
Performance analysis roundtrip: automatic generation of
performance models and results feedback

using cross-model trace links
Taghreed Altamimi, Mana Hassanzadeh Zargari, Dorina Petriu

Carleton University
Systems and Computer Engineering Department

Ottawa, Ontario, Canada
{taghreedaltamimi | manazargar | petriu}@sce.carleton.ca

ABSTRACT
This paper proposes an approach for performance analysis
roundtrip in the context of model-driven engineering (MDE) of
real-time distributed and embedded systems. The starting point is
a UML software model with MARTE performance annotations,
such as performance requirements and resource demands. The
source software model is automatically transformed into a
Layered Queueing Network (LQN) performance model. We
developed the transformation with Epsilon, a family of languages
for model-to-model transformation, model validation and model
management. Using specialized languages helped us create a more
compact transformation, easier to understand and maintain than
transformations developed with general purpose languages, such
as Java. Beside the performance model, the transformation also
generates a traceability model containing trace links between
mapped elements of the software and performance model. After
solving the performance model with an existing solver, the
performance results are fed back to the software model by
following in reverse the cross-model trace links. The software
developers can see the performance results as MARTE stereotype
attributes, using a standard UML editor. The approach is
illustrated by applying it to an e-commerce application.
CCS Concepts
• Software and its engineering → Model -driven software
engineering • Software and its engineering → Software
performance

Keywords
performance analysis; model transformation; trace links; UML;
MARTE; LQN; Epsilon.

1. INTRODUCTION
Software performance engineering (SPE) is a systematic
quantitative approach to construct software systems that meet
their performance requirements. It is based on the careful and
methodical assessment of software performance properties
throughout the software lifecycle, from requirements and design
to implementation and maintenance [23][24].

SPE provides developers with quantitative performance results,
such as throughput, response time and utilization, obtained from
solving the performance models that it produces from the earliest
software development phases. The goal is to allow developers to
assess as early as possible the performance effect of different
architecture, design, implementation and deployment alternatives,
in order to satisfy the performance requirements [3][11].

In order to help the developers to understand and interpret the
performance results from the point of view of the software rather
than performance model, this paper proposes an approach for
performance analysis roundtrip in the context of model-driven
engineering (MDE) of real-time distributed and embedded
systems, as shown in Figure 1. The starting node S represents a
UML software model with MARTE performance annotations that
is transformed into a Layered Queueing Network (LQN) [13]
performance model represented by node P. The transformation
TransS2P was developed with Epsilon (standing for “Extensible
Platform of Integrated Languages for model management”) a
family of languages specialized for model to model trans-
formation, model validation and model management [15]. Using
Epsilon Transformation Language (ETL) facilitates the automatic
generation of cross-model trace links along with the generation of
LQN target elements in one-step transformation. Cross model
traceability means having direct trace links between S and P,
which may help in different ways: a) propagate small changes
from S to P, b) support the co-evolution of the software and
performance model, and c) import the performance results
obtained from solving P to the software domain. Point (c) is
discussed in this paper, while (a) and (b) are left for future work.
P’ represents the LQN model with performance results after
solving P with an existing solver, and S’ is the software model
with performance results stored as values of MARTE stereotype
attributes. The trace links can be examined in the reverse way,

SAMPLE: Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CASCON’16, October 31– November 2, 2016, Toronto, ON, Canada.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.
DOI: http://dx.doi.org/10.1145/12345.67890

S P

P’

Trace

Feedback using TraceR

Solve

Trans S2P

S’

Figure 1. Performance Analysis Roundtrip

starting from elements in P’ to feed back the performance results
to the corresponding elements in S’.

This paper has three objectives: 1) presenting the light-weight
TransS2P transformation developed in Epsilon, which has more
powerful means of expressing transformation rules than non-
specialized languages; 2) automating the generation of cross
model traces; and 3) presenting the performance analysis
roundtrip to feedback performance results to the UML+MARTE
model. The proposed roundtrip can also be used with other
analysis models for nonfunctional requirements, such as
reliability, availability, security and safety.

The paper is organized as follows. Section 2 provides an overview
of related work in this research area. Section 3 the source and
target models, illustrated with a running example of an e-
commerce system. Section 4 discusses the transformation process.
Section 5 describes the procedure of feeding back the
performance results to the software model. Section 6 applies the
proposed approach to the e-commerce example. The last section
concludes the paper.

2. RELATED WORK
In the software performance engineering field, there have been
significant efforts to integrate performance analysis into the
software development process by using different performance
modeling formalisms: queueing networks, Petri nets, stochastic
process algebras, and simulation. A good survey of the techniques
for deriving performance models from UML models is given in
[4] and later in the book [7]. A few early examples of derivation
of different kinds of performance models from UML are as
follows. The technique presented in [6] follows the SPE
methodology very closely, generating the same kind of models as
in [23], but it cannot take as input UML files produced with
standard editors. In [16] UML models are transformed into Petri
Nets, but the contention for hardware resources is not considered.
In [5] it is presented a transformation from UML to Stochastic
Process Algebra.

