
Incremental Change Propagation from UML Software Models to
LQN Performance Models *

 Taghreed Altamimi
Carleton University

1125 Colonel By Drive
Ottawa ON Canada

taghreedaltamimi @sce.carleton.ca

Dorina C. Petriu
Carleton University

1125 Colonel By Drive
Ottawa ON Canada

petriu@sce.carleton.ca

ABSTRACT
Model-Driven Engineering (MDE) 1 enables automatic generation
of performance models from software design models by model
transformations. The performance models thus obtained are used
for performance analysis of software under development. In
previous work, we have used a specialized model transformation
language, Epsilon ETL, to generate Layered Queueing Network
(LQN) performance models from UML software models
annotated with the MARTE profile. When the UML model
evolves during the development process, the traditional solution
for keeping the performance model synchronized is to rerun the
entire transformation each time the software model changes. Such
a solution is expensive, especially in large-scale models. In this
paper, we propose an incremental change propagation (ICP)
approach to propagate changes from the UML+MARTE software
model to the corresponding LQN model. The entire process starts
by automatically generating an LQN model with the previously
developed Epsilon ETL transformation. During the development
process, when the UML model evolves, we detect the changes
with the Eclipse EMF Compare tool, then incrementally propagate
them to the LQN model to keep it synchronized. Note that Epsilon
does not support incremental model transformation. The proposed
ICP is implemented with the Epsilon Object Language (EOL) and
it is evaluated by applying it to a set of case studies.

CCS CONCEPTS
• Software and its engineering → Model-driven software
engineering • Software and its engineering → Software
performance

KEYWORDS
performance model; model transformation; incremental change
propagation; synchronization; UML; MARTE; LQN; Epsilon.

*Produces the permission block, and copyright information
†The full version of the author’s guide is available as acmart.pdf document
1It is a datatype.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s).
WOODSTOCK’97, July 2016, El Paso, Texas USA
© 2016 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . . $15.00
DOI: 10.1145/123_4

1 INTRODUCTION
In Model Driven Engineering (MDE) analysis models can be used
to evaluate software Non-Functional Properties (NFP) such as
performance, reliability, availability, safety, etc. These models can
be automatically generated by model transformations from UML
software models, which represent different views of the system.
The software model evolves during software development in order
to meet the functional requirements.
This continuous evolution creates inconsistencies between the
software and analysis models. There is an urgent need to support
the evolution of higher-level artifacts such as analysis and design
models [19] [20]. Model evolution is important for improving the
system quality [14] as it provides continuous feedback to the
designers. According to [18] incremental approaches minimize the
effort to change a small part of the model, as the effort is
proportional to the size of the change.

In this paper, we propose an Incremental Change Propagation
approach (ICP) to update the affected part of the analysis model
when a set of changes is applied to the software model. We are
motivated by the research question raised in [22] about how to
incrementally propagate the changes between software and
analysis models in the context of complex ecosystems containing
heterogeneous interrelated modeling artifacts, such as models,
metamodels, transformations, solvers and analysis results.
The ICP approach proposed in this paper is applied in a specific
context: the source model S is a UML software model with
MARTE performance annotations (see Fig.1), which is
transformed for the first time into a target LQN performance
model P and a trace model, by using a batch transformation
previously developed by the authors in [1]. P is solved with an
existing LQN solver, obtaining performance results that are fed
back to the UML model via a performance analysis roundtrip. The
batch transformation is able to generate an entire target model at
once from an entire source model, but does not support
incremental transformation. During the development process, the
following chain of actions is repeated many times: different
changes are applied to S, manually or automatically, producing a
changed model S’, which is now out-of-synch with the
performance model. We propose here an incremental change
propagation approach, which automatically detects the set of
changes between S and S’ and propagates them to the target model
P', synchronizing it with S’. In order to automatically detect the
changes between S and S’, we use an existing Eclipse tool, EMF
Compare [2]. The differences detected by EMF Compare, the

LQN model P and the trace model become inputs to our ICP
approach, which produces a synchronized version of the target
model P’. The whole ICP approach is implemented in Epsilon
Object Language (EOL) an imperative programming language for
creating, querying and modifying EMF (Eclipse Modeling
Framework) models [12].
The paper is organized as follows. Section 2 gives an overview of
the related work in the research area. Section 3 presents the
mapping between the source and target model. Section 4 describes
the two phases of the ICP approach: a) change detection, and b)
change propagation. Section 5 illustrates the detailed application
of the ICP approach to two examples. Section 6 describes how the
ICP implementation was validated and Section 7 concludes the
paper.

Figure 1. Overview of the proposed ICP approach

2 RELATED WORK
Incremental transformation is becoming a preferred alternative
solution to the traditional solution (batch transformation) when the
source model evolves during the software development process.
In the literature there are two main approaches for incremental
transformation as noted in [10] [23]. The first approach is the
batch transformation, which depends mainly on rerunning the
whole transformation, even though not all parts of the source
model have been evolved [8]. Rerunning the whole transformation
does not maintain the transformation context, since it becomes
unclear which part was changed and which was not. For instance,
if we want to compare the performance results of the model
before change with the ones after change, it is useful to know
which elements have changed and which are the same. This
information is clear in the incremental approach only. Also,
merging the newly generated model with other related models
(e.g., previous analysis results) depends heavily on the trace
information generated by the transformation language [5][10].
The second more practical solution is incremental transformation.
It focuses only on examining the elements of the target model that

were affected by changes in the source model and propagating
those changes from the source to target model, without consuming
time in re-executing the whole transformation. Incremental
approaches require less execution time, and thus are more
practical and efficient for large-scale systems [20][23] because
they avoid unnecessary overhead caused by rerunning the
transformation [13] of the whole source model. Hence,
incremental approaches are more economical.

A good example of incremental approach can be found in [9],
where the authors propose a framework for incremental
transformation and apply it for a transformation from UML to
ESCM (a modeling language specialized in embedded systems)
on the top of IBM Rational Rose. Two algorithms were developed
in [9] for identifying the actions that need to be taken to change
the target model according to the change in the source model. Our
approach is similar in terms of checking the existence of the
changed element in the source model, and of the corresponding
element in target model. However, [9] does not take into
consideration that the changed element in the source model should
satisfy some conditions in order to generate a corresponding
element in the target model. Our approach verifies such conditions
(called guards) before creating a new element in the target model.
Another difference is that the mapping between the source
elements and the target elements is one to one in [9], while in our
case its one to many.

