
00

Dependability modeling and analysis of software systems specified
with UML

SIMONA BERNARDI, Centro Universitario de la Defensa
JOSÉ MERSEGUER, Universidad de Zaragoza
DORINA C. PETRIU, Carleton University

The goal is to survey dependability modeling and analysis of software and systems specified with UML, with
focus on reliability, availability, maintainability and safety (RAMS). From the literature published in the last
decade, 33 approaches presented in 43 papers were identified. They are evaluated according to three sets of
criteria regarding UML modeling issues, addressed dependability characteristics and quality assessment of
the surveyed approaches. The survey shows that more works are devoted to reliability and safety, fewer to
availability and maintainability and none to integrity. Many methods support early life-cycle phases (from
requirements to design). More research is needed for tool development to automate the derivation of analysis
models and to give feedback to designers.

Categories and Subject Descriptors: A.1 [General Literature]: Introductory and Survey; C.4 [Computer
System Organization]: Performance of Systems—Modelling techniques; D.2.1 [Software Engineering]:
Requirements/Specifications—Methodologies; D.2.4 [Software Engineering]: Software/Program Verifica-
tion—Formal methods; D.2.8 [Software Engineering]: Metrics—Complexity measures; D.2.10 [Software
Engineering]: Design; D.2.11 [Software Engineering]: Software Architectures; D.3.2 [Programming
Languages]: Language Classification—UML

General Terms: Design, Languages, Reliability, Standardization, Verification

Additional Key Words and Phrases: Availability, maintainability, safety, model transformation, dependabil-
ity analysis

ACM Reference Format:
S. Bernardi, S., Merseguer, J., and Petriu, D.C. 2011. Dependability modeling and analysis of software sys-
tems specified with UML. ACM Comput. Surv. 0, 0, Article 00 ( 2011), 47 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

Dependability is a non-functional property (NFP) of a system, defined by [Avizienis
et al. 2004] as the ability to avoid failures that are more frequent and severe than ac-
ceptable. Dependability encompasses a set of attributes: reliability, availability, main-
tainability, integrity and safety. The assessment of these attributes may imply quan-
titative and/or qualitative evaluation of the system, which has been a research topic
since the early times of computing; the use of models for this purpose is extensively

José Merseguer has been supported by the European Communitys Seventh Framework Programme un-
der project DISC (Grant Agreement n. INFSO-ICT-224498), by CICYT DPI2010-20413 and by Fundación
Aragón I+D.
Author’s addresses: S. Bernardi, Centro Universitario de la Defensa, Academia General Militar, Zaragoza
(Spain); J. Merseguer, Departamento de Informática e Ingenierı́a de Sistemas, Universidad de Zaragoza
(Spain); D.C. Petriu, Department of Systems and Computer Engineering, Carleton University (Canada).
Author’s e-mail: simonab@unizar.es, jmerse@unizar.es, petriu@sce.carleton.ca.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 0360-0300/2011/-ART00 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



00:2 S. Bernardi et al.

Software Modeling
Domain

UML Software Model
with dependability

annotations

Feedback to 
developers

Presenting
feedback in UML

model context

Transformation
to Analysis Model

Mapping Results 
to Software

 Domain

Dependability
Domain

Dependability
Analysis Model

Dependability
Model Results

Solving Analysis
Model

Fig. 1. Integrating dependability modeling and analysis in a UML-based MDD process.

recognized [Lyu 1996]. A model is an abstraction of the system for the purpose of un-
derstanding it before building it [Rumbaugh et al. 1991]. A software system model
describes a specific system view; in a broad sense we can distinguish behavioral and
structural software views, which together constitute the model of the system. A de-
pendability model considers the abstractions needed to represent the failures of the
system and their consequences. This implies that in some manner the dependabil-
ity model needs to be related to the behavioral model of the system or at least to its
abnormal behaviors. Models are developed using different kinds of languages and/or
notations, some of them with an underlying mathematical formalism supporting some
kind of analysis (e.g., fault trees, Markov chains, Petri nets or Bayesian networks).
These are called formal models, analyzable models or models for analysis. The task of
developing models is known as modeling, while the task of analyzing quantitative or
qualitative properties is known as analysis.