The performance research group from Carleton University has
implemented a few UML-to-LQN transformations in different
languages (such as graph-rewriting language Progres, text
transformation language XSLT and general-purpose language
Java) and was the first to use the standard UML metamodel
libraries that were current at the time and the standard
performance profiles SPT [17] and MARTE [18].

The most comprehensive model transformation of the Carleton
group, which takes as input a number of different software models
(including UML+SPT and UML+MARTE) and generates a
number of target performance models (such as LQN, QN and
Petri nets) is the PUMA transformation [26][27] and its
extensions for Service-oriented Architecture, PUMA4SOA [1].

PUMA uses an intermediate model called Core Scenario Model
(CSM) [27]. This way, PUMA succeeds in minimizing the large
semantic gap between UML models and performance models and
reduces the complexity of the transformation at the cost of having
two separate transformations: one from UML+MARTE to CSM
[21] [1] and another from CSM to LQN [22].

Comparing our light-weight Epsilon transformation with PUMA,
our transformation goes directly from UML+MARTE to LQN,
eliminating any intermediate model. Thus, the transformation is
faster (as there is no need to generate and store an intermediate
model) and supports easily inter-model traceability. Other

differences stem from the languages used to implement the
transformations. Our transformation is developed in Epsilon, a
declarative/imperative language specialized for model trans-
formations, which offers more powerful and concise language
constructs; also, the Epsilon engine takes over a number of tasks
(such as what rule to apply next) that must be handled explicitly
by a Java transformation. On the other hand, PUMA was
developed in Java, a general purpose language that does not
provide built in operations to help in navigating the source model
or connecting target model elements together, which makes the
transformation longer and more complicated.

One of this paper’s contributions is generating cross model trace
links with the Epsilon Transformation Language (ETL), which
supports generating trace links for each executed rule. As already
mentioned, establishing trace links between source and target
elements allows for tracking, analyzing and propagating the
impact of change which results from evolving software models.
There is a considerable difference in complexity between the
traceability model in our transformation and that proposed in
PUMA4SOA, an extension of PUMA for Service-Oriented
Architecture [1]. Due to the use of the CSM intermediate model in
PUMA4SOA, three traceability metamodels are necessary: UML-
to-CSM, CSM-to-LQN and LQN-to-UML. This complicates not
only the generation of the tracelinks, but also their navigation. In
our case, we defined only one trace links metamodel, and each
transformation execution generates one set of tracelinks from the
software to the performance model, as shown in Figure 1.

The last objective of this paper handles the feedback of
performance results to the original software model, giving the
developers the opportunity to see the software model and its
performance results in the same file. This could be used to
complete the automation process in the performance improvement
approach based on software antipatterns proposed in [8]. So far,
the method for detecting antipatterns takes as input an XML file
built by hand, which combines information about the software
model and the performance results. This step could be automated
now by applying our approach.

3. SOURCE AND TARGET MODELS
3.1 Source Model
The source model taken as input by the transformation is a UML
2.5 [19] software model annotated with MARTE [18]
performance information. The source model contains two types of
UML diagrams: a deployment diagram representing the structure
of the system and one or more activity diagrams representing the
behavior of selected key performance scenarios.

The deployment diagram contains a set of UML nodes
stereotyped as <<device>> that represent physical computational
resources with processing capability, and a set of artifacts
representing software components, each deployed on a device.
Each activity diagram represents a scenario that is the realization
of a use case, and models the interaction between software
components. The behavior of each participating component is
modeled inside an ActivityPartition (also known as a swimlane)
which belongs to an ActivityGroup. A swimlane contains different
types of action nodes and control nodes linked together by edges.
There are different types of action nodes, such as: a)
AcceptEventAction - executed when an event has been triggered;
b) SendSignalAction - responsible for creating and transmitting
signal instances to the target object; c) CallOperationAction -
transmits a message representing an operation call request to the
target object and waits until a reply is received; and d) Opaque

Figure 2. Deployment Diagram of E-commerce System

Figure 3. Activity Diagram of PlaceOrder Scenario

Action - a type of UML abstract class considered as an executable
node included within the behaviour. The control nodes are
responsible for the flow of tokens between other nodes. Examples
of control nodes are the initial node which indicates the starting
point of the execution of the scenario and the final node which
indicates the termination point of the execution. ForkNode,
JoinNode, MergeNode, and DecisionNode are other examples of
control nodes. Other type of model element is the ControlFlow,
which is an activity edge responsible for passing tokens from its
source node to its destination node. The activity edges
interconnect activity nodes to form a graph that represents the
behaviour of an activity as a sequence of subordinate units. In this
paper we use the example of an e-commerce system model
introduced in [7] as the source model for our transformation. The
system contains three performance-critical use cases selected for
performance analysis: Browse Catalogue, Browse Cart, and Place
Order. Figure 2 represents the annotated deployment diagram of
the system, showing the run-time architecture and the allocation
of software components to hardware processing nodes. The
system has three classes of customers with a population of $N1,
$N2 and $N3 users, respectively. (Note that $N1, $N2 and $N3 are
variables in the MARTE annotations). Each of the users is
deployed on its own UserDevice host. In order to insure this, the
multiplicity of UserDevice1 is $N1, and so on.