Another approach for incremental transformation called Logic-
based SLD Resolution is presented in [5], built in the context of
Tefkat transformation language, which can only support
declarative transformations. Also, only atomic changes are
allowed (element insertion and deletion) [13]. Our approach is
built in the context of Epsilon ETL, a hybrid transformation
language. It supports both atomic (element insertion, deletion) and
composite changes (updating and moving).

The approach proposed in [4] is similar to our approach, in the
sense that it supports incremental model synchronization in a uni-
directional transformation. It is applied for transforming class
models to relational database models. It depends on the old traces
to update or delete elements in the target model; for inserting, a
knowledge base is used with information about the transformation
pattern. Our approach is different, as it supports change
propagation between source and target models with different
metamodels. The difference in metamodels brings more
complexity in interpreting the change in the source model and
propagating it to the target model. Another difference is that our
approach needs to check some guards in order to decide whether a
source element change will lead or not to the creation of a target
element. In addition, our approach checks if the propagated
change affects internally other elements in the target and changes
them, although their source elements did not necessarily change.

A forward and a backward change propagation between the
source model and target model are proposed in an ATL
transformation [24]. The forward method depends on re-executing
the whole batch transformation, while the backward method does
not support insertion in the target model.

The impact on the system performance model when applying a
design pattern to a Service Oriented Architecture (SOA) design
model is investigated in [15]. The Role Based Modeling Language
(RBML) is used to define the design patterns. The changes
produced by the pattern’s application are propagated to the
performance model. The similarity between [15] and our work is
that both use the transformation between software models in
UML+MARTE to LQN performance models. The difference is
that in [15] only modifications due to design pattern application
are propagated to the LQN model, while in our case any
modification to the software model can be detected with EMF
Compare and propagated to the LQN model.

3 UML+MARTE TO LQN MAPPING
As already mentioned, the context for our ICP is the
transformation of a UML+MARTE source model S, composed of
a set of model elements E ϵ S, into an LQN performance model P,
composed of a set of model elements T ϵ P. A batch model
transformation that transforms S into P contains a set of
transformation rules, each with an optional guard g(E). The
transformation engine applies each rule R(E) to all source element
instances of type E. If there is a defined guard g(E) that evaluates
to true for the E instance taken as parameter or the guard g(E) is
not defined, the rule will generate one or more target elements
instances {T1,…,Tn} and initialize their properties:

 if ((g(E).isDefined and g(E)=true) or g(E).isUndefined)
 R(E) g{T1,…,Tn}

Table 1. Mapping from UML+MARTE to LQN

Table 1 represents the mapping between the elements of the

UML+MARTE source model and the LQN target model,
including the guard functions. This mapping table is used in both
the batch transformation from [1], as well as in the incremental
change propagation presented in this paper.

UML Model
Element E

Lqn Model
Element T

Guard
g(E)

1. Model Lqnmodel undefined
2. Device Processor undefined
3. Artifact Task undefined
4. InitialNode Entry isGraphPattern()
5. AcceptEventAction Entry isGraphPattern()
6. OpaqueAction Activity undefined
7. CallOperationAction Activity undefined
8. ControlFlow Precedence guardForControlFlow

ToPrecedence()
9. ControlFlow Synchcall controlflowProcessing

forSyncCall()
10. ControlFlow Asynchcall controlflowProcessing

forASyncCall()
11. DecisionNode Precedence undefined
12. MergeNode Precedence undefined
13. JoinNode Precedence undefined
14. ForkNode Precedence undefined
15. SendSignalAction Activity guardForSendSignal

Action2Activity()

Figure 2. High-level view of mapping between the source and target model

Fig.2 illustrates the high-level view of some of the mapping
between the source and target model elements for a simple
example, where the source model includes a deployment and a
single activity diagram. (In general, a source model can have
multiple activity diagrams for different scenarios). Note that Fig.2
is meant to give a bird's eye view of the relationships between
model elements, without looking at all the textual details.

More detailed examples of source and target models and their
relationships are given in Section 5. The thick red arrows
represent the application of some of the mapping rules, numbered
with the row number from Table 1. The elements in the UML are
annotated with stereotypes from the MARTE profile (especially
the performance analysis PAM subprofile) to bridge the gap
between the UML and LQN performance models. For more
clarification, a device in the deployment diagram has
“GaExecHost” stereotype to show execution resources. The LQN
model on the right of Fig.2 contains three processors (represented
as ovals) which are generated from the UML devices from the
deployment diagram. On each processor is deployed a software
task (represented as a parallelogram) corresponding to the UML
artifacts from the deployment diagram. (In general, more tasks
can run on each processor). An artifact is annotated with
“Scheduler” that represents a kind of ResourceBroker, which
creates access to its brokered ProcessingResource or resources,
following a certain scheduling policy. Each task has an entry that
consists of an LQN activity graph generated from the partition of
the UML activity diagram that models the entry behavior. (In
general, a task may have multiple entries corresponding to
different services offered by the task).

In the activity diagram AcceptActionElement, Initial Node,
OpaqueAction, CallOperation Action and SendSignalAction are
annotated with <<PaStep>> stereotype that is a type of
<<GaStep>> and can inherits its properties; <<PaStep>> can be
applied to UML actions or messages to indicate behavior steps.
OpaqueAction, CallOperationAction and SendSignalAction are
mapped to LQN activity element. AcceptEventAction and
InitialNode are mapped to LQN entry element. In LQN there are
two types of entries: a) phase-based entry composed of a sequence
of one to three activities (called PH1PH2 type); and b) graph-
based entry composed of a graph with branch/merge, split/join,
etc. (GRAPH type). In Fig.2, the top two tasks have each a phase-
based entry, while the bottom task has a graph-type entry. An
entry can send a synchronous or an asynchronous call to the entry
of another task. Such calls are generated from cross-border edges
in the activity diagram (e.g., see the red arrow (9) from Fig.2).
The rest of the elements in the activity diagram, such as
DecisionNode, MergeNode, JoinNode and ForkNode are mapped
to precedence.

