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ABSTRACT 
Model-Driven Engineering (MDE) 1 enables automatic generation 
of performance models from software design models by model 
transformations. The performance models thus obtained are used 
for performance analysis of software under development. In 
previous work, we have used a specialized model transformation 
language, Epsilon ETL, to generate Layered Queueing Network 
(LQN) performance models from UML software models 
annotated with the MARTE profile. When the UML model 
evolves during the development process, the traditional solution 
for keeping the performance model synchronized is to rerun the 
entire transformation each time the software model changes. Such 
a solution is expensive, especially in large-scale models. In this 
paper, we propose an incremental change propagation (ICP) 
approach to propagate changes from the UML+MARTE software 
model to the corresponding LQN model. The entire process starts 
by automatically generating an LQN model with the previously 
developed Epsilon ETL transformation. During the development 
process, when the UML model evolves, we detect the changes 
with the Eclipse EMF Compare tool, then incrementally propagate 
them to the LQN model to keep it synchronized. Note that Epsilon 
does not support incremental model transformation. The proposed 
ICP is implemented with the Epsilon Object Language (EOL) and 
it is evaluated by applying it to a set of case studies. 

CCS CONCEPTS 
• Software and its engineering → Model-driven software 
engineering • Software and its engineering → Software 
performance 

KEYWORDS 
performance model; model transformation; incremental change 
propagation; synchronization; UML; MARTE; LQN; Epsilon. 
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1 INTRODUCTION 
In Model Driven Engineering (MDE) analysis models can be used 
to evaluate software Non-Functional Properties (NFP) such as 
performance, reliability, availability, safety, etc. These models can 
be automatically generated by model transformations from UML 
software models, which represent different views of the system. 
The software model evolves during software development in order 
to meet the functional requirements. 
This continuous evolution creates inconsistencies between the 
software and analysis models. There is an urgent need to support 
the evolution of higher-level artifacts such as analysis and design 
models [19] [20]. Model evolution is important for improving the 
system quality [14] as it provides continuous feedback to the 
designers. According to [18] incremental approaches minimize the 
effort to change a small part of the model, as the effort is 
proportional to the size of the change. 

In this paper, we propose an Incremental Change Propagation 
approach (ICP) to update the affected part of the analysis model 
when a set of changes is applied to the software model. We are 
motivated by the research question raised in [22] about how to 
incrementally propagate the changes between software and 
analysis models in the context of complex ecosystems containing 
heterogeneous interrelated  modeling artifacts, such as models, 
metamodels, transformations, solvers and analysis results. 
The ICP approach proposed in this paper is applied in a specific 
context: the source model S is a UML software model with 
MARTE performance annotations (see Fig.1), which is 
transformed for the first time into a target LQN performance 
model P and a trace model, by using a batch transformation 
previously developed by the authors in [1]. P is solved with an 
existing LQN solver, obtaining performance results that are fed 
back to the UML model via a performance analysis roundtrip. The 
batch transformation is able to generate an entire target model at 
once from an entire source model, but does not support 
incremental transformation. During the development process, the 
following chain of actions is repeated many times: different 
changes are applied to S, manually or automatically, producing a 
changed model S’, which is now out-of-synch with the 
performance model. We propose here an incremental change 
propagation approach, which automatically detects the set of 
changes between S and S’ and propagates them to the target model 
P', synchronizing it with S’. In order to automatically detect the 
changes between S and S’, we use an existing Eclipse tool, EMF 
Compare [2]. The differences detected by EMF Compare, the 



 

LQN model P and the trace model become inputs to our ICP 
approach, which produces a synchronized version of the target 
model P’. The whole ICP approach is implemented in Epsilon 
Object Language (EOL) an imperative programming language for 
creating, querying and modifying EMF (Eclipse Modeling 
Framework) models [12]. 
The paper is organized as follows. Section 2 gives an overview of 
the related work in the research area. Section 3 presents the 
mapping between the source and target model. Section 4 describes 
the two phases of the ICP approach: a) change detection, and b) 
change propagation. Section 5 illustrates the detailed application 
of the ICP approach to two examples. Section 6 describes how the 
ICP implementation was validated and Section 7 concludes the 
paper. 

 
Figure 1. Overview of the proposed ICP approach 

2 RELATED WORK 
Incremental transformation is becoming a preferred alternative 
solution to the traditional solution (batch transformation) when the 
source model evolves during the software development process. 
In the literature there are two main approaches for incremental 
transformation as noted in [10] [23]. The first approach is the 
batch transformation, which depends mainly on rerunning the 
whole transformation, even though not all parts of the source 
model have been evolved [8]. Rerunning the whole transformation 
does not maintain the transformation context, since it becomes 
unclear which part was changed and which was not. For instance, 
if we want to compare the performance results of the model 
before change with the ones after change, it is useful to know 
which elements have changed and which are the same. This 
information is clear in the incremental approach only. Also, 
merging the newly generated model with other related models 
(e.g., previous analysis results) depends heavily on the trace 
information generated by the transformation language [5][10]. 
The second more practical solution is incremental transformation. 
It focuses only on examining the elements of the target model that 

were affected by changes in the source model and propagating 
those changes from the source to target model, without consuming 
time in re-executing the whole transformation. Incremental 
approaches require less execution time, and thus are more 
practical and efficient for large-scale systems [20][23] because 
they avoid unnecessary overhead caused by rerunning the 
transformation [13] of the whole source model. Hence, 
incremental approaches are more economical. 

A good example of incremental approach can be found in [9], 
where the authors propose a framework for incremental 
transformation and apply it for a transformation from UML to 
ESCM (a modeling language specialized in embedded systems) 
on the top of IBM Rational Rose. Two algorithms were developed 
in [9] for identifying the actions that need to be taken to change 
the target model according to the change in the source model. Our 
approach is similar in terms of checking the existence of the 
changed element in the source model, and of the corresponding 
element in target model. However, [9] does not take into 
consideration that the changed element in the source model should 
satisfy some conditions in order to generate a corresponding 
element in the target model. Our approach verifies such conditions 
(called guards) before creating a new element in the target model. 
Another difference is that the mapping between the source 
elements and the target elements is one to one in [9], while in our 
case its one to many. 