Each class of users is executing repeatedly the use case
corresponding to its class. The scenarios that represent the
realization of the three use cases are modeled by three activity
diagrams. The activity diagram for PlaceOrder scenario is given
in Figure 3, while the other two can be found in [11].

In order to run the transformation successfully and get the
expected results, the source model needs to satisfy some
assumptions (the complete list can be found in [11]). Here are a
few examples of such constraints. The namespace for each device
element needs to be initialized to the UML element containing it;
also the namespace for each artifact needs to be initialized to the
device containing it. ControlFlow has a property called

inPartition, which must be set only if the control flow is defined
inside an ActivityPartition. For those ControlFlow representing
call requests that cross the border between ActivityPartitions, the
inPartition property does not have to be set.

3.2 Target Model
The target model for this transformation is the Layered Queuing
Network (LQN) [12][13][14]. LQN is a performance model that is
extended from queuing network and can represent nested services
(i.e., a server may also be a client to other servers). A LQN model
is an acyclic graph whose nodes are either software tasks
(parallelograms) or hardware devices (circles) and the arcs denote
service requests. Figure 5 shows the LQN model generated from
the e-commerce example. Existing analytic LQN solvers compute
the steady-state performance of a system with static allocation of
resources. In the case where the resources are dynamically
allocated on demand at run-time, the steady-state solution for each
configuration of interests must be computed separately.

 The tasks with outgoing but no incoming arcs play the role of
clients (also called reference tasks), the intermediate nodes with
both incoming and outgoing arcs are usually software servers and
the leaf nodes are hardware servers. A software or hardware
server node can be either a single-server or a multi-server.
Software tasks have entries corresponding to different services
(represented as smaller parallelograms inside the tasks).

The LQN metamodel is shown in Figure 4, and is based on the
XML schema defined in the LQN user manual [14]. The Epsilon
transformation engine, however, requires that the target
metamodel be represented in EMF Ecore (the metamodeling
language of the underlying platform Eclipse EMF [9]). The
Eclipse framework offers a language called Emfatic, designed to
represent EMF Ecore models in textual form. Therefore, we used
the Emfatic language to express the metamodel from Figure 5 in a
textual form, which in turn was converted into EMF Ecore. Like
the XML-based metamodel from [14], the root model element of

Figure 4. LQN metamodel designed for the Epsilon ETL transformation

 Figure 5. LQN model generated from the e-commerce
software model from Figures 2 and 3

the LQN metamodel is lqnmodel, that is composed of one or more
processor model elements by using composition associations. In
other words, lqnmodel and processor have a whole-part
relationship, following the hierarchy of the XML-based
metamodel.
Processor is composed of tasks, which in turn is composed of
entries or task-activities. Entry is the parent of entry-phase-
activities model element, which is the container of activity model
element. Activity is the parent of children of type synch-call and
asynch-call. Task-activities element is composed of elements of
three types: activity, precedence and reply-entry. Reply-entry is
the parent of reply-activity. In addition, the elements named pre,
pre-or, pre-and, post, post-or and post-and are all children of
precedence model elements.

4. TRANSFORMATION
4.1 Transformation Process
As already mentioned, the transformation from UML+MARTE
software model to LQN performance model is implemented in
Epsilon, a family of languages, such as Epsilon Object Language
(EOL) and Epsilon Transformation Language (ETL) for different
model management tasks including model transformation,
comparison, validation, etc. [15].
In order to generate LQN models from UML+MARTE software
models we follow a multi-steps process described below:
a. Building the source model. The first step is building the

UML software model with performance annotations as a
source model for the transformation. An open source UML
editor Papyrus [10] was used to build our source model.
Papyrus development is supported by PolarSys, an Eclipse
Industry Working Group created by large industry players

and by tools providers to collaborate on the creation and
support of Open Source tools for the development of
embedded systems.

b. Pre-transformation: This is an optional step for checking and
refining the source model in order to discover and eliminate
bugs or fix missing data before feeding it to the next step, the
main model transformation. An example is checking the
inPartition attribute of ControlFlow elements (as mentioned
in section 3.1). Setting inPartition attribute was automated
by using Epsilon Object language (EOL)[15].

c. Main Transformation: developed in ETL language, it
generates an initial LQN model in XML format that needs
some minor extra processing to be in a format acceptable for
the existing LQN solver tool.

d. Post-Transformation: the XML file for the initial LQN
model has to be modified to be exactly conform to the XML
schema [14]. The modification needs two steps. First, we
change tag names by inserting dashes ‘-’, which are not
accepted by Emfatic, but are used in the XML schema [14].
Second, we add a solver-param element that cannot be
derived from the source model. The modification for the tag
names is done automatically by executing Java code but
adding solver param was done manually.

The multi-steps transformation process was automated by using
an orchestration workflow solution provided by Epsilon, extended
from ANT [25]. Code Fragment 1 represents the template for the
ANT file. Each workflow in the ANT file represents a project,
each project has a number of targets, and each target has a number
of tasks. The target can also depend on other target that has to be
executed first. The default target is executed when the whole
project is executed.

