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ABSTRACT 
This paper proposes an approach for performance analysis 
roundtrip in the context of model-driven engineering (MDE) of 
real-time distributed and embedded systems. The starting point is 
a UML software model with MARTE performance annotations, 
such as performance requirements and resource demands. The 
source software model is automatically transformed into a 
Layered Queueing Network (LQN) performance model. We 
developed the transformation with Epsilon, a family of languages 
for model-to-model transformation, model validation and model 
management. Using specialized languages helped us create a more 
compact transformation, easier to understand and maintain than 
transformations developed with general purpose languages, such 
as Java. Beside the performance model, the transformation also 
generates a traceability model containing trace links between 
mapped elements of the software and performance model. After 
solving the performance model with an existing solver, the 
performance results are fed back to the software model by 
following in reverse the cross-model trace links. The software 
developers can see the performance results as MARTE stereotype 
attributes, using a standard UML editor. The approach is 
illustrated by applying it to an e-commerce application.  
CCS Concepts 
• Software and its engineering → Model -driven software 
engineering • Software and its engineering → Software 
performance 

Keywords 
performance analysis; model transformation; trace links; UML; 
MARTE; LQN; Epsilon. 

1. INTRODUCTION 
Software performance engineering (SPE) is a systematic 
quantitative approach to construct software systems that meet 
their performance requirements. It is based on the careful and 
methodical assessment of software performance properties 
throughout the software lifecycle, from requirements and design 
to implementation and maintenance [23][24].  

 

 

SPE provides developers with quantitative performance results, 
such as throughput, response time and utilization, obtained from 
solving the performance models that it produces from the earliest 
software development phases. The goal is to allow developers to 
assess as early as possible the performance effect of different 
architecture, design, implementation and deployment alternatives, 
in order to satisfy the performance requirements [3][11]. 

In order to help the developers to understand and interpret the 
performance results from the point of view of the software rather 
than performance model, this paper proposes an approach for 
performance analysis roundtrip in the context of model-driven 
engineering (MDE) of real-time distributed and embedded 
systems, as shown in Figure 1. The starting node S represents a 
UML software model with MARTE performance annotations that 
is transformed into a Layered Queueing Network (LQN) [13] 
performance model represented by node P. The transformation 
TransS2P was developed with Epsilon (standing for “Extensible 
Platform of Integrated Languages for model management”) a 
family of languages specialized for model to model trans-
formation, model validation and model management [15]. Using 
Epsilon Transformation Language (ETL) facilitates the automatic 
generation of cross-model trace links along with the generation of 
LQN target elements in one-step transformation. Cross model 
traceability means having direct trace links between S and P, 
which may help in different ways: a) propagate small changes 
from S to P, b) support the co-evolution of the software and 
performance model, and c) import the performance results 
obtained from solving P to the software domain. Point (c) is 
discussed in this paper, while (a) and (b) are left for future work. 
P’ represents the LQN model with performance results after 
solving P with an existing solver, and S’ is the software model 
with performance results stored as values of MARTE stereotype 
attributes. The trace links can be examined in the reverse way, 
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starting from elements in P’ to feed back the performance results 
to the corresponding elements in S’. 

This paper has three objectives: 1) presenting the light-weight 
TransS2P transformation developed in Epsilon, which has more 
powerful means of expressing transformation rules than non-
specialized languages; 2) automating the generation of cross 
model traces; and 3) presenting the performance analysis 
roundtrip to feedback performance results to the UML+MARTE 
model. The proposed roundtrip can also be used with other 
analysis models for nonfunctional requirements, such as 
reliability, availability, security and safety.  

The paper is organized as follows. Section 2 provides an overview 
of related work in this research area. Section 3 the source and 
target models, illustrated with a running example of an e-
commerce system. Section 4 discusses the transformation process. 
Section 5 describes the procedure of feeding back the 
performance results to the software model. Section 6 applies the 
proposed approach to the e-commerce example. The last section 
concludes the paper. 

2. RELATED WORK 
In the software performance engineering field, there have been 
significant efforts to integrate performance analysis into the 
software development process by using different performance 
modeling formalisms: queueing networks, Petri nets, stochastic 
process algebras, and simulation. A good survey of the techniques 
for deriving performance models from UML models is given in 
[4] and later in the book [7]. A few early examples of derivation 
of different kinds of performance models from UML are as 
follows. The technique presented in [6] follows the SPE 
methodology very closely, generating the same kind of models as 
in  [23], but it cannot take as input UML files produced with 
standard editors. In [16] UML models are transformed into Petri 
Nets, but the contention for hardware resources is not considered. 
In [5] it is presented a transformation from UML to Stochastic 
Process Algebra.  