Another approach for incremental transformation called Logic-
based SLD Resolution is presented in [5], built in the context of 
Tefkat transformation language, which can only support 
declarative transformations. Also, only atomic changes are 
allowed (element insertion and deletion) [13]. Our approach is 
built in the context of Epsilon ETL, a hybrid transformation 
language. It supports both atomic (element insertion, deletion) and 
composite changes (updating and moving). 

The approach proposed in [4] is similar to our approach, in the 
sense that it supports incremental model synchronization in a uni-
directional transformation. It is applied for transforming class 
models to relational database models. It depends on the old traces 
to update or delete elements in the target model; for inserting, a 
knowledge base is used with information about the transformation 
pattern. Our approach is different, as it supports change 
propagation between source and target models with different 
metamodels. The difference in metamodels brings more 
complexity in interpreting the change in the source model and 
propagating it to the target model. Another difference is that our 
approach needs to check some guards in order to decide whether a 
source element change will lead or not to the creation of a target 
element. In addition, our approach checks if the propagated 
change affects internally other elements in the target and changes 
them, although their source elements did not necessarily change. 

A forward and a backward change propagation between the 
source model and target model are proposed in an ATL 
transformation [24]. The forward method depends on re-executing 
the whole batch transformation, while the backward method does 
not support insertion in the target model. 

 



 

The impact on the system performance model when applying a 
design pattern to a Service Oriented Architecture (SOA) design 
model is investigated in [15]. The Role Based Modeling Language 
(RBML) is used to define the design patterns. The changes 
produced by the pattern’s application are propagated to the 
performance model. The similarity between [15] and our work is 
that both use the transformation between software models in 
UML+MARTE to LQN performance models. The difference is 
that in [15] only modifications due to design pattern application 
are propagated to the LQN model, while in our case any 
modification to the software model can be detected with EMF 
Compare and propagated to the LQN model. 

3 UML+MARTE TO LQN MAPPING 
As already mentioned, the context for our ICP is the 
transformation of a UML+MARTE source model S, composed of 
a set of model elements E ϵ S, into an LQN performance model P, 
composed of a set of model elements T ϵ P. A batch model 
transformation that transforms S into P contains a set of 
transformation rules, each with an optional guard g(E). The 
transformation engine applies each rule R(E) to all source element 
instances of type E. If there is a defined guard g(E) that evaluates 
to true for the E instance taken as parameter or the guard g(E) is 
not defined, the rule will generate one or more target elements 
instances {T1,…,Tn} and initialize their properties: 

       if ((g(E).isDefined and g(E)=true) or g(E).isUndefined ) 
 R(E) g{T1,…,Tn} 
 

Table 1. Mapping from UML+MARTE to LQN 
 

 
Table 1 represents the mapping between the elements of the 

UML+MARTE source model and the LQN target model, 
including the guard functions. This mapping table is used in both 
the batch transformation from [1], as well as in the incremental 
change propagation presented in this paper. 

UML Model 
Element E 

Lqn Model 
Element T 

Guard  
g(E) 

1. Model Lqnmodel undefined 
2. Device Processor undefined 
3. Artifact Task undefined 
4. InitialNode Entry isGraphPattern() 
5. AcceptEventAction Entry isGraphPattern() 
6. OpaqueAction Activity undefined 
7. CallOperationAction Activity undefined 
8. ControlFlow Precedence guardForControlFlow  

ToPrecedence() 
9. ControlFlow Synchcall controlflowProcessing  

forSyncCall() 
10. ControlFlow Asynchcall controlflowProcessing 

forASyncCall() 
11. DecisionNode Precedence undefined 
12. MergeNode Precedence undefined 
13. JoinNode Precedence undefined 
14. ForkNode Precedence undefined 
15. SendSignalAction Activity guardForSendSignal  

Action2Activity() 

Figure 2. High-level view of mapping between the source and target model 



 

Fig.2 illustrates the high-level view of some of the mapping 
between the source and target model elements for a simple 
example, where the source model includes a deployment and a 
single activity diagram. (In general, a source model can have 
multiple activity diagrams for different scenarios). Note that Fig.2 
is meant to give a bird's eye view of the relationships between 
model elements, without looking at all the textual details. 

More detailed examples of source and target models and their 
relationships are given in Section 5. The thick red arrows 
represent the application of some of the mapping rules, numbered 
with the row number from Table 1. The elements in the UML are 
annotated with stereotypes from the MARTE profile (especially 
the performance analysis PAM subprofile) to bridge the gap 
between the UML and LQN performance models. For more 
clarification, a device in the deployment diagram has 
“GaExecHost” stereotype to show execution resources. The LQN 
model on the right of Fig.2 contains three processors (represented 
as ovals) which are generated from the UML devices from the 
deployment diagram. On each processor is deployed a software 
task (represented as a parallelogram) corresponding to the UML 
artifacts from the deployment diagram. (In general, more tasks 
can run on each processor). An artifact is annotated with 
“Scheduler” that represents a kind of ResourceBroker, which 
creates access to its brokered ProcessingResource or resources, 
following a certain scheduling policy. Each task has an entry that 
consists of an LQN activity graph generated from the partition of 
the UML activity diagram that models the entry behavior. (In 
general, a task may have multiple entries corresponding to 
different services offered by the task).  