4.2 Mapping from Source to Target Model
 In this section we present the mapping between UML+MARTE
and LQN performance model, as shown in Table 1. Figure 6
illustrates at a high-level the mapping between source and target
model elements, shown by red arrows. The elements in the UML
are annotated with stereotypes from the MARTE profile
(especially the performance analysis PAM subprofile) to bridge
the gap between the UML and LQN performance models.

User1 {$N1}
start1

[1000,1]

(0 1)

User2 {$N2}
start2

[1000,1]

(0 1)

User3 {$N3}
start3

[1000,1]

(0 1)

UserDevice1
{$N1}

CustomerInterface {$N}
custInt1

[1]

(1)

custInt2
[1]

(1)

custInt3
[1]

(1)

UserDevice2
{$N2} UserDevice3

{$N3}

CustomerProcess
browse
[0.5,1]

(1 0)

cart
[0.5,0.5]

(1 0)

placeOrder
[2.7]

(1) (1) (0.4) (1)

RemoteProc

CatalogServer
catInfo

[2] Proc1
CartServer

update
[2] cartInfo

[2] empty
[2]

CustomerServer
custInfo

[2]
DeliveryOrderProc

delivOrder
[1.5,0.2]

(1 0)

Proc5 Proc4 Proc2
OrderServer

newOrder
[2]

Proc3

<?xml version="1.0"?>
<project default="main">
<target name="loadModels">
 <!--This part is to load the models(source,target) and their
metamodels-->
</target>
<target name="Execute" depends="loadModels">
 <!--This part is to load ETL file and EOL file -->
</target>
<target name="main" depends="Execute">
 <java classname="tagPackage.TagModifier" classpath="bin">
 <!--This part is to load a Java class with a method that sends

the initial LQN model file as input argument and returns LQN
model file after changing the tag names as output argument-->

 <arg value="initial LQN model file"/>
 <arg value="modified LQN model file"/>
 </java>
</target>
</project>

Code Fragment 1. ANT build file

For instance, a device in the deployment diagram is stereotyped
with“GaExecHost” to show execution resources [18] and is
mapped to processor in the LQN model. An artifact is annotated
with “Scheduler” that represents a kind of ResourceBroker, which
creates access to its brokered ProcessingResource or resources
following a certain scheduling policy [18]; an artifact is mapped
to task in LQN.

Table 1. Mapping from UML+MARTE to LQN elemen

In the activity diagram AcceptActionElement, Initial Node,
OpaqueAction, CallOperationAction and SendSignalAction are
annotated with “PaStep” stereotype, which is a type of “GaStep”
and inherits its properties; “PaStep” can be applied to UML action
or message to indicate behavior steps. AcceptEventAction and
InitialNode are mapped to LQN entry element. OpaqueAction,
CallOperationAction and SendSignalAction are mapped to LQN

activity element. The rest of the elements in the activity diagram,
such as DecisionNode, MergeNode, JoinNode and ForkNode are
mapped to precedence in LQN. ControlFlow has some special
conditions that need to be checked in the transformation rule for
mapping it to the correct LQN element. For example, if the control
flow does not cross its partition boundary and it is not an edge for
any control node such as MergeNode or JoinNode, then it can be
mapped to precedence LQN element, otherwise it has to be
mapped to synch-call or asynch-call. See [11] for more details.

4.3 Transformation Rules
 In this section we provide some examples of the transformation
rules used to map the elements from the UML+MARTE source
model to its corresponding element in the LQN target model. The
transformation includes an ETL module that has 17 matched rules
(non-abstract and non-lazy) and 26 EOL operations. We present
just a few of the rules and operations; for details about other rules
see [11]. In ETL the matched rules correspond to the declarative
style and the lazy rules to the imperative style [15]. We avoided
using any lazy rules as recommended in the Epsilon book [15] to
avoid any deterioration in the performance of the transformation,
as using lazy rules can take longer to run.

An operation is a function used to verify some conditions or
return a value that can be called from any rule. The concrete
syntax for the ETL rule has the rule keyword followed by the rule
name and by (to, transform) keywords for defining the source and
target parameter. The rule’s body is specified as a sequence of
EOL statements. An ETL rule also can have optional parts, such
as guard, which contains an EOL expression that has to be
satisfied in order to run the rule.