According to the literature, dependability attributes are assessed through formal
dependability models or using technical methods (e.g., FMEA, HAZOP) [IEC-60300-
3-1 2003]. However, the focus of this survey is not on dependability analysis models
per se, but on approaches for modeling and analyzing dependability in the context of
UML software models used for software development. We are particularly interested
in works contributing toward the integration of dependability modeling and analysis
within the UML-based model-driven software development process [Schmidt 2006].
Figure 1 shows an ideal process, where a UML software model used by the software
developers is extended with dependability annotations and then (automatically) trans-
formed into a formal dependability model , which is solved with existing solvers and
methods. The dependability results from the formal model are mapped to feedback
to the developers, expressed in terms of the software model. The process bridges two
domains: the software modeling domain and the dependability analysis domain and
is dealing with two categories of models and modeling languages: a) for software de-
velopment and b) for dependability analysis. This survey is focused on how and what
dependability annotations need to be added to UML software models (i.e., in the soft-
ware modeling domain) in order to support the derivation of dependability analysis
models that can be used for dependability analysis.

The most widely used modeling language for software development is the Unified
Modeling Language [UML 2005], standardized by the Object Management Group
(OMG). There is a large body of work extending UML with concepts required for
carrying out quantitative and qualitative analyses of different non-functional proper-
ties, such as performance, schedulability, dependability, security. For instance, a UML-

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



Dependability modeling and analysis of software systems specified with UML 00:3

based methodology for unifying dependability modeling and analysis by associating
the concepts of UML models, dependability, and mathematical analysis was promoted
in [Pataricza and Györ 2004]. Analyzing non-functional properties (NFP) based on de-
sign models allows developers to start verifying early in the life cycle whether the
system under construction will meet its non-functional requirements. It is less expen-
sive to analyze different design alternatives and choose the best one at an early phase,
when the investment in building the product has not been completely made yet. How-
ever, the verification may continue throughout the lifecycle.

Adding NFP specifications to UML is possible due to a number of UML character-
istics. First, a UML model can abstract the structure and behavior of the system and
also the hardware platform where it will execute. The system can be described with a
great detail and a variety of UML diagrams. Some are representing the system struc-
ture (e.g., class diagrams), others the behavior (e.g., use case, state machines, activity
diagrams or sequence diagrams) and others the platform (e.g., deployment diagrams).

Secondly, UML contains standard extension mechanisms allowing users to define a
profile for customizing UML models for particular domains and platforms. A profile
allows refining standard semantics in strictly additive manner. Appendix 6 explains
the basis of UML and its profile mechanisms to help understanding some terminology
in the paper. So, a UML model together with the specification of NFPs by standard ex-
tension mechanisms represents a complete system model for carrying out the analysis
of different non-functional properties.

Thirdly, it is possible to combine the use of multiple profiles for the same model,
which would support consistent specification of different NFPs and their relationships,
as well as the analysis of trade-off between different NFPs.

A milestone in extending UML is the UML Profile for Modeling and Analysis of
Real-Time and Embedded systems [UML-MARTE 2009] standardized by OMG, that
addresses the issue of attaching information necessary for quantitative NFP analysis
to UML model elements (more specifically, for performance and schedulability anal-
ysis). Previously to MARTE, OMG adopted other two profiles for analysis purposes,
the Schedulability, Performance and Time Specification [UML-SPT 2005] and the pro-
file for Modeling Quality of Service and Fault Tolerance Characteristics and Mecha-
nisms [UML-QoS&FT 2008]. All these profiles satisfactorily address the problem of
quantitative analysis aimed at performance evaluation. However, so far no standard
profile has been proposed or adopted for dependability modeling and evaluation (nei-
ther quantitative nor qualitative).

For the reasons indicated above, the focus of this survey is on dependability model-
ing and analysis of software and systems specified with UML. The goal of the survey is
to cover a large body of work published in the last decade that models and analyses re-
liability, availability, maintainability and safety (RAMS) NFPs with UML. We apprise
the reader that, although we have looked for UML extensions to model and analyze in-
tegrity, we have not found any. According to [Avizienis et al. 2004], another important
NFP, security, is sharing two attributes, availability and integrity, with dependability
and is adding one more, confidentiality. We decided not to include confidentiality in
this survey because the kind of models and techniques used for the analysis of confi-
dentiality are different from those for dependability. Hence, we focus the survey strictly
on dependability.