The performance research group from Carleton University has 
implemented a few UML-to-LQN transformations in different 
languages (such as graph-rewriting language Progres, text 
transformation language XSLT and general-purpose language 
Java) and was the first to use the standard UML metamodel 
libraries that were current at the time and the standard 
performance profiles SPT [17] and MARTE [18]. 

The most comprehensive model transformation of the Carleton 
group, which takes as input a number of different software models 
(including UML+SPT and UML+MARTE) and generates a 
number of target performance models (such as LQN, QN and 
Petri nets) is the PUMA transformation [26][27] and its 
extensions for Service-oriented Architecture, PUMA4SOA [1]. 

PUMA uses an intermediate model called Core Scenario Model 
(CSM) [27]. This way, PUMA succeeds in minimizing the large 
semantic gap between UML models and performance models and 
reduces the complexity of the transformation at the cost of having 
two separate transformations: one from UML+MARTE to CSM 
[21] [1] and another from CSM to LQN [22].  

Comparing our light-weight Epsilon transformation with PUMA, 
our transformation goes directly from UML+MARTE to LQN, 
eliminating any intermediate model. Thus, the transformation is 
faster (as there is no need to generate and store an intermediate 
model) and supports easily inter-model traceability. Other 

differences stem from the languages used to implement the 
transformations. Our transformation is developed in Epsilon, a 
declarative/imperative language specialized for model trans-
formations, which offers more powerful and concise language 
constructs; also, the Epsilon engine takes over a number of tasks 
(such as what rule to apply next) that must be handled explicitly 
by a Java transformation. On the other hand, PUMA was 
developed in Java, a general purpose language that does not 
provide built in operations to help in navigating the source model 
or connecting target model elements together, which makes the 
transformation longer and more complicated.  

One of this paper’s contributions is generating cross model trace 
links with the Epsilon Transformation Language (ETL), which 
supports generating trace links for each executed rule. As already 
mentioned, establishing trace links between source and target 
elements allows for tracking, analyzing and propagating the 
impact of change which results from evolving software models. 
There is a considerable difference in complexity between the 
traceability model in our transformation and that proposed in 
PUMA4SOA, an extension of PUMA for Service-Oriented 
Architecture [1]. Due to the use of the CSM intermediate model in 
PUMA4SOA, three traceability metamodels are necessary: UML-
to-CSM, CSM-to-LQN and LQN-to-UML. This complicates not 
only the generation of the tracelinks, but also their navigation.  In 
our case, we defined only one trace links metamodel, and each 
transformation execution generates one set of tracelinks from the 
software to the performance model, as shown in Figure 1. 

The last objective of this paper handles the feedback of 
performance results to the original software model, giving the 
developers the opportunity to see the software model and its 
performance results in the same file. This could be used to 
complete the automation process in the performance improvement 
approach based on software antipatterns proposed in [8]. So far, 
the method for detecting antipatterns takes as input an XML file 
built by hand, which combines information about the software 
model and the performance results. This step could be automated 
now by applying our approach.  

3. SOURCE AND TARGET MODELS 
3.1 Source Model  
The source model taken as input by the transformation is a UML 
2.5 [19] software model annotated with MARTE [18] 
performance information. The source model contains two types of 
UML diagrams: a deployment diagram representing the structure 
of the system and one or more activity diagrams representing the 
behavior of selected key performance scenarios.  