Our first example is Model2Lqnmodel rule (as shown in code
fragment 2), which generates the target element lqnmodel from
the source element Model. Once the Lqn processor is generated it
will be added as a child to the lqnmodel, which is the root of the
target model and has a containment relationship with Lqn
processor element. Lqn processor is generated by another rule
called Device2Processor, which transforms each device element
from the source model to a processor in the target model and then
adds the newly created processor element to the container of

UM Model Element MARTE
Stereotype

LQN Element

Model None lqnmodel
Deployment Diagram

Device GaExecHost processor
Artifact Scheduler task

Activity Diagram
AcceptEventAction PaStep entry
InitialNode None entry
OpaqueAction PaStep activity
CallOperationAction PaStep activity
SendSignalAction PaStep activity
ControlFlow None precedence
DecisionNode None precedence
MergeNode None precedence
JoinNode None precedence
ForkNode None precedence
ControlFlow None synch-call
ControlFlow None asynch-call

Figure 6. High-level view of the mapping between the source and target models

children of lqnmodel. For representing and keeping the
containment relationship, ETL provides an built in operation
called “equivalent()” that resolves a target elements which has
been transformed by other rules [15]. In other words, a processor
element is generated from a device source element and is added to
the collection lqn.proceesor. As we can see in the code fragment
2, the transform part has two variables: “m” representing the
source element Model of type UML and “lqn” representing the
corresponding target element of type lqnmodel. Then the name
attribute of the source element “m” is assigned to the name
attribute of the target element “lqn”.

rule Model2Lqnmodel
 transform m : UML!Model
 to lqn : lqnmodel!lqnmodel{
 lqn.name= m.name;
 var devices : Collection=m.getDevices()
 for(d:Device in devices){
 lqn.processor.add(d.equivalent());}
}

2. Transformation rule Model2Lqnmodel

operation Model getDevices():Collection{
 return Device.all.select(d|d.namespace=self
 and d.hasStereotype("GaExecHost")); }

Code Fragment 3. Operation getDevices

operation UML!Class
hasStereotype(name:String):Boolean {
 var c: Sequence;
 c=self.getAppliedStereotypes();
 for(s:Stereotype in c){
 if(s.name=name){
 return true;}
 }
 return false; }

4. Operation hasStereotype

rule Device2Processor
 transform d : UML!Device
 to p : lqnmodel!processor {
 guard: d.hasStereotype("GaExecHost")
 p.name=d.name;
 var schedpolicy:String;
 schedpolicy=getStereotypeOfDevice(d);
 p.scheduling=checkPSchedulerType(schedpolicy);
 var col : Collection=d.getArtifact();
 for(a:Artifact in col){
 p.task.add(a.equivalent()); }

Code Fragment 5. Transformation rule Device2Processor

Code fragment 3 shows the operation getDevices () that is called
from the rule Model2Lqnmodel in the context of the “Model”
source element and returns a collection of all “device” instances
after verifying that each element in the collection (represented by
d in the code) has the correct stereotype. This is done by passing it
as a parameter to the operation called hasStereotype () (see code
fragment 4) that returns “True” if the applied stereotype is equal

to the passed parameter. Operation getAppliedStereotypes() is an
ETL built in method called to get all stereotypes that have been
applied to a UML class since this operation was called within the
context of the UML class.

The second example is the Device2Processor rule (code fragment
5) that transferred each device element of the UML source model
specifically the deployment diagram to processor element of the
LQN target model. This rule has a guard that has to be satisfied in
order to execute it. The guard part is responsible for checking if
the device instance has “GaExecHost” stereotype. It guarantees
that only the device instances annotated with “GaExecHost” are
mapped to processors. The next part of the rule is to initialize the
processor’s attributes name and scheduling. The name of the
processor is initialized with the name of the corresponding device
in the deployment diagram. The scheduling attribute is initialized
by calling the operation GetStereotypeOfDevice() and passing the
device from the source as parameter to check if it has a Scheduler
stereotype , then gets the value of otherSchedPolicy which is one
of the Scheduler’s attributes. As mentioned before, Scheduler
stereotype is kind of ResourceBroker, which gives access to its
brokered ProcessingResource or resources following a certain
scheduling policy [18]. The returned value is assigned to a
variable that is given the name schedpolicy and then is passed as a
parameter to checkPSchedulerType() operation to set the value of
scheduling attribute of the processor. The last part of the rule is
collecting the artifact instances by calling getArtifact() operation
in the context of a device, that returns all artifact instances whose
namespace is initialized to the respective device. As the processor
has a containment relationship with tasks, each task element is a
target created from an artifact element by other transformation
rule and added to the p.task reference of the processor.

It is important to emphasize the fact that transformation rules have
been built such that they mirror the hierarchy of the LQN
metamodel, which is based on containment relationships for
connecting its elements together. The rules follow the same
containment relationships to connect each generated target
element with its parent/children by using the equivalent () built in
operation provided by ETL to resolve the source elements from
their corresponding target elements transformed by other rules.
That means, that, when applying equivalent () to a source element,
it invokes the applicable rule to generate the counterparts of the
element in the target model [15].

For example, the lqnmodel root has a containment relationship
with lqn processors elements, based on that all generated
processors elements have to be added as a children to the lqn root
target element by using equivalent() as explained before, to
invoke Device2Processor rule that generates the processors
elements. In the same way, Device2Processor rule added all
generated tasks as children of the generated processor element in
the target model, since each processor has a containment
relationship with its tasks in the LQN metamodel.
Device2Processor rule in turn invokes Artifact2Task, which
invokes one of four rules to generate LQN entry type from either a
UML AcceptEventAction or a UML InitialNode. It also invokes
the corresponding rules for OpaqueAction, CallOperationAction
and SendSignalAction to generate LQN elements of activity type.
The rule which generates CallOperationAction invokes one of the
two rules that transform a UML control flow to LQN synchcall or
LQN asynchcall. Artifact2Task rule also invokes the rules that
transfer UML ControlFlow and some of the UML ControlNode,
such as DecisionNode, MergeNode, JoinNode and ForkNode to
LQN precedence.