4 INCREMENTAL CHANGE PROPAGATION
APPROACH
This section describes the proposed Incremental Change

Propagation (ICP) from the modified UML+MARTE source
model to the Lqn target model. Then we will illustrate in more

a. Example1: Original Deployment Diagram

b. Example1: changed deployment diagram
Figure 3. Deployment Diagram for Example 1

a. Example1: original activity diagram

b. Example1: changed activity diagram
Figure 4. Activity diagram for Example1

details the ICP approach by applying it to two examples in section
4. The Epsilon Object Language (EOL) is used to implement the
proposed ICP approach. The following files are used as ICP input:
two versions of the source model (original and changed), Lqn
target model corresponding to the original source, the trace model
corresponding to the original transformation and the Differences
file. The result of running the ICP is the synchronized Lqn model,
with all the propagated changes.

4.1 Change Detection
The change detection compares directly two versions, S and S’, of
the same UML+MARTE model. S the source model for the batch
transformation from [1]. There are two approaches to detect the
changes according to [7] [16] [17]: a) operator-based approach
detecting the changes as a set of operations [6]; or b) direct
comparison between two versions of the same model, which gives
better results when comparing models containing elements with
unique identifiers (such as UML) [3]. We use EMF Compare [2]
to obtain the differences between S and S’. According to [11]
using Static Identity-Based Matching approach (where every
model element has a unique identifier) can be faster and user
independent (i.e., no configuration is needed from the user).

The result of the comparison between S and S’ is saved and
queried as an XMI file called Differences. The root node of its
schema is Comparison, a metaclass in the EMF Compare
metamodel that has all comparison information such as matched
resources, matched objects and detected differences [2]. The root
can have many match children, and each match can have many
submatches. A submatch has a left and right node representing the
matched resources and zero to many differences. The differences
are classified as RC, AC or RAC. RC (ReferenceChange) is
detected when a reference value is changed (i.e., added, moved or
deleted). AC (AttributeChange) is similar to RC, but it refers to an
attribute rather than a reference. RAC (ResourceAttachment
Change) is detected when one of the root of the matched
resources changes. In a RC case, a difference has two children: a
reference of the changed object or the attribute and its value. In an
AC case, the difference has an attribute instead of a reference.
Each difference has a kind that can be ADD, CHANGE, DELETE
or MOVE. ADD includes two cases: a) adding a new element
within the values of a multi-valued feature; or b) any change in a
containment reference, even if that reference is mono-valued,
represents a "new" element in the model. In the CHANGE case,
the engine considers any modification to a mono-valued feature as
CHANGE and excludes the containment references from this rule.
DELETE follows the same logic as ADD, considering that a
change to containment reference is deleting, even if that reference
is a mono-value. A change is considered as a MOVE in two cases:
a) moving an object from one container to another; and b)
reordering the values of a multi-valued feature [2].

4.2 Notation
In this section, we introduce some notation used in the paper.
• S is the original source model, which consist of original

elements E denoted by S!E.

• S’ is the changed source model, after applying a set of
changes to S. S’ consists of elements E’ denoted by S’!E’.
The set of differences between E and E’ is denoted by diff,
where E’=E+diff.

• Every E in S has set of original properties p denoted by E.p.
If p changes, then p’ represents the changed property set
E’.p’

EMF Compare matches pairs of corresponding elements that are
different in S and S’. Possible matches {E, null},{null, E’},{E, E’}
have the following meaning:
• {E, null}: E exists in S but E’ does not exists in S’, which

means that E is an old element deleted from the model.
• {null, E’}: E does not exist in S, but E’ exists in S’,which

means that E’ is a new element added to S’.
• {E, E’}: E exists in S and E’ exists in S’, which means that

the old element E ϵ S has been changed to E’ ϵ S’.
Other notations used in the paper are:
• The result of comparing the two sides of a match results in a

set of differences diff. Each difference has a type ϵ {RC, AC,
RAC}, where: RC is ReferenceChange, AC is
AttributeChange and RAC is ResourceAttachmentChange.

• The change actions applied to S can be of different kinds,
where kind ϵ {ADD, DELETE, CHANGE, MOVE}.

• DiffVal is the value of a changed model element or property.
• DiffRef is a reference name if diff.type = RC.
• DiffAttr is an attribute name if diff.type =AC.

4.3 Change Propagation
The change propagation has six major steps applied repeatedly for
every match:
Step 1: Checking the existence of E in S and E’ in S’. As
mentioned above, there are three cases denoted as {E, null},{null,
E’},{E, E’}.

Examples of such cases are shown in detail in Section 5. For
instance the activity partition A2 is an old element in S (see
Fig.4.a) that is changed in S’ (see Fig. 4.b). On the other hand, the
activity partition F does not exist in S (Fig. 4.a) but it was added
to S’ (Fig.4.b). The activity CallOperationAction ph1 exists in S,
but it is deleted from S'. Note that the changes in UML diagrams
are shaded in darker grey.

 Step 2: Matching the UML elements with the same identifier in
both UML model versions S, S’ to get the name and type of E. The
matching is done by operation getName (id: String) that receives
the identifier of E as a parameter and returns its name. Similarly,
we get the type of E by executing operation getType (id :String).

Step 3: Getting all differences between E and E’. Each match
between E and E’ can have one or more differences. Therefore,
we need to iterate among the differences to get the type, kind and
value. For example, after identifying that A2 is an original
element in step1 and getting its type in step2, we get all its
differences in step 3. A2 has three differences, each needing a
specific action, as shown in the next section, Example 1, match A.

Step4: Getting and checking the trace of E. There are three cases
related to the existence of E and E’ in S and S’, respectively:

If E and E’ both exists, we get their differences and check if the
target element(s) of E exists in Lqn by checking if it has a trace or
not. If E has a trace (i.e., its target element exists in Lqn) we can
update it according to the differences. If E does not have a trace,
then we need to get its target element type from the mapping table
(see Table 1). The creation of a new target element depends on
whether there is a guard g(E) or not; if the guard exists and it is
satisfied, then we can create the target element T= R(E) in Lqn.
For example, in match C, Example2, SendSignalAction1 is an old
element of type SendSignalAction. It is changed in S’ and it does
not have a trace. Fom the mapping table we find that its type has a
guard and should mapped to activity in Lqn. After verifying that
the guard, the activity SendSignalAction1 is created in Lqn.
If E’ exists in S’ but E does not exist in S, this means that E’ is a
new element introduced in S’. Its corresponding target element
T'= R(E') needs to be created in Lqn, following the same
reasoning as above. Later we will discuss how can we add T’ to its
correct location by adding it to the right container. If E exists in S
but E’ doesn’t exists in S’, then S was changed by deleting E from
it. Consequently, we need to delete the target element T= R(E),
corresponding to E from Lqn by following the trace.