The deployment diagram contains a set of UML nodes 
stereotyped as <<device>> that represent physical computational 
resources with processing capability, and a set of artifacts 
representing software components, each deployed on a device. 
Each activity diagram represents a scenario that is the realization 
of a use case, and models the interaction between software 
components. The behavior of each participating component is 
modeled inside an ActivityPartition (also known as a swimlane) 
which belongs to an ActivityGroup. A swimlane contains different 
types of action nodes and control nodes linked together by edges. 
There are different types of action nodes, such as: a) 
AcceptEventAction - executed when an event has been triggered; 
b) SendSignalAction - responsible for creating and transmitting 
signal instances to the target object; c) CallOperationAction - 
transmits a message representing an operation call request to the 
target object  and  waits  until a reply is  received;  and d) Opaque  



Figure 2. Deployment Diagram of E-commerce System 

Figure 3. Activity Diagram of PlaceOrder Scenario 



Action - a type of UML abstract class considered as an executable 
node included within the behaviour. The control nodes are 
responsible for the flow of tokens between other nodes. Examples 
of control nodes are the initial node which indicates the starting 
point of the execution of the scenario and the final node which 
indicates the termination point of the execution. ForkNode, 
JoinNode, MergeNode, and DecisionNode are other examples of 
control nodes. Other type of model element is the ControlFlow, 
which is an activity edge responsible for passing tokens from its 
source node to its destination node. The activity edges 
interconnect activity nodes to form a graph that represents the 
behaviour of an activity as a sequence of subordinate units. In this 
paper we use the example of an e-commerce system model 
introduced in [7] as the source model for our transformation. The 
system contains three performance-critical use cases selected for 
performance analysis: Browse Catalogue, Browse Cart, and Place 
Order. Figure 2 represents the annotated deployment diagram of 
the system, showing the run-time architecture and the allocation 
of software components to hardware processing nodes. The 
system has three classes of customers with a population of $N1, 
$N2 and $N3 users, respectively. (Note that $N1, $N2 and $N3 are 
variables in the MARTE annotations). Each of the users is 
deployed on its own UserDevice host. In order to insure this, the 
multiplicity of UserDevice1 is $N1, and so on. 

Each class of users is executing repeatedly the use case 
corresponding to its class. The scenarios that represent the 
realization of the three use cases are modeled by three activity 
diagrams. The activity diagram for PlaceOrder scenario is given 
in Figure 3, while the other two can be found in [11]. 

In order to run the transformation successfully and get the 
expected results, the source model needs to satisfy some 
assumptions (the complete list can be found in [11]). Here are a 
few examples of such constraints. The namespace for each device 
element needs to be initialized to the UML element containing it; 
also the namespace for each artifact needs to be initialized to the 
device containing it. ControlFlow has a property called 

inPartition, which must be set only if the control flow is defined 
inside an ActivityPartition. For those ControlFlow representing 
call requests that cross the border between ActivityPartitions, the 
inPartition property does not have to be set. 

3.2 Target Model 
The target model for this transformation is the Layered Queuing 
Network (LQN) [12][13][14]. LQN is a performance model that is 
extended from queuing network and can represent nested services 
(i.e., a server may also be a client to other servers). A LQN model 
is an acyclic graph whose nodes are either software tasks 
(parallelograms) or hardware devices (circles) and the arcs denote 
service requests. Figure 5 shows the LQN model generated from 
the e-commerce example. Existing analytic LQN solvers compute 
the steady-state performance of a system with static allocation of 
resources. In the case where the resources are dynamically 
allocated on demand at run-time, the steady-state solution for each 
configuration of interests must be computed separately. 

 The tasks with outgoing but no incoming arcs play the role of 
clients (also called reference tasks), the intermediate nodes with 
both incoming and outgoing arcs are usually software servers and 
the leaf nodes are hardware servers. A software or hardware 
server node can be either a single-server or a multi-server. 
Software tasks have entries corresponding to different services 
(represented as smaller parallelograms inside the tasks). 

The LQN metamodel is shown in Figure 4, and is based on the 
XML schema defined in the LQN user manual [14]. The Epsilon 
transformation engine, however, requires that the target 
metamodel be represented in EMF Ecore (the metamodeling 
language of the underlying platform Eclipse EMF [9]). The 
Eclipse framework offers a language called Emfatic, designed to 
represent EMF Ecore models in textual form. Therefore, we used 
the Emfatic language to express the metamodel from Figure 5 in a 
textual form, which in turn was converted into EMF Ecore. Like 
the XML-based metamodel from [14], the  root model element  of 

Figure 4. LQN metamodel designed for the Epsilon ETL transformation 



 Figure 5. LQN model generated from the e-commerce 
software model from Figures 2 and 3 

the LQN metamodel is lqnmodel, that is composed of one or more 
processor model elements by using composition associations. In 
other words, lqnmodel and processor have a whole-part 
relationship, following the hierarchy of the XML-based 
metamodel.  
Processor is composed of tasks, which in turn is composed of 
entries or task-activities. Entry is the parent of entry-phase-
activities model element, which is the container of activity model 
element. Activity is the parent of children of type synch-call and 
asynch-call. Task-activities element is composed of elements of 
three types: activity, precedence and reply-entry. Reply-entry is 
the parent of reply-activity. In addition, the elements named pre, 
pre-or, pre-and, post, post-or and post-and are all children of 
precedence model elements. 