4.4 Traceability Model
In MDE traceability plays an important role for establishing links
between source model elements and target model elements, in
order to track, analyze and propagate the impact of changes which
results from evolving the software models. In this section we
present the steps we followed to generate cross-model trace links.
Since each model has to conform to its metamodel, the trace
model has to conform to its metamodel. The authors of [20] argue
that case-specific traceability metamodels can be more specialized
according to each traceability scenario and therefore the
possibility of establishing illegitimate traceability links is reduced.
This is unlike in general-purpose traceability metamodels that
give the ability to create any number of trace links between
elements from models regardless of their type, which gives a good
chance for creating illegitimate traceability links. Our Trace
metamodel similarly to its counterpart from [20], has a Trace
class which has a containment relationship with Tracelink class.
However, our Trace metamodel is different from [20] in that the
Tracelink class has two attributes sourceType and targetType
representing the source element type and the target element type.
Another thing that is different, instead of having sources and
targets in Tracelink class as references to source and target
element instances, it has two attributes sourceName and
targetName, representing the name of the source and target
element instance, respectively. The way we used the Trace
metamodel is discussed later in section 5.
Epsilon facilitates generating Trace model automatically when
executing transformation modules, specifically the Post block.
ETL module can have Pre/Post blocks, where the post block is
executed in the order in which it has been specified after
executing the transformation [15]. We create a new trace link for
each rule executed by using transTrace that is a global variable
set up automatically by ETL. Also getSource() and getTargets()
are methods of the public class Transformation
in org.eclipse.epsilon.etl.trace Package and are used to retrieve
the source and target elements instances.

5. FEEDBACK OF PERFORMANCE
RESULTS TO THE SOFTWARE MODEL
Our goal here is to feed back the performance results to UML
software model during the round trip performance analysis. The
developer can look at the results with the UML editor, analyze
them, decide to make changes in the software model and repeat
the process until satisfied with the overall performance.
In order to accomplish this goal, our approach in this round trip
performance analysis depends basically on reading two files: first
the Trace Model file that is generated automatically as a result of
running the transformation, and secondly the XML file obtained
from the LQN solver after solving the LQN model. Having the
Trace model helps in matching each target element with its source
element by following the trace link in the reverse way and then
feedback the performance results to the corresponding source
element as values of performance stereotype attributes. The
source model is annotated with MARTE stereotypes that have
performance attributes such as utilization, throughput and
response time.
We implemented the proposed approach in EOL language that
allows us to read two files: the Trace model and the XML file
with the performance results and write that results to the third file,
the original UML software model annotated with MARTE profile.
EOL does not only provide a mechanism to read and write from/to
files, but also facilitate to create, query and modify XML

documents. The procedure starts by querying the XML file with
the performance results, and then querying the Trace model and
getting the sourceName, sourceType , targetName and targetType
attributes for each trace link. Next the targetName attributes are
used to get the corresponding source attribute name. It is worth
stressing that matching is not done only by name, but by type as
well. Once the source element has been identified, then we can
retrieve its applied stereotype in the UML software model and set
all its performance attributes to values corresponding to the LQN
results. The purpose is to help the designers to better understand
the performance results in terms of software model concepts
rather than performance model concepts. The software developers
may not be familiar with the performance model principles, but
are certainly familiar with the software model. We applied our
approach to the e-commerce application and fed back the
performance results to the UML software model elements.

6. 5BPERFORMANCE ANALYSIS
This section presents a brief performance analysis of the e-
commerce system model introduced as an example in section 3,
following the performance round-trip approach several times for
different configurations corresponding to different resource
multiplicities (both hardware and software). The software model
is given in Figure 2 and 3, and the automatically generated LQN
model in Figure 5. The response time and throughput performance
results for artifact User1 are given in Figures 7.a and b.

Figure 7.a) Response time and b) Throughput for class1 users

User1 Response Time for different configurations

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700 800

Total Number of Users N

R
es

po
ns

e
Ti

m
e

[m
s]

Case A: RT1 Case B: RT1 Case C: RT1 Case D: RT1

A

B

C

D

User1 Throughput for different configurations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800

Total Number of Users N

Th
ro

ug
hp

ut
 [

1/
m

s]