Considering the concern of dependability modeling, a majority of the works from lit-
erature use profiling mechanisms, as explained in Appendix 6. We identified a common
approach, which consists of incorporating dependability information in UML designs
in the form of UML extensions, producing UML-annotated models. Therefore, these
UML-annotated models can be seen as (non-formal) dependability models where the
structural and behavioral views are given by the UML design and the dependabil-

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



00:4 S. Bernardi et al.

ity view by the UML extensions and the abnormal behaviors described in the behav-
ioral view. Such models constitute the starting point of the process presented in Fig-
ure 1. Among the surveyed works dealing with the dependability analysis aspect, two
approaches can be recognized. A first approach transforms the UML-annotated mod-
els, i.e. the (non-formal) dependability model, into a formal dependability model used
for analysis (e.g., Fault Trees [Vesely et al. 1981] for safety and reliability analysis,
stochastic Petri nets [Ajmone-Marsan et al. 1995] for reliability analysis), as in Fig-
ure 1. Such formal models, as well as methods and tools for their analysis have been
studied and developed for many years, even before the introduction of UML.

The second approach uses the very same annotated UML model, without model
transformations, to apply well-known dependability techniques (e.g., HAZard and OP-
erability study [UK Ministry of Defence 2000]).

We believe that this survey will help researches by informing them which topics in
this field have already been addressed and which ones are still open and need addi-
tional effort. In particular, our study of the literature has revealed that the modeling
concern has been more thoroughly treated so far than the analysis concern, which re-
quires more research. Fundamentally, the translations of UML-annotated models into
dependability analysis models need to be improved, as well as the eventual evaluation
of analysis models. Work should be also invested in the feedback from NFP analysis
to the design model, for instance being able to pinpoint design flaws from analysis re-
sults. Tool support is another lack we found. Another problem is that there are many
proposals for extending UML models with dependability annotations, each one cov-
ering only a subset of dependability aspects and using the concepts and terminology
inconsistently with each other. This is a consequence of a fact mentioned before, that
so far there is no standard UML profile for dependability NFPs that would unify all
the necessary annotations. This is another aspect that needs improvement.

This survey comes to fill a gap not addressed in literature by other works. [Gokhale
2007] provides the state of the art in architecture-based software reliability analysis.
Differences with our paper are that we deal not only with architectural aspects but
also with the software requirements and detailed design, and besides reliability we
address the other RAMS attributes. However, [Gokhale 2007] is not restricted to archi-
tectural designs based on UML, they also consider other languages and architectural
proposals. [Immonen and Niemelä 2008] survey specifically concentrates on reliability
and/or availability prediction methods based on software architectural models. Finally,
the work in [Balsamo et al. 2004] is similar to ours in objectives, but targeted to per-
formance evaluation instead of dependability.

The paper is organized as follows. In Section 2 we review the most important depend-
ability concepts and introduce a discussion in the UML context, so to start drawing the
boundaries of the state of the art in UML dependability modeling and analysis. Sec-
tion 3 introduces the evaluation criteria that, along with dependability concepts, are
used to classify and discuss the surveyed works. Sections 4 and 5 present the actual
discussion and comparisons of the works. Conclusions are drawn in Section 6.

2. DEPENDABILITY MODELING AND ANALYSIS BACKGROUND

This section establishes the basic framework of our work, overviewing fundamental
dependability concepts. Since the survey covers both UML modeling of dependability
as well as its analysis or evaluation, we start by recalling dependability concepts, such
as fault, error and failure, and continue with issues related to dependability anal-
ysis, such as traditional approaches to dependability assessment, different kinds of
analysis, and basic concepts such as dependability measure. While recalling the basic
dependability definitions for these concepts, we also discuss the implications of ex-
pressing them in UML (see the subsections entitled “Discussion in the UML context”).

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



Dependability modeling and analysis of software systems specified with UML 00:5

The goal is to help readers understand the challenges addressed by the surveyed works
in order to seamlessly represent such a large set of concepts in UML models.