Step 5: Taking the corresponding action for each type of
difference when matching E with E’.
Case kind = ADD, DELETE, or MOVE:
a. Get the type for difference value by invoking getType().
 From the mapping, we know if difference value is an element.
b. If difference value is an element, then check whether a

corresponding target element exits in Lqn, to make sure that
the element was not already created while checking other
matches.

c. Create, and then add difference value to its container. The
container can be either the target element corresponding to E’
or we need to get it from the metamodel. Example 1 and
Example 2 has different examples of kind ADD and will be
discussed in more detail in section 4.

d. In case of DELETE, we follow the same previous steps then
take an action to delete the target element corresponding to E
from Lqn. See match A from example 1, difference 2.

e. In case of MOVE, we follow the same steps as above, then
take the action to move T'= R(E'), the target element
corresponding to E' to its new container, which is T'.

Case kind = CHANGE: follow the same steps as for ADD.
Step 6: Update the trace model that was generated previously by
the batch transformation by adding a new trace when creating a
new element in the target model or deleting the old trace that
corresponding to each deleted element in the target model.

5 EXAMPLES
In this section, we describe the proposed ICP approach in more
details by presenting two model examples with different kinds of
changes. Example 1 introduces a new artifact, as shown in Figs. 3
and 4, while Example 2 introduces a Graph Pattern partition
change (see Figs. 10 and 11). We also discuss the actions needed
to incrementally propagate each change to the target model.

5.1 Example1
Example1 is a simple source model represented in Figs. 3, and 4.
We started by saving S as the original model, then applied
different changes (highlighted in dark grey color) and saved it as
S’. Figs. 3.a and 4.a represent the structural and behavioral views
of Example1 old model, while Fig. 3.b and 4.b represents the
changed model S'. The differences detected by the EMF Compare
are marked on the diagram with red numbered circles.
The original model S was transformed to the LQN model shown
in Fig.5 by applying the batch transformation presented in [1].

The root element of type LQNmodel contains two processors D1
and D2, and each processor contains a deployed task, A1 and A2
respectively. Each task has a phase-based entry, whose activities
are contained in an element of type Entryphaseactivities. The
entry of task A1 contains an activity called CallOperationAction1,
which sends a Synchcall to the entry of A2 and waits for a reply.
The entry of A2 contains an activity CallOperationAction ph1.

Figure 5. Original LQN for Example 1

Figure 7. Example1: LQN after creating new Task F and
propagating differences 4 and 6

Figure 6. Example1: LQN after propagating diff 1 and 2

The entry ends by sending a reply back to the caller. While the
reply is not explicitly modeled in LQN, it is implied by the
Synchcall semantics. However, the UML activity diagram from
Fig.4.a that models the behaviour of the entry of task A2, contains
a SendSignalAction1 that sends the reply back via a cross-border
edge.
EMF Compare matches each element in S with each element in S’
starting from the root. When the two elements are identical, EMF
Compare does not detect any differences. We discuss only the
matches that generate differences. They are in the same order as
generated by EMF Compare.
A. Change activity partition A2: Differences in the form {type,

kind, DiffRef, DiffVal} when matching S!A2 with S’!A2’:
1. {RC, ADD, node, OpaqueAction1}
2. {RC, DELETE, node, CallOperationAction ph1}
3. {RC, ADD, edge, goToEnd2}.

Applying the previous steps from 1 to 4 on the changed activity
partition A2’, where A2 is an old element. As we discussed before,
the existence of the element in UML does not mean that the
element exists in Lqn. It depends if the element type has a guard or
not and if that guard has been met or not. As a result, from applying
step 4, we know that A2 exits in Lqn. Following the transformation
assumptions which states that the name attribute of each
ActivityPartition should be identical to the name attribute of its
corresponding Artifact, we can get the target type for A2 by
invoking getTargetType (ElementName) operation which returns
type Task. Then we can get the target name by executing
getTargetName (ElementName) operation. After getting the task
name, we are able to know the changes suffered by task A2. The
next to step is to update task A2 according the above differences
(see step5). An update is a composite change that is performed as a
set of operations on A2.
Action for Diff 1: we get the type of OpaqueAction1 with getType
operation, which returns OpaqueAction type. Then getTargetType
operation checks the mapping table and returns the activity type as
OpaqueAction mapped to activity in Lqn.
According to the LQN metamodel, task is not a direct container of
activity, but it is a container of task-activities if entry type is
GRAPH. On the other hand, entry is a container of entry-phase-
activities, if entry type is PH1PH2.The entry type identifies the
container type for the collection of activities modeling the entry
behaviour . In order to add the new activity OpaqueAction1, we
need two steps: first create the activity and next find the container
for the new activity. In the first step, we have to check if type
OpaqueAction has a guard that needs to be satisfied and if the
activity OpaqueAction1 exits or not in the Lqn (to double check
whether OpaqueAction1 was created when matching other
differences). In this case OpaqueAction does not have a guard,
there is no trace, and kind =ADD, so we can create a new LQN
activity and initialize its name to OpaueAction2. This is done by
invoking operation addChildToTask with parameter E’, whose type
is task, name is A2 and DiffVal is OpaqueAction1 of type activity.
Inside the operation, we get the entry of A2 and check its type by
invoking isGRAPHPattern operation that returns true if entry is of
type GRAPH and false if entry is of type PH1PH2. Some changes

to activity partition, for instance adding control nodes of type
decision and merge, may affect indirectly the evaluation of
isGRAPHPattern operation, which in turn may affect the entry
type, even if the source element for that entry did not change. For
that reason, invoke isGRAPHPattern inside addChildToTask
operation and update the type of entry according to its returned
value. Later, we will see such a case in Example 2. If the entry type
is PH1PH2, then the container of the new activity is an entry-
phase-activities block. We check if this block has already been
created in Lqn. If yes, then it already has a collection of activities to
which we can add the new activity. On the other hand, if entry-
phase-activities is not defined, we need to create it, then add the
new activity to it. Finally, we need to update the trace file by
addTrace operation, in order to add a new trace for OpaqueAction1
activity. In case of entry type GRAPH, we followed the same
previous steps and add the new activity to task-activities block (if it
already exist) or create a new task-activities block and add the new
activity to it.
Action for Diff 2: type=RC, kind=DELETE: we deleted DiffRef
node CallOperationAction ph1. From the above discussion, we
know that A2 is a task in Lqn, so we need to know the type of the
deleted element from S by invoking getType, which returns
CallOperationAction. The next step is to check if
CallOperationAction ph1 exists it in the Lqn model. If it does exist,
we can delete it by deleteActivity operation. It takes DiffVal as a
parameter and matches it with Lqn activity then deletes it. Finally,
the trace is updated by deleting CallOperationAction ph1 trace.
Fig.6 shows the Lqn model after propagating the differences 1 and
2.

