varied the number of mobiles in the
system in order to find out the system saturation point.
We have also observed the impact on system perfor-
mance of different deployments, of network latency
change, of change of number of requests forwarded
from edge to core and of moving data between edge to
core.

6.1 Point of Saturation
For any system, one of the most important perfor-
mance information is to know the maximum number
of users a system can support before getting saturated.
Therefore, the model was solved with different num-
bers of mobiles to find its saturation point.
 Figure 7 and Table 1 give results that show the
effect of increasing the number users (i.e., mobiles) in
the system. There are 10 edge and 10 core processors
in the system, and the core is under-utilized.

Table 1: Performance results for different no. of mo-
biles

#Mo-
bile

UeP UcP RacptX
[ms]

RgetVid
[ms]

Rsys
[ms]

50 2.95 0.02 10190 24437 34406
100 5.91 0.04 10194 25380 34561
150 8.85 0.07 10238 31592 35599
200 10 0.08 12575 670842 140219

9

Figure 7: Utilization and Response time for different
no. of mobiles (See Table 1 for data)

Under the base-case deployment, a larger amount of
processing is done in the edge cloud, and only a few
heavy processing and data storage requests are for-
warded to the core cloud. As a result, all the edge pro-
cessors become saturated at 170 users, but the core
processors are utilized only about 8%. This is with
only one edge cloud; as the number of edge clouds
increase, more requests would come to the core cloud
and the core utilization would increase.

Although we have four classes of traffic, only the
response times for the most important two are shown
in the graphs. For instance, the number of requests
directly going from mobile to core are very few (prob-
ability 0.01), so their response time is not shown, as
they have little impact on the system performance. The
response time of the acceptXaction class (R_acceptX)
shown because it sends a large number of request to
both the edge and the core, and their impact on the
system response time is considerable.

The other two classes of traffic deal with video
conferencing, and since both of them have similar load
and pattern only one has its response time shown, for
getting an archived video file (R_getVideo). The other
response time shown in the figure is the overall aver-
age system response time (R_System), which is affect-
ed by both R_acceptX and R_getVideo.

From Figure 7 we can see that, until the number
of mobiles reaches 160, the response times R_acceptX,
R_getVideo and R_System do not change much. Ini-
tially the video data do not cause much congestion,
and therefore R_System is only slightly larger than
R_Video. However, the system is nearly saturated at
160 mobiles, so at this point the video files contribute
significantly to the congestion, so the response time

R_getVideo becomes greater than R_System. The sys-
tem is completely saturated at 170 mobiles, so both
R_getVideo and R_System continues to increase sharp-
ly from this point.

6.2 Different Deployments
Now we see the impact of one base-case and two

extreme cases of deployment. In the base case HCAT
is deployed both at edge and core as described in Sec-
tion 5.4. We call this a Split deployment. The two ex-
treme cases use only one cloud instead of two. AllCore
refers to the case where HCAT is completely deployed
at the core cloud, and AllEdge to the case where
HCAT is completely deployed at the edge cloud.

Table 2: Response times (in ms) for video file retrieval
for 3 different deployments

#Mo-
bile

AllEdge
R_getVideo

Split
R_getVideo

AllCore
R_getVideo

50 24,389.2 24,437.5 28,360
100 25,369.3 25,380.6 33,136.6
150 31,242.9 31,592.2 43,192.6
200 675,963 670,842 751,508

Figure 8 and Table 2 show that the AllEdge deploy-
ment usually gives the best performance, which is es-
sentially due to the closeness of the edge to the users.
Moreover, both the AllEdge and Split deployments are
faster than AllCore deployment. The reason for this is
the longer network latency between mobile and core
(200 ms).

Figure 8: Comparing video retrieval times for 3 differ-
ent deployments

We can also see that before saturation, the response
time for AllEdge deployment is only slightly less than
that of Split deployment. However, as the number of
mobile phones crosses the saturation point, the re-
sponse time of the AllEdge deployment becomes larg-
er than that for the Split deployment. This is due to the
edge saturation in the Split deployment for over 160
mobiles, so forwarding some of the traffic to the core

10

(which is under-utilized) gives a somewhat lower sys-
tem response time.