Definitions of dependability can be obtained from multiple sources; here we mainly
follow [Avizienis et al. 2004; Lyu 1996]. In [Avizienis et al. 2004] the dependability
terminology is surveyed from a systemic point of view, while [Lyu 1996] specifically ad-
dresses the software domain, focusing on reliability. Another source is [Leveson 1995]
for definitions of safety related concepts. Our intention is not to offer a comprehensive
guide on the large number of existing dependability definitions (which was the goal of
the sources just mentioned), but to clarify the conceptual framework for the survey.

The dependability concepts and issues addressed in this section are summarized in
a checklist shown in Table I. Each concept is given a label that will permit to easily
pinpoint it in later discussion (in Sections 4 and 5). The last column of the Table indi-
cates whether an issue is addressed in the survey or not. The goal is to place the scope
of the survey in the dependability arena. The remainder of the section is organized
according to main dependability issues: system view, attributes, threats and means of
the dependability.

2.1. System view and basic definitions

Before discussing basic definitions for dependability, we need to specify the context
in which they apply. Both [Avizienis et al. 2004; Lyu 1996] consider a component-
based view of a system for which dependability is investigated. A component is seen as
an entity that interacts with other entities (hardware and/or software) and with the
physical world. A component is then by itself a system made up of other components
which interact through connectors. It is considered that the system or a component
provides an expected service to the environment or the user, which is a sequence of
outputs agreeing with a given specification [Lyu 1996].

An accepted definition of dependability is the ability of a system to avoid failures that
are more frequent and severe than acceptable [Avizienis et al. 2004]; it encompasses
the following attributes (labeled DA in Table I): reliability, availability, safety, main-
tainability and integrity. According to [Avizienis et al. 2004], reliability (DA.R) ensures
the continuity of correct service for a given system and is defined in [ANSI/IEEE 1991]
as the probability of failure-free software operation for a specified period of time in a
specified environment. For repairable systems [Arnold 1973], i.e., those that can be re-
covered after failure, the availability (DA.A) and maintainability (DA.M) attributes
are of special significance. The former is defined as the systems readiness for correct
service, and the latter represents the systems ability to undergo modifications and re-
pairs. Integrity is related to both dependability and security. In a broad sense, integrity
is the absence of improper system alterations. [ANSI/IEEE 1991] defines it as the de-
gree to which a system or component prevents unauthorized access to, or modification
of, computer programs or data. In [Biba 1977] integrity ensures that the system cannot
be corrupted to perform in a manner contrary to the original determination. In safety-
critical systems, the safety attribute (DA.S) emphasizes the absence of catastrophic
consequences as a result of the system and/or software usage [Leveson 1995].

2.1.1. Discussion in the UML context. The fundamental concepts of system, component,
connector and service can be represented using notation offered by the UML diagrams,
as these concepts belong to the UML vocabulary. Hence, no additional effort has been
carried out by the surveyed works to introduce them. What UML does not initially
have is the ability to specify dependability attributes and their properties (e.g., how to
define a measure of reliability in a UML diagram). A frequent solution uses the UML
profiling mechanism, which allows users to extend UML with domain-specific concepts
defined as stereotypes, tagged values and constraints [UML 2005], while using stan-

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



00:6 S. Bernardi et al.

dard UML editors. Appendix 6 describes how the UML profiling mechanisms work.
We finally remark that, as mentioned in the introduction, all dependability attributes
except integrity have been addressed in some of the UML works herein surveyed.

2.2. Dependability model-based evaluation

During the first stages of the life-cycle, when implementations are not yet available,
dependability attributes can be evaluated by solving formal dependability models. In-
deed, dependability measures (DM in Table I) represent a quantified estimation or
calculation of a dependability attribute [Hosford 1960]. However, not all dependability
attributes can be quantified. For instance, in the safety analysis context, safety proper-
ties (DM.S) are not strictly measures, but rather qualitative indicators used to express
the level of injury caused by system hazards or seriousness associated to system’s un-
safe states [Leveson 1995].

Once an estimation of a dependability measure is obtained by solving the formal
dependability model, it has to be checked against the dependability requirements (DR)
[Littlewood and Strigini 1993]. A dependability requirement can be thought of as an
upper or lower bound (DR.BOUND) of a specific dependability measure. However, in
the case of safety, a requirement (DR.S) represents the satisfaction of a given safety
property (DM.S).