Case A: T1 Case B: T1 Case C: T1 Case D: T1

A

B

C

D

Please note that the e-commerce case study has been taken from
literature [9] in order to minimize the author bias, which could be
a potential threat to the validity of a proposed method when all
test cases are created by the method’s author.
As mentioned in section 3, there are three classes of users, each
running a different scenario: BrowseCatalog, BrowseCart and
PlaceOrder. The think time for each user is 1s. Class1 has the
largest number of users. In our experiments, we kept a constant
ratio between the numbers of users: for 48 users in class1, there is
one user in class2 and one user in class3. For each configuration,
we solved the model under a variable load (from 100 to 800 users
in total). Figure 7.a shows the average response time for a class1
user for four configurations described below, while Figure 7.b
shows the average throughput.
A. This is the base case, where the multiplicities of all tasks and

processors are 1, with the exception of the User tasks (each
with its own processor) and the CustomerInterface task,
which has a thread for every User. The results show that the
response time and throughput curves have each a knee
starting at around 200 users; the performance deteriorates
very quickly after the knee, so the operating point should be
selected before the knee. The analysis of task and processor
utilizations shows that this is a typical case of software
bottleneck, with CustomerProcess being the task that
saturates first, limiting the concurrency level and the
utilization of resources below the bottleneck. An appropriate
solution is to raise the number of threads for
CustomerProcess – which is purely a software solution.

B. We raised the number of threads of CustomerProcess from 1
to 50. The results show that the response time and throughput
improve considerably and the knee of the curves moves to
the right, being able to accommodate more than double the
number of simultaneous users before the knee than in Case
A. The next bottleneck is CatalogServer processor, followed
immediately by the CatalogServer process. The solution is to
raise the number of software threads of Catalog Server to 50
its processor multiplicity to 5.

C. We applied the solution described above. The performance
improvement from case B to C is less important than from A
to B, but still, the knee moves further to the right,
accommodating at least 100 more simultaneous tasks. The
next bottleneck is the processor of CustomerProcess.

D. After increasing the multiplicity of the CustomerProcess
processor to 5, the response time improves further and the
knee moves beyond 800 users (where we stopped increasing
the workload).

This simple example illustrates how the LQN performance model
can be used to predict the performance effect of different
configuration changes. Here the actual diagnosis of performance
problems (i.e., detecting the system bottleneck) and finding a
solution for alleviating the problem was done by a human analyst.
In the future, we intend to integrate our performance round-trip
approach with performance diagnosis algorithms that will
enhanced the level of support offered to software developers by
MDE tools.

7. CONCLUSIONS
The contribution of this paper is a model to model transformation
to generate LQN performance models from UML+MARTE
software models. The transformation was developed with Epsilon,
a specialized language family that helped us to develop a more
compact transformation than with a general purpose language

(such as Java), easier to understand and maintain. Another
contribution is the generation of cross-model trace links and their
use to import performance results into the initial software model.
The advantage of the one-step transformation is the ability of
generating automatically along the transformation direct trace
links between the source and target model. After solving the
performance model with an existing solver, the performance
results (such as response time, throughput and utilization of
different model elements) are fed back to the software model by
following the cross-model trace links. The software developers
have access to the performance results as MARTE stereotype
attributes, using a standard UML editor.
The transformation presented in this paper has a number of
limitations. One limitation is that the source model must be built
according to the description from section 3.1: a deployment
diagram which shows the allocation of software components to
hardware processors, and one or more activity diagrams which
models the behavior of key scenarios selected for performance
analysis. Some developers may prefer to represent such scenarios
by using sequence diagrams, so a future extension of the
transformation will allow for the mapping of sequence diagrams
to LQN model elements. Another limitation is that the
transformation works as expected only if all the MARTE
stereotypes and their attributes are correctly applied by the
developers who built the UML source model. If stereotypes or
their attributes are missing where they are expected to be defined,
the transformation crashes. We plan on making the whole process
more user-friendly by defining pre-transformation operations that
check the source model and either notify the developer if elements
with undefined stereotypes and attributes are found, or assign
default values to undefined attributes (for instance, missing CPU
processing demands of <<PaStep>> can be assigned to zero).
Such pre-transformation verifications of the source model would
minimize the transformation errors due to incorrect input models.
Another direction for future work is to integrate our approach with
the approach presented in [8] to automatically detect and fix
performance problems based on performance antipatterns. Their
approach is not fully automated, as the software model and
performance results exits in different models and are brought in
the same file manually. Another future work direction is to apply
our approach for generating cross-model trace links to other
analysis models for other nonfunctional requirements (such as
reliability, availability, safety).

ACKNOWLEDGMENTS
This work was supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC) through its Discovery
Grant program.

REFERENCES
[1] Alhaj, M., "Automatic Derivation of performance Models in

the Context of Model-Driven SOA", Ph.D. Thesis,
Department of Systems and Computer Engineering, Carleton
University, January 2014.

[2] Arcelli, D., Cortellessa V., 2013. “Software Model
Refactoring Based on Performance Analysis: Better Working
on Software or Performance Side?” In Proceedings FESCA
2013, Pages 33–47.

[3] Arcelli, D. and Cortellessa, V. 2015. “Assisting Software
Designers to Identify and Solve Performance Problems”. In
Proceedings of the 1st International Workshop on Future of

Software Architecture Design Assistants - FoSADA ’15.
(2015), 1–6.

[4] Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.
“Model-based performance prediction in software
development: a survey”, IEEE Transactions on Software
Engineering, vol. 30, N.5, pp.295-310, 2004.