4. TRANSFORMATION 
4.1 Transformation Process 
As already mentioned, the transformation from UML+MARTE 
software model to LQN performance model is implemented in 
Epsilon, a family of languages, such as Epsilon Object Language 
(EOL) and Epsilon Transformation Language (ETL) for different  
model management tasks including model transformation, 
comparison, validation, etc. [15].  
In order to generate LQN models from UML+MARTE software 
models we follow a multi-steps process described below: 
a. Building the source model. The first step is building the 

UML software model with performance annotations as a 
source model for the transformation. An open source UML 
editor Papyrus [10] was used to build our source model. 
Papyrus development is supported by PolarSys, an Eclipse 
Industry Working Group created by large industry players 

and by tools providers to collaborate on the creation and 
support of Open Source tools for the development of 
embedded systems. 

b. Pre-transformation: This is an optional step for checking and 
refining the source model in order to discover and eliminate 
bugs or fix missing data before feeding it to the next step, the 
main model transformation. An example is checking the 
inPartition attribute of ControlFlow elements (as mentioned 
in section 3.1). Setting inPartition attribute was automated 
by using Epsilon Object language (EOL)[15]. 

c. Main Transformation: developed in ETL language, it 
generates an initial LQN model in XML format that needs 
some minor extra processing to be in a format acceptable for 
the existing LQN solver tool. 

d. Post-Transformation: the XML file for the initial LQN 
model has to be modified to be exactly conform to the XML 
schema [14]. The modification needs two steps. First, we 
change tag names by inserting dashes ‘-’, which are not 
accepted by Emfatic, but are used in the XML schema [14]. 
Second, we add a solver-param element that cannot be 
derived from the source model. The modification for the tag 
names is done automatically by executing Java code but 
adding solver param was done manually. 

The multi-steps transformation process was automated by using 
an orchestration workflow solution provided by Epsilon, extended 
from ANT [25]. Code Fragment 1 represents the template for the 
ANT file. Each workflow in the ANT file represents a project, 
each project has a number of targets, and each target has a number 
of tasks. The target can also depend on other target that has to be 
executed first. The default target is executed when the whole 
project is executed.  

4.2 Mapping from Source to Target Model 
 In this section we present the mapping between UML+MARTE 
and LQN performance model, as shown in Table 1. Figure 6 
illustrates at a high-level the mapping between source and target 
model elements, shown by red arrows. The elements in the UML 
are annotated with stereotypes from the MARTE profile 
(especially the performance analysis PAM subprofile) to bridge 
the gap between the UML and LQN performance models.  
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<?xml version="1.0"?> 
<project default="main"> 
<target name="loadModels"> 
   <!--This part is to load the models(source,target) and their 
metamodels--> 
</target> 
<target name="Execute" depends="loadModels"> 
   <!--This part is to load ETL file and EOL file --> 
</target> 
<target name="main" depends="Execute"> 
  <java classname="tagPackage.TagModifier" classpath="bin"> 
    <!--This part is to load a Java class with a method that sends 

the initial LQN model file as input argument and returns LQN 
model file after changing the tag names as output argument--> 

   <arg value="initial LQN model file"/> 
   <arg value="modified LQN model file"/> 
  </java> 
</target> 
</project> 
 

Code Fragment 1.  ANT build file 



 

For instance, a device in the deployment diagram is stereotyped 
with“GaExecHost” to show execution resources [18] and is  
mapped to processor in the LQN model. An artifact is annotated 
with “Scheduler” that represents a kind of ResourceBroker, which 
creates access to its brokered ProcessingResource or resources 
following a certain scheduling policy [18]; an artifact is mapped 
to task in LQN.  
 