In the activity diagram AcceptActionElement, Initial Node, 
OpaqueAction, CallOperation Action and SendSignalAction are 
annotated with <<PaStep>> stereotype that is a type of 
<<GaStep>> and can inherits its properties; <<PaStep>> can be 
applied to UML actions or messages to indicate behavior steps. 
OpaqueAction, CallOperationAction and SendSignalAction are 
mapped to LQN activity element. AcceptEventAction and 
InitialNode are mapped to LQN entry element. In LQN there are 
two types of entries: a) phase-based entry composed of a sequence 
of one to three activities (called PH1PH2 type); and b) graph-
based entry composed of a graph with branch/merge, split/join, 
etc. (GRAPH type). In Fig.2, the top two tasks have each a phase-
based entry, while the bottom task has a graph-type entry. An 
entry can send a synchronous or an asynchronous call to the entry 
of another task. Such calls are generated from cross-border edges 
in the activity diagram (e.g., see the red arrow (9) from Fig.2). 
The rest of the elements in the activity diagram, such as 
DecisionNode, MergeNode, JoinNode and ForkNode are mapped 
to precedence. 

4 INCREMENTAL CHANGE PROPAGATION 
APPROACH 
This section describes the proposed Incremental Change 

Propagation (ICP) from the modified UML+MARTE source 
model to the Lqn target model. Then we will illustrate in more 

a. Example1: Original Deployment Diagram 

b. Example1: changed deployment diagram 
Figure 3. Deployment Diagram for Example 1 

 

a. Example1: original activity diagram 

b. Example1: changed activity diagram 
Figure 4. Activity diagram for Example1 



 

details the ICP approach by applying it to two examples in section 
4.  The Epsilon Object Language (EOL) is used to implement the 
proposed ICP approach. The following files are used as ICP input: 
two versions of the source model (original and changed), Lqn 
target model corresponding to the original source, the trace model 
corresponding to the original transformation and the Differences 
file. The result of running the ICP is the synchronized Lqn model, 
with all the propagated changes. 

4.1  Change Detection 
The change detection compares directly two versions, S and S’, of 
the same UML+MARTE model. S the source model for the batch 
transformation from [1]. There are two approaches to detect the 
changes according to [7] [16] [17]: a) operator-based approach 
detecting the changes as a set of operations [6]; or b) direct 
comparison between two versions of the same model, which gives 
better results when comparing models containing elements with 
unique identifiers (such as UML) [3]. We use EMF Compare [2] 
to obtain the differences between S and S’. According to [11] 
using Static Identity-Based Matching approach (where every 
model element has a unique identifier) can be faster and user 
independent (i.e., no configuration is needed from the user). 

The result of the comparison between S and S’ is saved and 
queried as an XMI file called Differences. The root node of its 
schema is Comparison, a metaclass in the EMF Compare 
metamodel that has all comparison information such as matched 
resources, matched objects and detected differences [2]. The root 
can have many match children, and each match can have many 
submatches. A submatch has a left and right node representing the 
matched resources and zero to many differences. The differences 
are classified as RC, AC or RAC. RC (ReferenceChange) is 
detected when a reference value is changed (i.e., added, moved or 
deleted). AC (AttributeChange) is similar to RC, but it refers to an 
attribute rather than a reference. RAC (ResourceAttachment 
Change) is detected when one of the root of the matched 
resources changes. In a RC case, a difference has two children: a 
reference of the changed object or the attribute and its value. In an 
AC case, the difference has an attribute instead of a reference.  
Each difference has a kind that can be ADD, CHANGE, DELETE 
or MOVE. ADD includes two cases: a) adding a new element 
within the values of a multi-valued feature; or b) any change in a 
containment reference, even if that reference is mono-valued, 
represents a "new" element in the model. In the CHANGE case, 
the engine considers any modification to a mono-valued feature as 
CHANGE and excludes the containment references from this rule. 
DELETE follows the same logic as ADD, considering that a 
change to containment reference is deleting, even if that reference 
is a mono-value. A change is considered as a MOVE in two cases: 
a) moving an object from one container to another; and b) 
reordering the values of a multi-valued feature [2]. 

4.2 Notation 
In this section, we introduce some notation used in the paper.   
• S is the original source model, which consist of original 

elements E denoted by S!E. 

• S’ is the changed source model, after applying a set of 
changes to S.  S’ consists of elements E’ denoted by S’!E’. 
The set of differences between E and E’ is denoted by diff, 
where E’=E+diff. 

• Every E in S has set of original properties p denoted by E.p. 
If p changes, then p’ represents the changed property set 
E’.p’ 

EMF Compare matches pairs of corresponding elements that are 
different in S and S’. Possible matches {E, null},{null, E’},{E, E’} 
have the following meaning: 
• {E, null}: E exists in S but E’ does not exists in S’, which 

means that E is an old element deleted from the model. 
• {null, E’}: E does not exist in S, but E’ exists in S’,which 

means that E’ is a new element added to S’. 
• {E, E’}: E exists in S and E’ exists in S’, which means that 

the old element E ϵ S has been changed to E’ ϵ S’. 
Other notations used in the paper are: 
• The result of comparing the two sides of a match results in a 

set of differences diff. Each difference has a type ϵ {RC, AC, 
RAC}, where: RC is ReferenceChange, AC is 
AttributeChange and RAC is ResourceAttachmentChange.  

• The change actions applied to S can be of different kinds, 
where  kind ϵ {ADD, DELETE, CHANGE, MOVE}.                                                                                                         

• DiffVal is the value of a changed model element or property. 
• DiffRef is a reference name if diff.type = RC. 
• DiffAttr is an attribute name if diff.type =AC. 

4.3  Change Propagation 
The change propagation has six major steps applied repeatedly for 
every match: 
Step 1: Checking the existence of E in S and E’ in S’. As 
mentioned above, there are three cases denoted as {E, null},{null, 
E’},{E, E’}. 