Action for Diff 3: adding a new reference edge to A2 (the DiffVal is
gotoEnd2). Its action has the same steps as the previous ones,

Figure 8. Example1: LQN after propagating difference 13

Figure 9. Example1: LQN after adding new Synchcall and
propagating difference 22

except that type ControlFlow has three guards (see Table 1) so we
need to check which guard is true. In this case, control flow
goToEnd2 does not satisfy any of the three guards, so no action is
needed on the Lqn side.

B. Add new partition F: Differences in the form {type, kind,
DiffRef, DiffVal} obtained by matching S’!F’:

4. {RC, ADD, node, AcceptEventAction2}
5. {RC, ADD, node, SendSignalAction2}
6. {RC, ADD, node, NEWCallOperationAction2}
7. {RC, ADD, node, goToAction2}
8. {RC, ADD, node, goToSendSignal2}

F’ is a new ActivityPartition introduced in S’, which did not exist
before in S. We create the corresponding target element for F in
Lqn as follows. First, we invoke getType (F’) that returns Activity
Partition. As mentioned in [1], there is an assumption that an
ActivityPartition should have the same name as the Artifact whose
behaviour is represented by the activities in that partition. Using
this assumption, in the UML model the names of the artifacts
from the deployment diagram appears as names of activity
partitions in the activity diagram. We get the target type from the
mapping table by getTargetType operation, which returns task in
this case. Second, we need to identify the location in Lqn where
the new task F should be added (i.e., the container of F). In order
to do so, we identify the container of the UML artifact F with the
getNamespaceForArtifact operation, which returns in this case
device D2 [21]. In the trace file, the target element D2 of type
Processor corresponds to the source element D2 of type Device,
therefore the LQN processor D2 is the container for task F.
Finally, we add task F as a child to processor D2 and update the
trace by adding a new trace for task F. After adding F as a task to
Lqn, we can take actions for its differences.
Action for Diff 4: Add AcceptEventAction2 to task F. First
invoke getType for AcceptEventAction2 that returns
AcceptEventAction type. From the mapping table, we get entry
that is the target type for AcceptEventAction type. According to
LQN metamodel, task is the container of entry. Next, we check if
AcceptEventAction type has a guard, which is isGRAPHPattern
that evaluates to true. A trace exists for AcceptEventAction2
which returns false. Since kind =ADD, we create a new entry
AcceptEventAction2 in Lqn by invoking addChildToTask
operation with parameter E’, with type task, name F, DiffVal
name AcceptEventAction2 and its type is entry. The new entry is
added to the containment reference from task to entry. The new
entry is of type is PH1PH2 according to the operation
isGRAPHPattern. Finally, we create a trace for
AcceptEventAction2. Fig.7 shows the LQN model after adding F
and propagating differences 4 and 6.
Action for Diff 5: Adding the target element corresponding to the
source element SendSignalAction2 of type SendSignalAction as an
activity to task F follows the same steps as for adding
AcceptEventAction2 entry, except that SendSignalAction type is
mapped to an LQN Activity and has a different guard named
guardForSendSignalAction2Activity. The guard should be
satisfied in order to create its corresponding target element. After

executing guardForSendSignalAction2Activity in this case, it
returns false, therefore no corresponding action is needed to
change Lqn.
Action for Diff 6: To add NEWCallOperationAction2 to task F
we need to follow the same steps as for adding OpaqueAction1 to
task A2 (see diff. 1). NEWCallOperationAction and
OpaqueAction1 types are similar, as both are mapped to type
Activity in LQN and neither has a guard. As discussed before, we
need to get the container for NEWCallOperationAction type and
add the corresponding activity to the containment reference from
activity to entry-phase-activities in the context of task F.
Operation addChildToTask is taking a parameter type task, its
name F and DiffVal name NEWCallOperationAction2 and its type
Activity. In the previous difference, we added a new entry
AcceptEventAction2 of type PH1PH2, then we had to get entry-
phase-activities (if defined), otherwise we had to create a new
collection of them. The last step is to add activity
NEWCallOperationAction2 to its container (entry-phase-
activities) and update the trace file by creating a new trace for
NEWCallOperationAction2 activity. See Fig.7 for the modified
LQN model.
Actions for Diff 7 and 8: are similar to Diff 3, as goToAction2
and goToSendSignal2 are both ControlFlow typed and none of
them satisfies any of the control flow guards. Therefore, no action
is needed to change Lqn.
C. ControlFlow Elements without target: Differences (9-12)

result from matching the elements (goToPh1, goToSend-
Signal1, replyBackToCallOP1, gotoEnd2) in both S and S’.

We discuss the above matches together as they are very similar.
For all of them, both compared sides E and E’ exists in S and S’.
The E type returned by getType for all of them is ControlFlow and
the operation checking the traces returns no trace for each one.
This means that none of them has a target element in Lqn. As we
mentioned before in Diff 3,7 and 8, ControlFlow type in the
mapping has three target types Synchcall, Asynchcall and
Precedence. Each alternative rule has a different guard. One of
them needs to be satisfied in order to identify the target element
type for each control flow. None of the above control flows
satisfies any of the three guards, and then we do not need to take
an action to change the Lqn.
D. ControlFlow generating Synchcall: Difference in the form

{type, kind, DiffRef, DiffVal} obtained by matching
goToAcceptEventAction1 in S and S'.