Table 1. Mapping from UML+MARTE to LQN elemen 

  

In the activity diagram AcceptActionElement, Initial Node, 
OpaqueAction, CallOperationAction and SendSignalAction are 
annotated with “PaStep” stereotype, which is a type of “GaStep” 
and inherits its properties; “PaStep” can be applied to UML action 
or message to indicate behavior steps. AcceptEventAction and 
InitialNode are mapped to LQN entry element. OpaqueAction, 
CallOperationAction and SendSignalAction are mapped to LQN 

activity element. The rest of the elements in the activity diagram, 
such as DecisionNode, MergeNode, JoinNode and ForkNode are 
mapped to precedence in LQN. ControlFlow has some special 
conditions that need to be checked in the transformation rule for 
mapping it to the correct LQN element. For example, if the control 
flow does not cross its partition boundary and it is not an edge for 
any control node such as MergeNode or JoinNode, then it can be 
mapped to precedence LQN element, otherwise it has to be 
mapped to synch-call or asynch-call. See [11] for more details. 

4.3 Transformation Rules 
 In this section we provide some examples of the transformation 
rules used to map the elements from the UML+MARTE source 
model to its corresponding element in the LQN target model. The 
transformation includes an ETL module that has 17 matched rules 
(non-abstract and non-lazy) and 26 EOL operations. We present 
just a few of the rules and operations; for details about other rules 
see [11]. In ETL the matched rules correspond to the declarative 
style and the lazy rules to the imperative style [15]. We avoided 
using any lazy rules as recommended in the Epsilon book [15] to 
avoid any deterioration in the performance of the transformation, 
as using lazy rules can take longer to run.  

An operation is a function used to verify some conditions or 
return a value that can be called from any rule. The concrete 
syntax for the ETL rule has the rule keyword followed by the rule 
name and by (to, transform) keywords for defining the source and 
target parameter. The rule’s body is specified as a sequence of 
EOL statements. An ETL rule also can have optional parts, such 
as guard, which contains an EOL expression that has to be 
satisfied in order to run the rule.  

Our first example is Model2Lqnmodel rule (as shown in code 
fragment 2), which generates the target element lqnmodel from 
the source element Model. Once the Lqn processor is generated it 
will be added as a child to the lqnmodel, which is the root of the 
target model and has a containment relationship with Lqn 
processor element. Lqn processor is generated by another rule 
called Device2Processor, which transforms each device element 
from the source model to a processor in the target model and then 
adds the newly created processor element to the container of 

UM Model Element  MARTE 
Stereotype 

LQN Element 

Model None lqnmodel 
Deployment Diagram 

Device GaExecHost processor 
Artifact Scheduler task 

Activity Diagram 
AcceptEventAction PaStep entry 
InitialNode None entry 
OpaqueAction PaStep activity 
CallOperationAction PaStep activity 
SendSignalAction PaStep activity 
ControlFlow None precedence 
DecisionNode None  precedence 
MergeNode None  precedence 
JoinNode None  precedence 
ForkNode None precedence 
ControlFlow  None  synch-call 
ControlFlow None asynch-call 

Figure 6. High-level view of the mapping between the source and target models 
 



children of lqnmodel. For representing and keeping the 
containment relationship, ETL provides an built in operation 
called “equivalent()” that resolves a target elements which has 
been transformed by other rules [15]. In other words, a processor 
element is generated from a device source element and is added to 
the collection lqn.proceesor. As we can see in the code fragment 
2, the transform part has two variables: “m” representing the 
source element Model of type UML and “lqn” representing the 
corresponding target element of type lqnmodel. Then the name 
attribute of the source element “m” is assigned to the name 
attribute of the target element “lqn”.  

 

rule Model2Lqnmodel 
     transform m : UML!Model 
     to lqn : lqnmodel!lqnmodel{   
          lqn.name= m.name;   
     var devices : Collection=m.getDevices() 
     for(d:Device in devices){ 
         lqn.processor.add(d.equivalent());} 
} 

2. Transformation rule Model2Lqnmodel 

 
operation Model getDevices():Collection{  
    return Device.all.select(d|d.namespace=self  
           and d.hasStereotype("GaExecHost")); } 

Code Fragment 3. Operation getDevices 

 
operation UML!Class 
hasStereotype(name:String):Boolean { 
     var c: Sequence; 
     c=self.getAppliedStereotypes();  
    for(s:Stereotype in c){ 
          if(s.name=name){ 
               return true;}  
    } 
   return false; } 