Examples of such cases are shown in detail in Section 5. For 
instance the activity partition A2 is an old element in S (see 
Fig.4.a) that is changed in S’ (see Fig. 4.b). On the other hand, the 
activity partition F does not exist in S (Fig. 4.a) but it was added 
to S’ (Fig.4.b). The activity CallOperationAction ph1 exists in S, 
but it is deleted from S'. Note that the changes in UML diagrams 
are shaded in darker grey. 

 Step 2: Matching the UML elements with the same identifier in 
both UML model versions S, S’ to get the name and type of E. The 
matching is done by operation getName (id: String) that receives 
the identifier of E as a parameter and returns its name. Similarly, 
we get the type of E by executing operation getType (id :String).  

Step 3: Getting all differences between E and E’. Each match 
between E and E’ can have one or more differences. Therefore, 
we need to iterate among the differences to get the type, kind and 
value. For example, after identifying that A2 is an original 
element in step1 and getting its type in step2, we get all its 
differences in step 3. A2 has three differences, each needing a 
specific action, as shown in the next section, Example 1, match A. 

Step4: Getting and checking the trace of E.  There are three cases 
related to the existence of E and E’ in S and S’, respectively: 



 

If E and E’ both exists, we get their differences and check if the 
target element(s) of E exists in Lqn by checking if it has a trace or 
not. If E has a trace (i.e., its target element exists in Lqn) we can 
update it according to the differences. If E does not have a trace, 
then we need to get its target element type from the mapping table 
(see Table 1). The creation of a new target element depends on 
whether there is a guard g(E) or not; if the guard exists and it is 
satisfied, then we can create the target element T= R(E) in Lqn. 
For example, in match C, Example2, SendSignalAction1 is an old 
element of type SendSignalAction. It is changed in S’ and it does 
not have a trace. Fom the mapping table we find that its type has a 
guard and should mapped to activity in Lqn. After verifying that 
the guard, the activity SendSignalAction1 is created in Lqn.  
If E’ exists in S’ but E does not exist in S, this means that E’ is a 
new element introduced in S’. Its corresponding target element         
T'= R(E') needs to be created in Lqn, following the same 
reasoning as above. Later we will discuss how can we add T’ to its 
correct location by adding it to the right container. If E exists in S 
but E’ doesn’t exists in S’, then S was changed by deleting E from 
it.  Consequently, we need to delete the target element T= R(E), 
corresponding to E from Lqn by following the trace.  

Step 5: Taking the corresponding action for each type of 
difference when matching E with E’. 
Case kind = ADD, DELETE, or MOVE: 
a.  Get the type for difference value by invoking getType(). 
  From the mapping, we know if difference value is an element. 
b.  If difference value is an element, then check whether a 

corresponding target element exits in Lqn,  to make sure that 
the element was not already created while checking other 
matches. 

c.  Create, and then add difference value to its container. The 
container can be either the target element corresponding to E’ 
or we need to get it from the metamodel.  Example 1 and 
Example 2 has different examples of kind ADD and will be 
discussed in more detail in section 4. 

d.  In case of DELETE, we follow the same previous steps then 
take an action to delete the target element corresponding to E 
from Lqn. See match A from example 1, difference 2.     

e.  In case of MOVE, we follow the same steps as above, then 
take the action to move T'= R(E'), the target element 
corresponding to E' to its new container, which is T'.            

Case kind = CHANGE: follow the same steps as for ADD. 
Step 6: Update the trace model that was generated previously by 
the batch transformation by adding a new trace when creating a 
new element in the target model or deleting the old trace that 
corresponding to each deleted element in the target model. 

5 EXAMPLES 
In this section, we describe the proposed ICP approach in more 
details by presenting two model examples with different kinds of 
changes. Example 1 introduces a new artifact, as shown in Figs. 3 
and 4, while Example 2 introduces a Graph Pattern partition 
change (see Figs. 10 and 11). We also discuss the actions needed 
to incrementally propagate each change to the target model.  

5.1 Example1  
Example1 is a simple source model represented in Figs. 3, and 4. 
We started by saving S as the original model, then applied 
different changes (highlighted in dark grey color) and saved it as 
S’. Figs. 3.a and 4.a represent the structural and behavioral views 
of Example1 old model, while Fig. 3.b and 4.b represents the 
changed model S'. The differences detected by the EMF Compare 
are marked on the diagram with red numbered circles. 
The original model S was transformed to the LQN model shown 
in Fig.5 by applying the batch transformation presented in [1].  

 
The root element of type LQNmodel contains two processors D1 
and D2, and each processor contains a deployed task, A1 and A2 
respectively. Each task has a phase-based entry, whose activities 
are contained in an element of type Entryphaseactivities. The 
entry of task A1 contains an activity called CallOperationAction1, 
which sends a Synchcall to the entry of A2 and waits for a reply. 
The entry of A2 contains an activity CallOperationAction ph1. 

Figure 5. Original LQN for Example 1 

Figure 7. Example1: LQN after creating new Task F and 
propagating differences 4 and 6 

 

Figure 6. Example1: LQN after propagating diff 1 and 2 



 

The entry ends by sending a reply back to the caller. While the 
reply is not explicitly modeled in LQN, it is implied by the 
Synchcall semantics. However, the UML activity diagram from 
Fig.4.a that models the behaviour of the entry of task A2, contains 
a SendSignalAction1 that sends the reply back via a cross-border 
edge.  
EMF Compare matches each element in S with each element in S’ 
starting from the root. When the two elements are identical, EMF 
Compare does not detect any differences. We discuss only the 
matches that generate differences. They are in the same order as 
generated by EMF Compare. 
A. Change activity partition A2: Differences in the form {type, 

kind, DiffRef, DiffVal} when matching S!A2 with S’!A2’:  
1. {RC, ADD, node, OpaqueAction1} 
2. {RC, DELETE, node, CallOperationAction ph1} 
3. {RC, ADD, edge, goToEnd2}. 