13. {RC, CHANGE, target, AcceptEventAction2}

Action for Diff 13: Although this match is similar to the previous
ones as both compared sides E (goToAcceptEventAction1) and
E’(goToAcceptEventAction1’) exits in S, S’ respectively, but the
trace checking operation returns true. Therefore, it was easy to
identify its target element synchcall from the trace file. Since we
have all information we need, we can execute updateAttribute
(DiffVal) operation that takes the DiffVal and control flow name
as parameters, then updates synchcall and its attributes. Fig.8
shows the changed LQN after propagating difference 13.

E. New ControlFlow Elements without target. Differences
(14-21) result from matching new elements (goToAction2,
goToSendSignal2, replyBackToCallOP2) that exit in S’ but do
not exist in S. This case is similar to C Differences (9-12)
where there is no need for any action to change the Lqn.

F. New ControlFlow generating Synchcall: Differences in the
form {type, kind, DiffRef, DiffVal} obtained by matching
S’! goToAcceptAction2’.

22. {RC, CHANGE, target, AcceptEventAction1}
23. {RC, CHANGE, source, NewCallOperationAction2}.

The control flow element goToAcceptAction2 is a new element
that exists in S’ but not in S. Since its trace checking operation
returns false, we need to get its type in order to take the necessary
action to change the Lqn. Operation getType returns ControlFlow.
Next, we get its target type from the mapping and its guards.
Since the guard controlflowProcessingforSyncCall determines
that the control flow parameter goToacceptAction2 follows the
synchronous call pattern, we have to take an action to create its
target element and to add it to its correct container in Lqn.
Operation addSynchcall takes control flow’s source and target as
parameters, creates a new Synchcall target element and assigns its
property dest. The source name represents the activity name
which is the container of synchcall according to the LQN
metamodel, so we add the new element to its container and update
the traces. See Fig.9 for the modified LQN.
The next step is to check the differences (22, 23). Action for diff
22 is similar to the action for diff 13. Diff 23 does not need an
action, as source property is not mapped to any property in Lqn.
We do not discuss other matches because of the limited space and
the fact that their differences do not need any action to propagate
the change to Lqn. Some of them do not meet the guard conditions
like SendSignalAction2 and SendSignalAction1. Other matches
have differences on properties that are not mapped to LQN, such
as the ControlFlow properties outgoing, incoming and inPartition.
G. Container change: Differences in the form {type, kind,

DiffRef, DiffVal} obtained by matching S!D2 and S’!D2’:
45. {RC, ADD, nestedClassifier, F}.

This match has two sides E’(D2’) and E(D2). D2 has changed
when a new artifact F was added to its nestedClassifier reference.
Note that processor is the container of task in LQN metamodel.
D2 is of type Device and is an old element that exists in both S
and S’. Next, we have to check the existence of its corresponding
target element in Lqn. The trace checking operation returns true.
Since D2 has a trace, we can get its target element and target type
from the trace. D2’s target element is processor and its name is
D2. Next, we check if F has a trace or not. The trace checking
operation returns true, as F has been added during the matching of
F, based on the previously mentioned assumption about using the
same name for artifact and activity partition. Therefore, we do not
need to change processor D2 in Lqn. If F was not added before,
we would get its target type (i.e., task) from the mapping and then
invoke addChild operation to add task F to processor D2.

5.2 Example 2
Example 2 illustrates other differences (appearing in dark grey
color) that lead to other Lqn changes not shown in Example 1. An

interesting observation is that some elements in Lqn need to be
checked even though their corresponding source element in UML
has not been changed.
The deployment diagram for example 2 is the same as in Fig. 3.b.
Fig.10 shows the original activity diagram of Example 2, where
none of the three activity partitions has the activities organized in
a Graph Pattern, and Fig.11 shows a changed activity diagram
with activity partition A2 as a Graph Pattern. Please note that the
changes to partition A2, (marked as 12, 13 and 14) are changes to
the properties of the old elements that already exist in A2.
A. Changes inside a partition: Differences in the form {type,

kind, DiffRef, DiffVal} by matching S !A2 and S’!A2’:
1. {RC, ADD, node, OpaqueAction2}
2. {RC, ADD, node, OpaqueAction3}
3. {RC, ADD, node, OpaqueAction4}
4. {RC, ADD, node, DecisionNode1}
5. {RC, ADD, node, MergeNode1}
6. {RC, DELETE, node, ActivityFinalNode2}
7. {RC, ADD, edge, LeaveDecision1ToOp3}
8. {RC, ADD, edge, LeaveDecision1ToOp2}
9. {RC, ADD, edge, its DiffVal is GoToMerge1FromOp2.
10. {RC, ADD, edge, GoToMerge1FromOp3}
11. {RC, ADD, edge, GoToOp4}
12. {RC, ADD, edge, goToDecision1}.

Figure 10. Example2: activity partitions without graph pattern

Figure 11. Changed Example2: activity partition A2
with graph pattern

Action for Diffs 1, 2, 3 are similar to difference 1 in Example 1,
as A2 exists in both sides of the match and it has a trace, which
means its corresponding target exists in Lqn. The target element
for OpaqueAction type is LQN Activity; we need to create a target
element for each source element OpaqueAction2, OpaqueAction3
and OpaqueAction4. Task A2 has entry AcceptEventAction1, of
type PH1PH2, so it has an entry-phase-activities block as
container for the collection of activities. As shown in Example1,
diff 1, some changes, like adding new control nodes of type
decision or merge can affect indirectly the type of entry. For that
reason, operation addChildToTask invokes isGRAPHPattern
operation in order to check the entry type. In this case, the type of
entry should be updated to type GRAPH, and a task-activities
block should be created instead of the existing entry-phase-
activities block. Since A2 has already a collection of activities, we
need to create a new task-activities block and move that collection
to it. According to the LQN metamodel, a task-activities block
and entry-phase-activity block cannot exist at the same time, so
we delete the entry-phase-activities block. Fig.12 represents an
intermediate step for deleting entry-phase-activities and creating
task-activities. As a last step, a new activity with the same name is

created for each of the source elements OpaqueAction2,
OpaqueAction3 and OpaqueAction4. The new activities will be
added to the already existing collection of activities.
Action for Diff 4: the difference here is adding a new node with
DiffVal being DecisionNode1.To take an action for this difference,
we get the type of the new node (that is DecisionNode) and invoke
the trace checking operation that returns false, which means it
does not exist in Lqn. In order to propagate the difference to Lqn
we invoke addChildToTask operation, which in turn invokes
createPrePostorDecisionNode operation. This creates the target
elements for DecisionNode1 in the context of A2 task which is the
container of task-activities block that in turn is the container of
Precedence, the target type for DecisionNode type .
The mapping here between the source type, DecisionNode, and its
target type, Precedence, is not one to one. Instead, each
DecisionNode in S has three target elements in Lqn: precedence,
pre and postor elements. The last two need to be created as
children of their precedence container. Each pre and post
elements contain elements of type ActivityR, which refer to the
interconnected activities. For more details, see [1]. Finally, we
update the trace.
Action for Diff 5: This difference is similar to diff 4, as
MergeNode1 needs to be added as a precedence in Lqn. However,
the precedence has post and preor as children, so addChildToTask
operation invokes createPreorPostMergeNode that takes the
mergeNode and task A2 as parameters and creates a precedence
element and its children. Next, add the corresponding trace to
update the trace file. Figure 14 represents Lqn after propagating
diffs 1 through 5.