4. Operation hasStereotype 

 
rule Device2Processor 
    transform d : UML!Device 
    to p : lqnmodel!processor { 
    guard: d.hasStereotype("GaExecHost") 
    p.name=d.name; 
    var schedpolicy:String; 
    schedpolicy=getStereotypeOfDevice(d); 
    p.scheduling=checkPSchedulerType(schedpolicy); 
    var col : Collection=d.getArtifact(); 
    for(a:Artifact in col){ 
          p.task.add(a.equivalent()); } 

Code Fragment 5. Transformation rule Device2Processor 

Code fragment 3 shows the operation getDevices () that is called 
from the rule Model2Lqnmodel in the context of the “Model” 
source element and returns a collection of all “device” instances 
after verifying that each element in the collection (represented by 
d in the code) has the correct stereotype. This is done by passing it 
as a parameter to the operation called hasStereotype () (see code 
fragment 4) that returns “True” if the applied stereotype is equal 

to the passed parameter. Operation getAppliedStereotypes() is an 
ETL built in method called to get all stereotypes that have been 
applied to a UML class since this operation was called within the 
context of the UML class.  

The second example is the Device2Processor rule (code fragment 
5) that transferred each device element of the UML source model 
specifically the deployment diagram to processor element of the 
LQN target model. This rule has a guard that has to be satisfied in 
order to execute it. The guard part is responsible for checking if 
the device instance has “GaExecHost” stereotype. It guarantees 
that only the device instances annotated with “GaExecHost” are 
mapped to processors. The next part of the rule is to initialize the 
processor’s attributes name and scheduling. The name of the 
processor is initialized with the name of the corresponding device 
in the deployment diagram. The scheduling attribute is initialized 
by calling the operation GetStereotypeOfDevice() and passing the 
device from the source as parameter to check if it has a Scheduler 
stereotype , then gets the value of otherSchedPolicy which is one 
of the Scheduler’s attributes. As mentioned before, Scheduler 
stereotype is kind of   ResourceBroker, which gives access to its 
brokered ProcessingResource or resources following a certain 
scheduling policy [18]. The returned value is assigned to a 
variable that is given the name schedpolicy and then is passed as a 
parameter to checkPSchedulerType() operation to set the value of 
scheduling attribute of the processor. The last part of the rule is 
collecting the artifact instances by calling getArtifact() operation 
in the context of a device, that returns all artifact instances whose 
namespace is initialized to the respective device. As the processor 
has a containment relationship with tasks, each task element is a 
target created from an artifact element by other transformation 
rule and added to the p.task reference of the processor.  

It is important to emphasize the fact that transformation rules have 
been built such that they mirror the hierarchy of the LQN 
metamodel, which is based on containment relationships for 
connecting its elements together. The rules follow the same 
containment relationships to connect each generated target 
element with its parent/children by using the equivalent () built in 
operation provided by ETL to resolve the source elements from 
their corresponding target elements transformed by other rules. 
That means, that, when applying equivalent () to a source element, 
it invokes the applicable rule to generate the counterparts of the 
element in the target model [15].   

For example, the lqnmodel root has a containment relationship 
with lqn processors elements, based on that all generated 
processors elements have to be added as a children to the lqn root 
target element by using equivalent() as explained before, to 
invoke Device2Processor rule that generates the processors 
elements. In the same way, Device2Processor rule added all 
generated tasks as children of the generated processor element in 
the target model, since each processor has a containment 
relationship with its tasks in the LQN metamodel. 
Device2Processor rule in turn invokes Artifact2Task, which 
invokes one of four rules to generate LQN entry type from either a 
UML AcceptEventAction or a UML InitialNode. It also invokes 
the corresponding rules for OpaqueAction, CallOperationAction 
and SendSignalAction to generate LQN elements of activity type. 
The rule which generates CallOperationAction invokes one of the 
two rules that transform a UML control flow to LQN synchcall or 
LQN asynchcall. Artifact2Task rule also invokes the rules that 
transfer UML ControlFlow and some of the UML ControlNode, 
such as DecisionNode, MergeNode, JoinNode and ForkNode to 
LQN precedence. 