Applying the previous steps from 1 to 4 on the changed activity 
partition A2’, where A2 is an old element. As we discussed before, 
the existence of the element in UML does not mean that the 
element exists in Lqn. It depends if the element type has a guard or 
not and if that guard has been met or not. As a result, from applying 
step 4, we know that A2 exits in Lqn. Following the transformation 
assumptions which states that the name attribute of each 
ActivityPartition should be identical to the name attribute of its 
corresponding Artifact, we can get the target type for A2 by 
invoking getTargetType (ElementName) operation which returns 
type Task. Then we can get the target name by executing 
getTargetName (ElementName) operation. After getting the task 
name, we are able to know the changes suffered by task A2. The 
next to step is to update task A2 according the above differences 
(see step5). An update is a composite change that is performed as a 
set of operations on A2. 
Action for Diff 1: we get the type of OpaqueAction1 with getType 
operation, which returns OpaqueAction type. Then getTargetType 
operation checks the mapping table and returns the activity type as 
OpaqueAction mapped to activity in Lqn.  
According to the LQN metamodel, task is not a direct container of 
activity, but it is a container of task-activities if entry type is 
GRAPH. On the other hand, entry is a container of entry-phase-
activities, if entry type is PH1PH2.The entry type identifies the 
container type for the collection of activities modeling the entry 
behaviour . In order to add the new activity OpaqueAction1, we 
need two steps: first create the activity and next find the container 
for the new activity. In the first step, we have to check if type 
OpaqueAction has a guard that needs to be satisfied and if the 
activity OpaqueAction1 exits or not in the Lqn (to double check 
whether OpaqueAction1 was created when matching other 
differences). In this case OpaqueAction does not have a guard, 
there is no trace, and kind =ADD, so we can create a new LQN 
activity and initialize its name to OpaueAction2. This is done by 
invoking operation addChildToTask with parameter E’, whose type 
is task, name is A2 and DiffVal is OpaqueAction1 of type activity. 
Inside the operation, we get the entry of A2 and check its type by 
invoking isGRAPHPattern operation that returns true if entry is of 
type GRAPH and false if entry is of type PH1PH2. Some changes 

to activity partition, for instance adding control nodes of type 
decision and merge, may affect indirectly the evaluation of 
isGRAPHPattern operation, which in turn may affect the entry 
type, even if the source element for that entry did not change. For 
that reason, invoke isGRAPHPattern inside addChildToTask 
operation and update the type of entry according to its returned 
value. Later, we will see such a case in Example 2. If the entry type 
is PH1PH2, then the container of the new activity is an entry-
phase-activities block. We check if this block has already been 
created in Lqn. If yes, then it already has a collection of activities to 
which we can add the new activity. On the other hand, if entry-
phase-activities is not defined, we need to create it, then add the 
new activity to it. Finally, we need to update the trace file by 
addTrace operation, in order to add a new trace for OpaqueAction1 
activity. In case of entry type GRAPH, we followed the same 
previous steps and add the new activity to task-activities block (if it 
already exist) or create a new task-activities block and add the new 
activity to it.  
Action for Diff 2: type=RC, kind=DELETE: we deleted DiffRef 
node CallOperationAction ph1. From the above discussion, we 
know that A2 is a task in Lqn, so we need to know the type of the 
deleted element from S by invoking getType, which returns 
CallOperationAction. The next step is to check if 
CallOperationAction ph1 exists it in the Lqn model. If it does exist, 
we can delete it by deleteActivity operation. It takes DiffVal as a 
parameter and matches it with Lqn activity then deletes it. Finally, 
the trace is updated by deleting CallOperationAction ph1 trace. 
Fig.6 shows the Lqn model after propagating the differences 1 and 
2. 

Action for Diff 3: adding a new reference edge to A2 (the DiffVal is 
gotoEnd2). Its action has the same steps as the previous ones, 

Figure 8. Example1: LQN after propagating difference 13 

Figure 9. Example1: LQN after adding new Synchcall and 
propagating difference 22 



 

except that type ControlFlow has three guards (see Table 1) so we 
need to check which guard is true. In this case, control flow 
goToEnd2 does not satisfy any of the three guards, so no action is 
needed on the Lqn side.  

B. Add new partition F: Differences in the form {type, kind, 
DiffRef, DiffVal} obtained by matching S’!F’:  

4. {RC, ADD, node,  AcceptEventAction2} 
5. {RC, ADD, node, SendSignalAction2} 
6. {RC, ADD, node, NEWCallOperationAction2} 
7. {RC, ADD, node, goToAction2} 
8. {RC, ADD, node, goToSendSignal2}  

F’ is a new ActivityPartition introduced in S’, which did not exist 
before in S. We create the corresponding target element for F in 
Lqn as follows. First, we invoke getType (F’) that returns Activity 
Partition. As mentioned in [1], there is an assumption that an 
ActivityPartition should have the same name as the Artifact whose 
behaviour is represented by the activities in that partition. Using 
this assumption, in the UML model the names of the artifacts 
from the deployment diagram appears as names of activity 
partitions in the activity diagram. We get the target type from the 
mapping table by getTargetType operation, which returns task in 
this case.  Second, we need to identify the location in Lqn where 
the new task F should be added (i.e., the container of F). In order 
to do so, we identify the container of the UML artifact F with the 
getNamespaceForArtifact operation, which returns in this case 
device D2 [21]. In the trace file, the target element D2 of type 
Processor corresponds to the source element D2 of type Device, 
therefore the LQN processor D2 is the container for task F. 
Finally, we add task F as a child to processor D2 and update the 
trace by adding a new trace for task F. After adding F as a task to 
Lqn, we can take actions for its differences.  
Action for Diff 4: Add AcceptEventAction2 to task F. First 
invoke getType for AcceptEventAction2 that returns 
AcceptEventAction type. From the mapping table, we get entry 
that is the target type for AcceptEventAction type. According to 
LQN metamodel, task is the container of entry. Next, we check if 
AcceptEventAction type has a guard, which is isGRAPHPattern 
that evaluates to true. A trace exists for AcceptEventAction2 
which returns false.  Since kind =ADD, we create a new entry 
AcceptEventAction2 in Lqn by invoking addChildToTask 
operation with parameter E’, with type task, name F, DiffVal 
name AcceptEventAction2 and its type is entry. The new entry is 
added to the containment reference from task to entry. The new 
entry is of type is PH1PH2 according to the operation 
isGRAPHPattern. Finally, we create a trace for 
AcceptEventAction2. Fig.7 shows the LQN model after adding F 
and propagating differences 4 and 6. 
Action for Diff 5: Adding the target element corresponding to the 
source element SendSignalAction2 of type SendSignalAction as an 
activity to task F follows the same steps as for adding 
AcceptEventAction2 entry, except that SendSignalAction type is 
mapped to an LQN Activity and has a different guard named 
guardForSendSignalAction2Activity. The guard should be 
satisfied in order to create its corresponding target element. After 