It is important to recall that the computation of reliability, availability and maintain-
ability measures basically means a quantitative evaluation of the formal dependability
model, while safety properties imply the qualitative evaluation of the model [Billinton
and Allan 1992]. This does not necessarily mean that the nature of safety models has
to differ from the others; for example, fault-trees or Petri nets can be used to perform
both forms of evaluation, while Bayesian networks aims just to quantitative evalua-
tion. It is also true that safety properties can be checked without an underlying formal
dependability model [Leveson 1995], but with specific techniques such as HAZard and
OPerability study (HAZOP) or Functional Failure Analysis (FFA).

2.2.1. Discussion in the UML context. As explained in the Introduction, a UML model
is able to describe both the structural and behavioral views of the system, hence the
works here surveyed have extended UML to specify measures and requirements. In
fact, the majority of the surveyed works propose some mechanism to include measures
and/or requirements in the UML models. As previously discussed, most of the works
surveyed in this paper introduce an (automatic) transformation of the UML model with
dependability annotations into a formal dependability model (e.g., Bayesian networks,
Petri nets, fault trees) which can be used for computing the desired measures. Such
formal dependability models will need to interpret the measures as expressed in the
original UML model.

We identified some works interested in a kind of measures similar to software com-
plexity measures (DM.C), which differ from the measures discussed above since they
are defined in model terms. They are indirect dependability measures that in our scope
refer either to “failure-proneness” in software components as in [Goseva-Popstojanova
et al. 2003] or to the maintainability of the UML design as in [Genero et al. 2007]. The
latter, for example, uses measures such as diagram structural complexity (e.g., num-
ber of associations) or size measures (e.g., number of classes) in relationship with the
maintainability of UML class diagrams. Another example is the cyclomatic complexity
of UML state machines defined in [Goseva-Popstojanova et al. 2003].

2.2.2. Examples of dependability measures and properties. In the following, we describe
some important dependability measures most of them used in the surveyed works.
The measures for reliability DM.R, availability DM.A and maintainability DM.M are
usually defined with respect to time or the number of program runs [Lyu 1996; Trivedi

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



Dependability modeling and analysis of software systems specified with UML 00:7

2001; Hosford 1960; Johnson 1989]. The execution time or calendar time are appropri-
ate to define the reliability as:

R(t) = Prob{τ > t} (1)

that is, reliability at time t is the probability that the time to failure (τ ) is greater than
t or, the probability that the system is functioning correctly during the time interval
(0, t]. Considering that F (t) = 1 − R(t) (i.e., unreliability) is a probability distribution
function, we can calculate the expectation of the random variable τ as:∫ ∞

0

t dF (t) =

∫ ∞

0

R(t)dt (2)

This is called MTTF [Johnson 1989] and represents the expected time until the next
failure will be observed. Another measure is the failure rate (called also rate of oc-
currence of failures), which represents the probability that a component fails between
(t, dt), assuming that it has survived until the instant t, and is defined as a function of
R(t):

h(t) = − 1

R(t)

dR(t)

dt
(3)

The cumulative failure function denotes the average cumulative failures associated
with each point in time, E[N(t)].

Maintainability is measured by the probability that the time to repair (θ) falls into
the interval (0, t] [Johnson 1989]:

M(t) = Prob{θ ≤ t} (4)

Similarly, we can calculate the expectation of the random variable θ as:∫ ∞

0

t dM(t), (5)

that is called MTTR (Mean Time To Repair), and the repair rate as:

dM(t)

dt

1

1−M(t)
(6)

A key reliability measure for systems that can be repaired or restored is the MTBF
(Mean Time Between Failure) [Johnson 1989], that is the expected time between two
successive failures of a system. Some of the addressed works also consider the sys-
tem/service reliability on-demand that is the probability of success of the service when
requested. When the average time to complete a service is known, then it might be
possible to convert between MTBF and reliability on-demand.

Availability is defined as the probability that the system is functioning correctly at
a given instant [de Souza e Silva and Gail 1989]:

A(t) = Prob{state = UP, time = t}.
In particular, the steady state availability can be expressed as function of MTTF and
MTTR (or MTBF):

Availability∞ =
MTTF

MTTF +MTTR
=

MTTF

MTBF
.