[5] Cavenet, C., Gilmore, S., Hillston, J., Kloul, L. , Stevens, P.,
"Analysing UML 2.0 activity diagrams in the software
performance engineering process," in Proc. 4th Int.
Workshop on Software and Performance (WOSP 2004), pp.
74-83, Redwood City, CA, Jan 2004.

[6] Cortelessa, V., Mirandola,R., “Deriving a Queueing Network
based Performance Model from UML Diagrams”, in Proc. of
2nd ACM Workshop on Software and Performance
(WOSP’20004), pp.58-70, Ottawa, Canada, 2000.

[7] Cortellessa V., Di Marco, A., Inverardi, P., Model-based
Software Performance Analysis, Springer, 2011.

[8] Cortellessa, V., Di Marco, A., Trubiani,C.. 2014. “An
Approach for Modeling and Detecting Software Performance
Antipatterns Based on First-Order Logics.” 391–432.

[9] Eclipse Foundation, “Eclipse Modeling Framework (EMF)”,
www.eclipse.org/modeling/emf/, last visited Jan 2, 2016.

[10] Eclipse Foundation, “Papyrus Modeling Environment”,
eclipse.org/papyrus, last accessed May 2016.

[11] Hassanzadeh Zargari, M.. 2016. “Automatic Derivation of
LQN Performance Models from UML Software Models
Using Epsilon, Master Thesis, Department of Systems and
Computer Engineering, Carleton University, January 2016.

[12] Franks, R.G. “Performance Analysis of Distributed Server
Systems”, PhD Thesis, Department of Systems and Computer
Engineering, Carleton University, Ottawa, Ontario, Canada,
December 1999.

[13] Franks, R.G., Al-Omari, T., Woodside C.M., Das,,O. and
Derisavi,, S. “Enhanced modeling and solution of layered
queueing networks”, IEEE Transactions on Software
Engineering, 35(2):148–161, 2009.

[14] Franks, R.G., Maly, P., Woodside, C.M., Petriu, D.C.,
Hubbard, A., Mroz, M.,“Layered Queueing Network Solver
and Simulator User Manual”, Department of Systems and
Computer Engineering, Carleton University, 2015.

[15] D. Kolovos, L. Rose, A. García-Domínguez, R. Paige, The
Epsilon Book, www.eclipse.org/epsilon/doc/book/, last
updated July 2015.

[16] Lopez-Grao, J.P., Merseguer, J., Campos, J., "From UML
Activity Diagrams to Stochastic Petri Nets: Application To
Software Performance Engineering," 4th Int. Workshop on
Software and Performance (WOSP 2004), Redwood City,
CA, (2004), pp. 25-36.

[17] Object Management Group, “UML Profile for
Schedulability, Performance, and Time Specification”,
version 1.1, formal/05-01-02, January 2005.

[18] Object Management Group, “UML Profile for MARTE:
Modeling and Analysis of Real-Time Embedded Systems,
Version 1.1, formal/2011-06-02, 2011.

[19] Object Management Group, “OMG Unified Modeling
Language” Version 2.5, formal-15-03-01, 2015.

[20] Paige, Richard F. et al. 2011. “Rigorous Identification and
Encoding of Trace-Links in Model-Driven Engineering.”
Software and Systems Modeling 10(4):469–87.

[21] Petriu,D.B., Woodside, C.M., “An intermediate metamodel
with scenarios and resources for generating performance
models from UML designs”, Software and Systems
Modeling, Volume 6, Nb. 2, pp.163-184, 2007.

[22] Petriu,D.B., “CSM2LQN – Transformations for the
Generation of Performance Models from Software Designs”,
Ph.D. Thesis, Department of Systems and Computer
Engineering, Carleton University, 2014.

[23] Smith, C.U., Performance Engineering of Software Systems,
Reading Mass., Addison Wesley, 1990.

[24] Smith, C. U., Williams, L.G., Performance Solutions,
Addison-Wesley, 2002.

[25] The Apache Ant Project. http://ant.apache.org.
[26] Woodside, C.M., Petriu, D.C., Petriu,D.B, Shen, H. Israr, T.

Merseguer, J. “Performance by Unified Model Analysis
(PUMA)”, Proc. of 5th ACM Workshop on Software and
Performance, pp.1-12, Palma,Spain, July 2005.

[27] Woodside, C.M., Petriu, D.C., Merseguer, J., Petriu, D.B.,
Alhaj, M. "Transformation challenges: from software models
to performance models", Software and Systems Modeling,
Vol. 13, No. 4 (2014), Page 1529-1552

	1. INTRODUCTION
	2. RELATED WORK
	3. SOURCE AND TARGET MODELS
	3.1 Source Model
	3.2 Target Model

	4. TRANSFORMATION
	4.1 Transformation Process
	4.2 Mapping from Source to Target Model
	4.3 Transformation Rules
	4.4 Traceability Model

	5. FEEDBACK OF PERFORMANCE RESULTS TO THE SOFTWARE MODEL
	6. PERFORMANCE ANALYSIS
	7. CONCLUSIONS
	ACKNOWLEDGMENTS
	This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) through its Discovery Grant program.
	REFERENCES