executing guardForSendSignalAction2Activity in this case, it 
returns false, therefore no corresponding action is needed to 
change Lqn. 
Action for Diff 6: To add NEWCallOperationAction2 to task F 
we need to follow the same steps as for adding OpaqueAction1 to 
task A2 (see diff. 1). NEWCallOperationAction and 
OpaqueAction1 types are similar, as both are mapped to type 
Activity in LQN and neither has a guard. As discussed before, we 
need to get the container for NEWCallOperationAction type and 
add the corresponding activity to the containment reference from 
activity to entry-phase-activities in the context of task F. 
Operation addChildToTask is taking a parameter type task, its 
name F and DiffVal name NEWCallOperationAction2 and its type 
Activity. In the previous difference, we added a new entry 
AcceptEventAction2 of type PH1PH2, then we had to get entry-
phase-activities (if defined), otherwise we had to create a new 
collection of them. The last step is to add activity 
NEWCallOperationAction2 to its container (entry-phase-
activities) and update the trace file by creating a new trace for 
NEWCallOperationAction2 activity. See Fig.7 for the modified 
LQN model.  
Actions for Diff 7 and 8: are similar to Diff 3, as goToAction2 
and goToSendSignal2 are both ControlFlow typed and none of 
them satisfies any of the control flow guards. Therefore, no action 
is needed to change Lqn. 
C. ControlFlow Elements without target: Differences (9-12) 

result from matching the elements (goToPh1, goToSend- 
Signal1, replyBackToCallOP1, gotoEnd2) in both S and S’.   

We discuss the above matches together as they are very similar. 
For all of them, both compared sides E and E’ exists in S and S’. 
The E type returned by getType for all of them is ControlFlow and 
the operation checking the traces returns no trace for each one. 
This means that none of them has a target element in Lqn. As we 
mentioned before in Diff 3,7 and 8, ControlFlow type in the 
mapping has three target types Synchcall, Asynchcall and 
Precedence. Each alternative rule has a different guard. One of 
them needs to be satisfied in order to identify the target element 
type for each control flow. None of the above control flows 
satisfies any of the three guards, and then we do not need to take 
an action to change the Lqn. 
D. ControlFlow generating Synchcall: Difference in the form 

{type, kind, DiffRef, DiffVal} obtained by matching 
goToAcceptEventAction1 in S and S'. 

13. {RC, CHANGE, target, AcceptEventAction2} 

Action for Diff 13: Although this match is similar to the previous 
ones as both compared sides E (goToAcceptEventAction1) and 
E’(goToAcceptEventAction1’) exits in S, S’ respectively, but the 
trace checking operation returns true. Therefore, it was easy to 
identify its target element synchcall from the trace file. Since we 
have all information we need, we can execute updateAttribute 
(DiffVal) operation that takes the DiffVal and control flow name 
as parameters, then updates synchcall and its attributes. Fig.8 
shows the changed LQN after propagating difference 13. 



 

E. New ControlFlow Elements without target. Differences 
(14-21) result from matching new elements (goToAction2, 
goToSendSignal2, replyBackToCallOP2) that exit in S’ but do 
not exist in S. This case is similar to C Differences (9-12) 
where there is no need for any action to change the Lqn. 

F. New ControlFlow generating Synchcall: Differences in the 
form {type, kind, DiffRef, DiffVal} obtained by matching           
S’! goToAcceptAction2’. 

22. {RC, CHANGE, target, AcceptEventAction1} 
23. {RC, CHANGE, source, NewCallOperationAction2}. 

The control flow element goToAcceptAction2 is a new element 
that exists in S’ but not in S. Since its trace checking operation 
returns false, we need to get its type in order to take the necessary 
action to change the Lqn. Operation getType returns ControlFlow. 
Next, we get its target type from the mapping and its guards. 
Since the guard controlflowProcessingforSyncCall determines 
that the control flow parameter goToacceptAction2 follows the 
synchronous call pattern, we have to take an action to create its 
target element and to add it to its correct container in Lqn. 
Operation addSynchcall takes control flow’s source and target as 
parameters, creates a new Synchcall target element and assigns its 
property dest. The source name represents the activity name 
which is the container of synchcall according to the LQN 
metamodel, so we add the new element to its container and update 
the traces. See Fig.9 for the modified LQN.  
The next step is to check the differences (22, 23). Action for diff 
22 is similar to the action for diff 13. Diff 23 does not need an 
action, as source property is not mapped to any property in Lqn.  
We do not discuss other matches because of the limited space and 
the fact that their differences do not need any action to propagate 
the change to Lqn. Some of them do not meet the guard conditions 
like SendSignalAction2 and SendSignalAction1. Other matches 
have differences on properties that are not mapped to LQN, such 
as the ControlFlow properties outgoing, incoming and inPartition. 
G. Container change: Differences in the form {type, kind, 

DiffRef, DiffVal} obtained by matching S!D2 and S’!D2’: 
45. {RC, ADD, nestedClassifier, F}. 