4.4 Traceability Model 
In MDE traceability plays an important role for establishing links 
between source model elements and target model elements, in 
order to track, analyze and propagate the impact of changes which 
results from evolving the software models. In this section we 
present the steps we followed to generate cross-model trace links. 
Since each model has to conform to its metamodel, the trace 
model has to conform to its metamodel. The authors of [20]  argue 
that case-specific traceability metamodels can be more specialized 
according to each traceability scenario and therefore the 
possibility of establishing illegitimate traceability links is reduced. 
This is unlike in general-purpose traceability metamodels that 
give the ability to create any number of trace links between 
elements from models regardless of their type, which gives a good 
chance for creating illegitimate traceability links. Our Trace 
metamodel similarly to its counterpart from [20], has a Trace 
class which has a containment relationship with Tracelink class. 
However, our Trace metamodel is different from [20] in that the 
Tracelink class has two attributes sourceType and targetType 
representing the source element type and the target element type. 
Another thing that is different, instead of having sources and 
targets in Tracelink class as references to source and target 
element instances, it has two attributes sourceName and 
targetName, representing the name of the source and target 
element instance, respectively. The way we used the Trace 
metamodel is discussed later in section 5. 
Epsilon facilitates generating Trace model automatically when 
executing transformation modules, specifically the Post block. 
ETL module can have Pre/Post blocks, where the post block is 
executed in the order in which it has been specified after 
executing the transformation [15]. We create a new trace link for 
each rule executed by using transTrace that is a global variable 
set up automatically by ETL. Also getSource() and getTargets() 
are methods of the public class Transformation 
in org.eclipse.epsilon.etl.trace Package  and are used to retrieve 
the source and target elements instances. 

5. FEEDBACK OF PERFORMANCE 
RESULTS TO THE SOFTWARE MODEL 
Our goal here is to feed back the performance results to UML 
software model during the round trip performance analysis. The 
developer can look at the results with the UML editor, analyze 
them, decide to make changes in the software model and repeat 
the process until satisfied with the overall performance. 
In order to accomplish this goal, our approach in this round trip 
performance analysis depends basically on reading two files: first 
the Trace Model file that is generated automatically as a result of 
running the transformation, and secondly the XML file obtained 
from the LQN solver after solving the LQN model. Having the 
Trace model helps in matching each target element with its source 
element by following the trace link in the reverse way and then 
feedback the performance results to the corresponding source 
element as values of performance stereotype attributes.  The 
source model is annotated with MARTE stereotypes that have 
performance attributes such as utilization, throughput and 
response time.  
We implemented the proposed approach in EOL language that 
allows us to read two files: the Trace model and the XML file 
with the performance results and write that results to the third file, 
the original UML software model annotated with MARTE profile. 
EOL does not only provide a mechanism to read and write from/to 
files, but also facilitate to create, query and modify XML 

documents. The procedure starts by querying the XML file with 
the performance results, and then querying the Trace model and 
getting the sourceName, sourceType , targetName and targetType 
attributes for each trace link.  Next the targetName attributes are 
used to get the corresponding source attribute name. It is worth 
stressing that matching is not done only by name, but by type as 
well. Once the source element has been identified, then we can 
retrieve its applied stereotype in the UML software model and set 
all its performance attributes to values corresponding to the LQN 
results. The purpose is to help the designers to better understand 
the performance results in terms of software model concepts 
rather than performance model concepts. The software developers 
may not be familiar with the performance model principles, but 
are certainly familiar with the software model. We applied our 
approach to the e-commerce application and fed back the 
performance results to the UML software model elements. 

6. 5BPERFORMANCE ANALYSIS 
This section presents a brief performance analysis of the e-
commerce system model introduced as an example in section 3, 
following the performance round-trip approach several times for 
different configurations corresponding to different resource 
multiplicities (both hardware and software). The software model 
is given in Figure 2 and 3, and the automatically generated LQN 
model in Figure 5. The response time and throughput performance 
results for artifact User1 are given in Figures 7.a and b. 
 