Figure 14. Example2: LQN after adding a new precedence and
its children (Pre, Post), Replyentry and Replyactivity

Figure 13. Example 2: Lqn after Propagating Differences
1 through 5

Figure 12. Intermediate step for adding Taskactivities

Differences from 6 to 12, do not need any action for changing
Lqn. DiffVal for diff. 6 is of type Activity FinalNode that is not
mapped to any type in Lqn. Regarding the differences from 7 to
12, all of them are of type control flow and none satisfies any of
the three possible guards.
A. ControlFlow generating precedence: Differences in the

form {type, kind, DiffRef, DiffVal} obtained by matching
S!goToSendSignal1, S’! goToSendSignal1’:

13. {RC, ADD, source, OpaqueAction4}.
As discussed before, goToSendSignal1 of type ControlFlow exists
in S and has been changed in S’. However, it does not exist in Lqn
as it has no trace. From the mapping, we know that control flow
has three guards. After testing each of them, only
guardForControlFlowToPrecedence returns true. Now we are
able to create a precedence and its two children pre and post in
Lqn as target elements. The action for propagating this difference
is done by invoking createPrePostControlFlow that is invoked
through addChildToTask.
After creating the precedence for goToSendSignal1 control flow
(see Fig.14), we can check the generated difference on its property
source. Since source is a property not mapped mapped to any
property of precedence in Lqn , there is no need for any action.

B. SendSignalAction generating activity: Differences {type,
kind, DiffRef, DiffVal} obtained by matching S!
SendSignalAction1 and S’! SendSignalAction1’:

14. {RC, ADD, outgoing, goToEnd2}.

Although SendSignalAction1 is an old element that exists in both
S and S’, its target element does not exist in Lqn as there is no
trace corresponding to it. Since SendSignalAction type has a
guard, we have to evaluate it because changes occurred in the
element itself or elsewhere in its activity partition might affect the
evaluation of the guard. The respective guard takes the property
incoming of goToSendSignal1 as a parameter and checks two
conditions: a) if the respective control flow is located inside the
activity partition and b) its target element SendSignalAction1 is
not part of a GRAPH pattern. As both conditions are satisfied, we
need to create a new LQN activity called SendSignalAction1, a
replyentry and a replyactivity in Lqn. We also need to identify the
location for the newly created elements. From the LQN
metamodel we know that Task is the container of task-activities
block or entry-phase-activities block and one of them can be the
container of activity. In order to identify the location, we invoke
the operation getActivityPartitionForElement which gets the
activity partition for SendSignalAction1. Each ActivityPartition
corresponds to an Artifact which is mapped to a Task in Lqn.
Operation addChildTask checks the type of entry and its block,
and then adds to them the new activity, replyentry and
replyactivity. In this case, entry AcceptEventAction1 is of type
GRAPH and has a task-activities block to which we added the
new activity SendSignalAction1, replyentry and replyactivity (as
shown in Fig.14). Last, the trace file is updated.
We do not discuss other matches in order to avoid repetition, as
they are similar to those already discussed. Some differences do
not need any action to propagate the changes to Lqn because the

guard condition is not met. Other matches have differences on
properties that are not mapped to LQN.

6 VALIDATION APPROACH
In order to validate the Incremental Change Propagation approach
developed in Epsilon we used multiple test cases including two
kinds of changes: a) atomic changes (add or delete model
elements one by one) and b) composite changes (add, delete,
update and move more elements at a time). Many of the tests for
atomic changes are similar to the ADD and DELETE cases
described in Section 5. For the composite changes, we used a set
of six design patterns used for analyzing the performance effects
of SOA design patterns in [25]: Façade, Service Decomposition,
Service Callback, Redundant Implementation, Partial State
Deferral, User Interface Mediator. Each design pattern was
applied by hand to a UML model and then we used the version
without and with pattern as S and S' models. For instance, the
changes from Fig. 4.a to Fig 4.b are inspired from the Façade
design pattern.
In order to facilitate the task of deciding whether the LQN models
produced by our ICP approach are correct, we avoided the use of
manual inspection as it is error prone. In fact, manual verification
whether two models are identical represents a threat to the validity
of the conclusion, especially when the compared models are large.
In order to eliminate this threat, we used the following procedure
after executing the proposed ICP approach:
• Re-execute the batch transformation taking the evolved UML

models as source for updating the LQN model and the trace
model. Using EMF Compare, we compare two LQN models
for each evolved UML model: a) one generated by re-
running the batch transformation and b) the other obtained
via the ICP approach.

• A test passes when the two compared LQN models (a) and
(b) are identical, which is indicated as "zero differences" by
the EMF Compare tool. For all test cases used to validate the
ICP implementation, we generated zero differences.

Please note that the updated LQN model is validated not only
after completing the incremental change propagation, but also
during the execution of ICP. This is done by taking advantage of
the EOL run configuration, which checks every LQN model
change against the LQN metamodel and displays error messages
if any action to update the LQN model during the execution
violates the metamodel constraints.