This match has two sides E’(D2’) and E(D2). D2 has changed 
when a new artifact F was added to its nestedClassifier reference. 
Note that processor is the container of task in LQN metamodel. 
D2 is of type Device and is an old element that exists in both S 
and S’. Next, we have to check the existence of its corresponding 
target element in Lqn. The trace checking operation returns true. 
Since D2 has a trace, we can get its target element and target type 
from the trace. D2’s target element is processor and its name is 
D2.  Next, we check if F has a trace or not. The trace checking 
operation returns true, as F has been added during the matching of 
F, based on the previously mentioned assumption about using the 
same name for artifact and activity partition. Therefore, we do not 
need to change processor D2 in Lqn. If F was not added before, 
we would get its target type (i.e., task) from the mapping and then 
invoke addChild operation to add task F to processor D2.  

5.2 Example 2  
Example 2 illustrates other differences (appearing in dark grey 
color) that lead to other Lqn changes not shown in Example 1. An 

interesting observation is that some elements in Lqn need to be 
checked even though their corresponding source element in UML 
has not been changed.  
The deployment diagram for example 2 is the same as in Fig. 3.b. 
Fig.10 shows the original activity diagram of Example 2, where 
none of the three activity partitions has the activities organized in 
a Graph Pattern, and Fig.11 shows a changed activity diagram 
with activity partition A2 as a Graph Pattern. Please note that the 
changes to partition A2, (marked as 12, 13 and 14) are changes to 
the properties of the old elements that already exist in A2. 
A. Changes inside a partition: Differences in the form {type, 

kind, DiffRef, DiffVal} by matching S !A2 and S’!A2’: 
1. {RC, ADD, node, OpaqueAction2} 
2. {RC, ADD, node, OpaqueAction3} 
3. {RC, ADD, node, OpaqueAction4} 
4. {RC, ADD, node, DecisionNode1} 
5. {RC, ADD, node, MergeNode1} 
6. {RC, DELETE, node, ActivityFinalNode2} 
7. {RC, ADD, edge, LeaveDecision1ToOp3} 
8. {RC, ADD, edge, LeaveDecision1ToOp2} 
9. {RC, ADD, edge, its DiffVal is GoToMerge1FromOp2.  
10. {RC, ADD, edge, GoToMerge1FromOp3} 
11. {RC, ADD, edge, GoToOp4} 
12. {RC, ADD, edge, goToDecision1}. 

Figure 10. Example2: activity partitions without graph pattern 

Figure 11. Changed Example2: activity partition A2                                 
with graph pattern 



 

 
Action for Diffs 1, 2, 3 are similar to difference 1 in Example 1, 
as A2 exists in both sides of the match and it has a trace, which 
means its corresponding target exists in Lqn. The target element 
for OpaqueAction type is LQN Activity; we need to create a target 
element for each source element OpaqueAction2, OpaqueAction3 
and OpaqueAction4. Task A2 has entry AcceptEventAction1, of 
type PH1PH2, so it has an entry-phase-activities block as 
container for the collection of activities. As shown in Example1, 
diff 1, some changes, like adding new control nodes of type 
decision or merge can affect indirectly the type of entry. For that 
reason, operation addChildToTask invokes isGRAPHPattern 
operation in order to check the entry type. In this case, the type of 
entry should be updated to type GRAPH, and a task-activities 
block should be created instead of the existing entry-phase-
activities block. Since A2 has already a collection of activities, we 
need to create a new task-activities block and move that collection 
to it. According to the LQN metamodel, a task-activities block 
and entry-phase-activity block  cannot exist at the same time, so 
we delete the entry-phase-activities block. Fig.12 represents an 
intermediate step for deleting entry-phase-activities and creating 
task-activities. As a last step, a new activity with the same name is 

created for each of the source elements OpaqueAction2, 
OpaqueAction3 and OpaqueAction4. The new activities will be 
added to the already existing collection of activities. 
Action for Diff 4: the difference here is adding a new node with 
DiffVal being DecisionNode1.To take an action for this difference, 
we get the type of the new node (that is DecisionNode) and invoke 
the trace checking operation that returns false, which means it 
does not exist in Lqn. In order to propagate the difference to Lqn 
we invoke addChildToTask operation, which in turn invokes 
createPrePostorDecisionNode operation. This creates the target 
elements for DecisionNode1 in the context of A2 task which is the 
container of task-activities block that in turn is the container of 
Precedence, the target type for DecisionNode type .  
The mapping here between the source type, DecisionNode, and its 
target type, Precedence, is not one to one.  Instead, each 
DecisionNode in S has three target elements in Lqn: precedence, 
pre and postor elements. The last two need to be created as 
children of their precedence container. Each pre and post 
elements contain elements of type ActivityR, which refer to the 
interconnected activities. For more details, see [1]. Finally, we 
update the trace.  
Action for Diff 5: This difference is similar to diff 4, as 
MergeNode1 needs to be added as a precedence in Lqn. However, 
the precedence has post and preor as children, so addChildToTask 
operation invokes createPreorPostMergeNode that takes the 
mergeNode and task A2 as parameters and creates a precedence 
element and its children. Next, add the corresponding trace to 
update the trace file. Figure 14 represents Lqn after propagating 
diffs 1 through 5. 