 

 
Figure 7.a) Response time and b) Throughput for class1 users 
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Please note that the e-commerce case study has been taken from 
literature [9] in order to minimize the author bias, which could be 
a potential threat to the validity of a proposed method when all 
test cases are created by the method’s author. 
As mentioned in section 3, there are three classes of users, each 
running a different scenario: BrowseCatalog, BrowseCart and 
PlaceOrder. The think time for each user is 1s. Class1 has the 
largest number of users. In our experiments, we kept a constant 
ratio between the numbers of users: for 48 users in class1, there is 
one user in class2 and one user in class3. For each configuration, 
we solved the model under a variable load (from 100 to 800 users 
in total). Figure 7.a shows the average response time for a class1 
user for four configurations described below, while Figure 7.b 
shows the average throughput. 
A. This is the base case, where the multiplicities of all tasks and 

processors are 1, with the exception of the User tasks (each 
with its own processor) and the CustomerInterface task, 
which has a thread for every User. The results show that the 
response time and throughput curves have each a knee 
starting at around 200 users; the performance deteriorates 
very quickly after the knee, so the operating point should be 
selected before the knee. The analysis of task and processor 
utilizations shows that this is a typical case of software 
bottleneck, with CustomerProcess being the task that 
saturates first, limiting the concurrency level and the 
utilization of resources below the bottleneck. An appropriate 
solution is to raise the number of threads for 
CustomerProcess – which is purely a software solution. 

B. We raised the number of threads of CustomerProcess from 1 
to 50. The results show that the response time and throughput 
improve considerably and the knee of the curves moves to 
the right, being able to accommodate more than double the 
number of simultaneous users before the knee than in Case 
A. The next bottleneck is CatalogServer processor, followed 
immediately by the CatalogServer process. The solution is to 
raise the number of software threads of Catalog Server to 50 
its processor multiplicity to 5.  

C. We applied the solution described above. The performance 
improvement from case B to C is less important than from A 
to B, but still, the knee moves further to the right, 
accommodating at least 100 more simultaneous tasks. The 
next bottleneck is the processor of CustomerProcess.  

D. After increasing the multiplicity of the CustomerProcess 
processor to 5, the response time improves further and the 
knee moves beyond 800 users (where we stopped increasing 
the workload).   

This simple example illustrates how the LQN performance model 
can be used to predict the performance effect of different 
configuration changes. Here the actual diagnosis of performance 
problems (i.e., detecting the system bottleneck) and finding a 
solution for alleviating the problem was done by a human analyst. 
In the future, we intend to integrate our performance round-trip 
approach with performance diagnosis algorithms that will 
enhanced the level of support offered to software developers by 
MDE tools.  

7. CONCLUSIONS 
The contribution of this paper is a model to model transformation 
to generate LQN performance models from UML+MARTE 
software models. The transformation was developed with Epsilon, 
a specialized language family that helped us to develop a more 
compact transformation than with a general purpose language 

(such as Java), easier to understand and maintain. Another 
contribution is the generation of cross-model trace links and their 
use to import performance results into the initial software model. 
The advantage of the one-step transformation is the ability of 
generating automatically along the transformation direct trace 
links between the source and target model. After solving the 
performance model with an existing solver, the performance 
results (such as response time, throughput and utilization of 
different model elements) are fed back to the software model by 
following the cross-model trace links. The software developers 
have access to the performance results as MARTE stereotype 
attributes, using a standard UML editor.  
The transformation presented in this paper has a number of 
limitations. One limitation is that the source model must be built 
according to the description from section 3.1: a deployment 
diagram which shows the allocation of software components to 
hardware processors, and one or more activity diagrams which 
models the behavior of key scenarios selected for performance 
analysis. Some developers may prefer to represent such scenarios 
by using sequence diagrams, so a future extension of the 
transformation will allow for the mapping of sequence diagrams 
to LQN model elements. Another limitation is that the 
transformation works as expected only if all the MARTE 
stereotypes and their attributes are correctly applied by the 
developers who built the UML source model. If stereotypes or 
their attributes are missing where they are expected to be defined, 
the transformation crashes. We plan on making the whole process 
more user-friendly by defining pre-transformation operations that 
check the source model and either notify the developer if elements 
with undefined stereotypes and attributes are found, or assign 
default values to undefined attributes (for instance, missing CPU 
processing demands of <<PaStep>> can be assigned to zero). 
Such pre-transformation verifications of the source model would 
minimize the transformation errors due to incorrect input models. 
Another direction for future work is to integrate our approach with 
the approach presented in [8] to automatically detect and fix 
performance problems based on performance antipatterns. Their 
approach is not fully automated, as the software model and 
performance results exits in different models and are brought in 
the same file manually. Another future work direction is to apply 
our approach for generating cross-model trace links to other 
analysis models for other nonfunctional requirements (such as 
reliability, availability, safety). 
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