7 CONCLUSIONS
The contribution of this paper is the development of an automatic
incremental change propagation (ICP) approach from
UML+MARTE software models to LQN performance analysis
model in the context of MDE of real-time distributed and
embedded systems. The proposed approach supports atomic
changes (add, delete) and composite changes (update, move). To
the best of our knowledge, our approach is one of the few that can
support move and update changes. Our ICP helps in supporting
the integration of quantitative performance analysis in the early

phases of software development process, by automating the
generation of performance models from the software models
under development and keeping them synchronized as the models
evolve. This is in agreement with [18], which states that evolution
solutions should be integrated with solutions for model quality
and model consistency, since the goal of model evolution is to
improve the quality of the system.
A direction for future work is to apply the proposed ICP approach
to propagate changes to other analysis models for other non-
functional requirements (such as reliability, availability, safety)
expressed in different formalisms (such as Petri nets variants,
Markov Chains, fault trees). Since each analysis model has its
own metamodel, we may need to extend our approach to take
different actions according to the metamodel relationships. For
now, our approach is able to take all the actions necessary to
propagate changes from UML to LQN performance models.

ACKNOWLEDGMENTS
This work was supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC) through its Discovery
Grant program.

REFERENCES
[1] Altamimi, T., Mana, Z. and Dorina, P. 2016. Performance analysis

roundtrip : automatic generation of performance models and results
feedback using cross-model trace links. CASCON Proceedings
Conference. (2016).

[2] Eclipse EMF Compare: Developer Guide, 2009.
/www.eclipse.org/emf/compare/documentation/latest/developer/developer
-guide.html#The_Comparison_Model. Accessed: 2017-05-23.

[3] Gruschko, G., Kolovos, D., Paige, R. 2007. Towards Synchronizing
Models with Evolving Metamodels. Workshop on Model-Driven Software
Evolution (MODSE), 11th European Conference on Software
Maintenance and Reengineering. (2007).

[4] Hassani, F., Sedighiani, K., Aliee, F.S. and Angabini, A. 2011. From uni-
directional model transformation to incremental model synchronization.
2011 5th Malaysian Conference in Software Engineering, MySEC 2011.
(2011), 88–94.

[5] Hearnden, D., Lawley, M. and Raymond, K. 2006. Incremental Model
Transformation for the Evolution of Model-Driven Systems. 9th
International Conference, MoDELS,Proceedings. O. Nierstrasz, J.
Whittle, D. Harel, and G. Reggio, eds. Springer, 321–335.

[6] Herrmannsdoerfer, M., Benz, S. and Juergens, E. 2009. COPE -
automating coupled evolution of metamodels and models. Springer
LNCS, Vol. 5653, (2009), 52–76.

[7] Herrmannsdoerfer, M., Vermolen, S.D. and Wachsmuth, G.H. 2010. An
Extensive Catalog of Operators for the Coupled Evolution of Metamodels
and Models. Proceedings of the 3rd Int. Conf. on Software Language
Engineering, SLE 2010. Springer, LNCS 6563 (2010).

[8] Jimenez, A.M. 2005. Change propagation in the MDA: A model merging

approach. University of Queensland.
[9] Johann, S. and Egyed, A. 2004. Instant and incremental transformation of

models. Proceedings - 19th International Conference on Automated
Software Engineering, ASE 2004. (2004), 362–365.

[10] Khalil, A. and Dingel, J. 2013. Supporting the Evolution of UML Models
in Model Driven Software Development : A Survey. Technical Report
602, School of Computing, Queen’s University, Ontario, Canada.

[11] Kolovos, D.S., Di Ruscio, D., Pierantonio, A. and Paige, R.F. 2009.
Different models for model matching: An analysis of approaches to
support model differencing. Cvsm. (2009), 1–6.

[12] Kolovos, D.S., Rose,L.,García-Domínguez, A., Paige, R.F., The Epsilon
Book, www.eclipse.org/epsilon/doc/book/, last visitedAugust 2017..

[13] Kusel, A., Etzlstorfer, J., Kapsammer, E., Langer, P., Retschitzegger, W.,
Schoenboeck, J., Schwinger, W. and Wimmer, M. 2013. A survey on
incremental model transformation approaches. CEUR Workshop
Proceedings. 1090, (2013), 4–13.

[14] Levendovszky, T., Rumpe, B. and Sprinkle, J. 2011. Model Evolution
and Management. Model-Based Engineering of Embedded Real-Time
Systems. (2011), 241–270.

[15] Mani, N., Petriu, D.C. and Woodside, M. 2013. Propagation of
incremental changes to performance model due to SOA design pattern
application. 2013 4th ACM/SPEC International Conference on
Performance Engineering, ICPE 2013. (2013), 89–100.

[16] Méndez-Acuña, D. and Casallas, R. 2012. Effective detection of model
changes. 2012 7th Colombian Computing Congress, CCC 2012 -
Conference Proceedings. (2012), 0–4.

[17] Mengerink, J.G.M., Schiffelers, R.R.H., Serebrenik, A. and Van Den
Brand, M.G.J. 2016. DSL/Model Co-Evolution in Industrial EMF-Based
MDSE Ecosystems. ME@ MODELS (2016), 2–7.

[18] Mens, T., Blanc, X. and Mens, K. 2007. Model-driven software
evolution : An alternative research agenda. The 6th BElgian-NEtherlands
software eVOLution workshop (BENEVOL 2007) (2007), 1–7.

[19] Mens, T., Michel, W. and Stephane, D. 2005. Challenges in Software
Evolution. 8thj International Workshop on Principles of Software
Evolution (IWPSE’05), 13–22.

[20] Mens, T., Serebrenik, A. and Cleve, A. 2014. Evolving Software Systems.
Springer-Verlag Berlin Heidelberg.

[21] Object Management Group 2015. Unified Modeling Language (UML).
Version 2.5,formal-15-03-01.

[22] Petriu, D.C. 2015. Challenges in integrating the analysis of multiple non-
functional properties in model-driven software engineering. Proc. of
ACM/SPEC Workshop on Challenges in Performance Methods for
Software Development, WOSP-C 2015, 41–46.

[23] Ráth I., Bergmann G., Ökrös A., V.D. 2008. Live Model Transformations
Driven by Incremental Pattern Matching. ICMT ’08 Proceedings of the
1st international conference on Theory and Practice of Model
Transformations Pages 107 - 121 (Berlin, Heidelberg, 2008), 107–121.

[24] Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M. and Mei, H. 2007.
Towards automatic model synchronization from model transformations.
Proceedings of the 22 IEEEACM international conference on Automated
software engineering ASE 07. (2007), 164–173.

[25] Mani, N., 2015. Studying the Performance Impact of SOA Design
Patterns via Coupled Model Transformations. PhD Thesis, Carleton
University, Dept. of Systems and Computer Engineering.