Figure 14. Example2: LQN after adding a new precedence and 
its children (Pre, Post), Replyentry and Replyactivity 

Figure 13.  Example 2: Lqn after Propagating Differences               
1 through 5 

Figure 12. Intermediate step for adding Taskactivities 



 

Differences from 6 to 12, do not need any action for changing 
Lqn. DiffVal for diff. 6 is of type Activity FinalNode that is not 
mapped to any type in Lqn. Regarding the differences from 7 to 
12, all of them are of type control flow and none satisfies any of 
the three possible guards.  
A. ControlFlow generating precedence: Differences in the 

form {type, kind, DiffRef, DiffVal} obtained by matching 
S!goToSendSignal1,  S’! goToSendSignal1’: 

13. {RC, ADD, source,  OpaqueAction4}. 
As discussed before, goToSendSignal1 of type ControlFlow exists 
in S and has been changed in S’. However, it does not exist in Lqn 
as it has no trace. From the mapping, we know that control flow 
has three guards. After testing each of them, only 
guardForControlFlowToPrecedence returns true. Now we are 
able to create a precedence and its two children pre and post in 
Lqn as target elements. The action for propagating this difference 
is done by invoking createPrePostControlFlow that is invoked 
through addChildToTask.  
After creating the precedence for goToSendSignal1 control flow 
(see Fig.14), we can check the generated difference on its property 
source. Since source is a property not mapped mapped to any 
property of precedence in Lqn , there is no need for any action. 

B. SendSignalAction generating activity: Differences {type, 
kind, DiffRef, DiffVal} obtained by matching S! 
SendSignalAction1 and S’! SendSignalAction1’: 

14. {RC, ADD, outgoing, goToEnd2}. 

Although SendSignalAction1 is an old element that exists in both 
S and S’, its target element does not exist in Lqn as there is no 
trace corresponding to it. Since SendSignalAction type has a 
guard, we have to evaluate it because changes occurred in the 
element itself or elsewhere in its activity partition might affect the 
evaluation of the guard. The respective guard takes the property 
incoming of goToSendSignal1 as a parameter and checks two 
conditions: a) if the respective control flow is located inside the 
activity partition and b) its target element SendSignalAction1 is 
not part of a GRAPH pattern. As both conditions are satisfied, we 
need to create a new LQN activity called SendSignalAction1, a 
replyentry and a replyactivity in Lqn. We also need to identify the 
location for the newly created elements. From the LQN 
metamodel we know that Task is the container of task-activities 
block or entry-phase-activities block and one of them can be the 
container of activity. In order to identify the location, we invoke 
the operation getActivityPartitionForElement which gets the 
activity partition for SendSignalAction1. Each ActivityPartition 
corresponds to an Artifact which is mapped to a Task in Lqn. 
Operation addChildTask checks the type of entry and its block, 
and then adds to them the new activity, replyentry and 
replyactivity. In this case, entry AcceptEventAction1 is of type 
GRAPH and has a task-activities block to which we added the 
new activity SendSignalAction1, replyentry and replyactivity (as 
shown in Fig.14).  Last, the trace file is updated.  
We do not discuss other matches in order to avoid repetition, as 
they are similar to those already discussed. Some differences do 
not need any action to propagate the changes to Lqn because the 

guard condition is not met. Other matches have differences on 
properties that are not mapped to LQN.  

6 VALIDATION APPROACH 
In order to validate the Incremental Change Propagation approach 
developed in Epsilon we used multiple test cases including two 
kinds of changes: a) atomic changes (add or delete model 
elements one by one) and b) composite changes (add, delete, 
update and move more elements at a time). Many of the tests for 
atomic changes are similar to the ADD and DELETE cases 
described in Section 5. For the composite changes, we used a set 
of six design patterns used for analyzing the performance effects 
of SOA design patterns in [25]: Façade, Service Decomposition, 
Service Callback, Redundant Implementation, Partial State 
Deferral, User Interface Mediator. Each design pattern was 
applied by hand to a UML model and then we used the version 
without and with pattern as S and S' models. For instance, the 
changes from Fig. 4.a to Fig 4.b are inspired from the Façade 
design pattern.  
In order to facilitate the task of deciding whether the LQN models 
produced by our ICP approach are correct, we avoided the use of 
manual inspection as it is error prone. In fact, manual verification 
whether two models are identical represents a threat to the validity 
of the conclusion, especially when the compared models are large. 
In order to eliminate this threat, we used the following procedure 
after executing the proposed ICP approach:  
• Re-execute the batch transformation taking the evolved UML 

models as source for updating the LQN model and the trace 
model. Using EMF Compare, we compare two LQN models 
for each evolved UML model: a) one generated by re-
running the batch transformation and b) the other obtained 
via the ICP approach.  

• A test passes when the two compared LQN models (a) and 
(b) are identical, which is indicated as "zero differences" by 
the EMF Compare tool. For all test cases used to validate the 
ICP implementation, we generated zero differences.  

Please note that the updated LQN model is validated not only 
after completing the incremental change propagation, but also 
during the execution of ICP. This is done by taking advantage of 
the EOL run configuration, which checks every LQN model 
change against the LQN metamodel and displays error messages 
if any action to update the LQN model during the execution 
violates the metamodel constraints. 

7  CONCLUSIONS 
The contribution of this paper is the development of an automatic 
incremental change propagation (ICP) approach from 
UML+MARTE software models to LQN performance analysis 
model in the context of MDE of real-time distributed and 
embedded systems. The proposed approach supports atomic 
changes (add, delete) and composite changes (update, move). To 
the best of our knowledge, our approach is one of the few that can 
support move and update changes. Our ICP helps in supporting 
the integration of quantitative performance analysis in the early 



 

phases of software development process, by automating the 
generation of performance models from the software models 
under development and keeping them synchronized as the models 
evolve. This is in agreement with [18], which states that evolution 
solutions should be integrated with solutions for model quality 
and model consistency, since the goal of model evolution is to 
improve the quality of the system. 
A direction for future work is to apply the proposed ICP approach 
to propagate changes to other analysis models for other non-
functional requirements (such as reliability, availability, safety) 
expressed in different formalisms (such as Petri nets variants, 
Markov Chains, fault trees). Since each analysis model has its 
own metamodel, we may need to extend our approach to take 
different actions according to the metamodel relationships. For 
now, our approach is able to take all the actions necessary to 
propagate changes from UML to LQN performance models. 
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