 The effect of deployment on the acceptXaction
class is shown in Figure 9 and Table 3. AllEdge de-
ployment outperforms the AllCore deployment. This
is expected due to the longer latency (i.e., 200 ms)
between mobile to core compared to the shorter laten-
cy (i.e., 50 ms) between mobile to edge.

Table 3: Transaction response times (in ms) for 3 dif-
ferent deployments
#Mo-
bile

AllEdge
R_acceptX

Split
R_acceptX

AllCore
R_acceptX

50 8180.01 10190 8330.01
100 8184.9 10194.6 8334.84
150 8233.97 10238.7 8382.43
200 10586.2 12575.6 10638.1

Figure 9: Comparing R_acceptX for 3 different de-
ployments

Contrary to a reasonable expectation, the Split de-
ployment gives the worst response time of the three
deployments. Investigation in the result file showed
that the cause is by the large volume of communica-
tions between the edge and core in the Split case. The
conclusion is that for a system partitioned between
multiple clouds, the aim should be to reduce the vol-
ume of communication between the edge and core.
Otherwise, instead of performance gain, the edge
could cause a performance loss.

Table 4: System response time (in ms) for different
deployments

#Mobile AllEdge
R_System

Split
R_System

AllCore
R_System

50 32,387 34,406 33,186
100 32,565 34,561 33,971
150 33,877 35,599 35,786
200 147,071 140,219 164,326

Figure 10: System response times for 3 different de-
ployments

The system response times for the different deploy-
ments (see Figure 10 and Table 4) show a similar be-
havior as for the video retrieval class. The dominating
workload in this model is the video workload, which
has a stronger impact on the system response time than
the other components.

6.3 Impact of Network Latency
The three network latencies were varied: mobile to
edge ($me), mobile to core ($mc), and edge to core
($ec). Experiments varied each of these from zero to
the maximum expected latency value (200 ms). The
results show that only the $ec latency has an important
impact on performance. Changing $me and $mc does
not show much impact because the number of requests
made in these two paths are far fewer than the number
of requests from edge to core. Moreover, $ec is also
the latency whose impact is of most interest to us. Be-
cause, we know that only a few requests go from mo-
bile to core, and the edge cloud should stay close to
the user, therefore $me>50 ms is not acceptable in
practical scenarios.
 For Split deployment and 150 mobiles the effect of
changing $ec is shown in Figure 11 and Table 5.
R_acceptX increases as we increase $me because
transaction queries have a lot of communication be-
tween edge and core.

Table 5: Response times (in ms) for different edge-to-
core latencies $ec

$ec[ms] R_acceptX R_getVideo R_System
0 8,230.16 31,735.7 33,614
50 10,238.7 31,592.2 35,599
100 12,247.4 31,457.7 37,587
150 14,256.1 31,331.2 39,575
200 16,264.8 31,213 41,565

11

Figure 11: Response times for varying edge-to-core
latency $ec

A consequence of higher congestion of acceptXact is
that now this class of requests use fewer common re-
sources, which becomes available for the other class of
requests (i.e., video). The effect is that R_getVideo is
slightly decreasing as we increase $ec, as seen in Fig-
ure 11 and Table 5.

6.4 Requesting More Data from
Edge to Core

A transaction request which is being processed at the
edge might not find the required data there and have to
retrieve data from the core database. A large edge da-
tabase reduces the probability of such an edge-miss,
but edges are designed to contain only high-demand,
local data, so misses are unavoidable. The system de-
signer must decide the amount of data the edge should
fetch from the core cloud.

Table 6: Impact of edge-to-core data access

$nSDA R_acceptX
[ms]

R_System
[ms]

1 296.494 25,825
500 25229.9 50,399
1000 50220.1 75,174

From Table 6 and Figure 12, we can see that increas-
ing the edge to core data access ($nSDA) increases the
transaction and system response times. From this re-
sult, we can say that the system designer should aim
for reducing the number of data accesses from edge to
core. An intelligent partition of data and computation
should reduce the edge to cloud data access and there-
fore improve system performance.

Figure 12: Response times for varying edge-to-core
data access $nSDA

6.5 Moving Data between Edge and
Core

To improve system performance the most frequently
used data should be stored in the edge, whereas the
less frequently accessed data should be stored only in
the core.
 We have already mentioned that in the HCAT
system the latency that most impacts the system per-
formance is the edge to core latency. So, if we can
reduce the volume of edge to core communications,
the system performance would be improved. Having a
large edge database reduces the number of accesses
the edge data analyzer needs to make to the core, and
thus improves the system response time. This is seen
in Table 7, where changing the core:edge data access
ratio from (200:10) to (10:200) causes a huge reduc-
tion in response times of both R_accept (from 10,238
ms to 746 ms) and R_System (from 35,599 to 26,266).

Table 7: Large core DB vs Large edge DB

Xact data access
ratio between
Edge:Core

R_accept
[ms]

R_System
[ms]

10:200 10,238.7 35,599
200:10 746.098 26,266

 This means that the system designer should strive
for a data partitioning which would allow the edge
cloud to be able to access its required data locally
most of the time. The system designer would certainly
want to have a large edge database, but we know that
the edge database cannot grow unlimited due to the
resource limitation and high cost.

12

Summary

Over all these experiments, we can see that:
• The amount of data processed at the edge is not

trivial. If we want to gain performance by using
edge cloud, the edge needs to be sufficiently pow-
erful. This is particularly applicable for video data
(See Figure 7 and Table 1)

• It is very important that the edge has a large
enough database to process locally the queries
submitted to it. If the edge requires to visit the
core frequently, then the edge-cloud interaction
might cause performance degradation.

• Among the three latencies: Mobile to Core, Mo-
bile to Edge and Core to Edge, the most sensitive
latency is Edge to Core. This is especially true for
cases when the edge requires accessing the core
for retrieving large amounts of data which needs
to be transmitted fast enough to meet the response
time requirements.

• It is commonly assumed that the use of a Split
deployment is better (in terms of performance)
than AllCore or AllEdge deployment. In the ex-
periments we have found that this assumption is
over-ambitious, as there are cases where split de-
ployment is the worst of the three deployments.

7 Conclusion
Network latency plays a key role in performance for
software deployed across edge and core clouds. It is
generally assumed that the use of edge clouds would
improve the system performance. In this paper, we
have challenged that assumption and compared the
effect of network latency for various deployments and
various configurations. The experiments collected
response times for two different classes of traffic –
transaction and video – that are very different in terms
of service demands and edge-cloud access. We have
shown that some system changes may improve the
performance of one class of traffic while deteriorating
other class of traffic. We have also shown that data
partitioning plays a key role in cloud performance.
The more the edge computations access core data, the
worse the system response time gets.
 This work can be extended in several ways. First, a
cost-benefit analysis can be carried out on growing the
size of the edge cloud. This would justify why we
cannot have infinitely large edge database. Second, a
sensitivity analysis [13] can be carried out to estimate
the uncertainty in the prediction of the model and to
apportion it to different sources of uncertainty in its
inputs. Third, the exercise above can be applied to the

actual HCAT application once it is deployed to real
edge and core clouds.

About the Authors

Adnan Faisal is a PhD student at Carleton University,
Canada. He works in the RADS lab under co-
supervision of Prof. Murray Woodside and Prof.
Dorina Petriu. Previously, he completed his Laurea
Specialistica (Master in Computing Systems Engineer-
ing) from Politecnico di Milano, Italy. His research
interests and experiences are related to performance
engineering and capacity planning of different types of
computer systems and networks.

Dorina C. Petriu is a professor in the Department of
Systems and Computer Engineering at Carleton Uni-
versity, Ottawa, ON, Canada. Her main research inter-
ests are in the areas of performance modeling and
model-driven development, with emphasis on integrat-
ing performance engineering into the software devel-
opment process. She was a contributor to two OMG
standards, SPT and MARTE, which extend UML for
real-time system modeling and analysis.

Murray Woodside does research in software perfor-
mance engineering, especially on performance models
for software systems. His work includes developing
appropriate models, methods for obtaining models
from designs and from run-time measurements, and
the use of models for capacity planning and to im-
prove software designs and run-time configurations.
His contributions include the use of layered queueing
models, efficient model solution techniques, perfor-
mance annotations in software modeling languages
(UML), system and design optimization, and statistical
parameter estimation by Kalman filters. He is a Fellow
of IEEE and a past chairman of ACM Sigmetrics.

References

[1] Barrie Sosinsky. Cloud Computing Bible, Wiley
Publishing Inc., 2011.

[2] M. Litoiu, J. Chinneck, M. Woodside, K. Salem,
Presentation on Extended Cloud Computing, 21st
Centre for Advanced Studies Conference
(CASCON), Toronto, ON, 2011.

[3] L. Ramaswamy, L. Liu, A. Iyengar. Cache Clouds:
Cooperative Caching of Dynamic Documents in
Edge Networks. In Proc. Of the 25th IEEE Inter-
national Conference on Distributed Computing
Systems (ICDCS), pages 229-238, Columbus, OH,
2005.

13

14

rads/lqns/

[4] Ramaswamy, L.; Jianxia Chen., Efficient delivery
of dynamic content: the cooperative EC grid pro-
ject, Collaborative Computing: Networking, Ap-
plications and Worksharing, 2005 International
Conference on, on page(s): 9 pp.

[5] Narravula, S.; Jin, H.W.; Vaidyanathan, K.; Panda,
D.K., Designing Efficient Cooperative Caching
Schemes for Multi-Tier Data-Centers over
RDMA-enabled Networks, Cluster Computing
and the Grid, 2006. CCGRID 06. Sixth IEEE In-
ternational Symposium on, on page(s): 401 - 408
Volume: 1, 16-19 May 2006.

[6] M. Smit, M. Shtern, B. Simmons, M. Litoiu, Par-
titioning Applications for Hybrid and Federated
Clouds, 22nd Centre for Advanced Studies Confer-
ence (CASCON), Toronto, ON, 2012.

[7] M. Bjorkqvist, L. Y. Chen, M. Vukolic, and X.
Zhang, Minimizing retrieval latency for content
cloud, INFOCOM, Shanghai, China, 2011.

[8] Layered queuing network
homepage. http://www.sce.carleton.ca/

[9] G.Franks, T. Al-Omari, C. M. Woodside, O. Das,
S. Derisavi, Enhanced Modeling and Solution of
Layered Queueing Networks, IEEE Trans. on
Software Eng. Vol. 35, No. 2, March/April, 2009

[10] S. King, L. Liu, E. Stroulia, I. Nikolaidis: Using
Simulations to Integrate Technology into Health
Care Aides’ Workflow, International Conference
on E-Learning in the Workplace (ICELW), New
York, USA, 2013

[11] E. Stroulia, I. Nikolaidis, L. Liu, S. King, L.
Lessard. Home Care and Technology: A Case
Study. 2nd International Conference on Global
Telehealth, pages 142-52, Sydney Australia, 6-28
November 2012.

[12] B. Sample. A Software Design Approach. In Proc.
Of the 15th Software Conference, pages 40-50,
Somecity, Somecountry, 1995.

[13] Saltelli, A., Ratto, M., Andres, T., Campolongo,
F., Cariboni, J., Gatelli, D. Saisana, M., and
Tarantola, S., 2008, Global Sensitivity Analysis.
The Primer, John Wiley & Sons.

http://www.sce.carleton.ca/rads/lqns/

	Abstract(
	1 Introduction
	2 HCAT Model Description
	2.1 Functionality Description
	2.2 Deployment Description

	3 Layered Queuing Network (LQN)
	4 Issues to be Addressed
	5 Performance Model
	5.1 From Functional Model to Performance Model
	5.2 LQN Model Elements
	5.3 Model Description
	5.4 Default Deployment Description

	6 Experimental Results
	6.1 Point of Saturation
	6.2 Different Deployments
	6.3 Impact of Network Latency
	6.4 Requesting More Data from Edge to Core
	6.5 Moving Data between Edge and Core

	7 Conclusion
	About the Authors
	References