Safety properties (DM.S) are traditionally expressed in qualitative terms, such as
safety levels or risk factors associated to failures or hazards [Leveson 1995]. Neverthe-
less, often they are defined in function of quantitative criteria. An interesting example

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



00:8 S. Bernardi et al.

is the safety integrity level (SIL) [IEC-61508 1998] that specifies the required protec-
tion against software of system failure and corresponds to an interval of the “average
probability of failure to perform a safety function on demand” [IEC-61508 1998] (e.g.,
SIL1[10E-2, 10E-1), SIL2 [10E-3, 10E-2)). Other examples of safety properties are the
probability of reaching (or of being in) a safe/unsafe state and the tolerable accident
rate.

Integrity is a property common to dependability and security. Similar to SIL, the
concept of integrity level was defined in [Biba 1977], in security context, to grade dam-
age caused by information sabotage. However, for integrity it is more common to use
procedures to verify and ensure the integrity of the system than to use formally defined
measures to compute grades of integrity. [Clark and Wilson 1987] presented a formal
model for integrity verification, while [Sailer et al. 2004] developed an architecture for
integrity measurement that relies on code measurement based on standards defined
by [TCG 2011].

2.3. Dependability threats

Faults, errors and failures are usually referred as threats to dependability
(DT) [Avizienis et al. 2004]. They are seen as a causal chain (F-E-F) that threatens
the dependability of a system in the sense that the chain completion leads the system
to a state that reports incorrect service or outage. More specifically, in F-E-F a fault is
the cause of an error; in turn, the error is part of a state of the system that may lead
to a failure (or service failure). In this causal view, an error is seen as an intermediate
stage between failure and fault.

In [Avizienis et al. 2004] a very rich and precise taxonomy of faults is given. They
account, among others, for hardware/software faults, development/operational faults,
malicious/non malicious, fault persistence (DT.FP) and fault occurrence (DT.FO). The
latter refers to “single” and “multiple” fault assumption. The quantitative characteri-
zation of a “single/multiple” fault assumption distinguishes between the rate and prob-
ability of fault occurrences (DT.FOQ)1.The faulty behavior of the components, connec-
tors and services (DT.FB) means to identify the states of these elements in which a
fault is active [Hawkings et al. 2003].

“Erroneous behavior” (DT.EB) of a component, connector or service is the counter-
part of “faulty behavior” (DT.FB), i.e., the characterization of error states for compo-
nents, connectors and services due to a fault occurrence [Hawkings et al. 2003]. DT.EB
and DT.FB are common in the model-based dependability. The quantitative character-
ization of an error (DT.EQ) is the probability of its occurrence assuming that the fault
has positively occurred (DT.FOQ). On the other hand and due to the component-based
assumption, sometimes a component raises an error that does not reach the system
boundaries, which means that it does not cause a failure. This obviously happens when
the service delivered by the component is not in the system interface. However, such
component may offer its service to another internal component; this may lead to error
propagation between components [Cortellessa and Grassi 2007].

Failures or service failures are events that occur when the user perceives that the
system ceases to deliver the expected service [Avizienis et al. 2004]. A failure can be
classified according to different modes (DT.FMD to DT.FMDep) [Powell 1992]. A “fail-
ure mode” is the way in which the system manifest the deviation from correct to in-
correct service. A failure mode w.r.t. the domain (DT.FMD) is classified as a “content”
and/or “timing” failure. Detectability (DT.FMDet) distinguishes “signalled” failures,
those in which the system sends a warning signal to the user, and “unsignalled” ones.
The consistency criteria (DT.FMC) differentiates “consistent” from “inconsistent” or

1Note that DT.FOQ and DT.EPQ are also dependability measures.

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



Dependability modeling and analysis of software systems specified with UML 00:9

byzantine failures [Lamport et al. 1982]. The consequence of a failure grades it into
severity levels (DT.FMSL) (we referred to this concept in Section 2.2 as a safety mea-
sure, concretely safety level). Different criteria can be used to define severity levels,
for example according to the standard [MIL-STD-882d 1999] they are rated as catas-
trophic, critical, marginal or minor. Finally, failures can be “dependent” or “indepen-
dent” (DT.FMDep). Failures are dependent when the affected components share the
cause of the failure, i.e., the error is common to all of them. An example of multiple de-
pendent failures is a “common failure mode”, that typically occurs within a redundant
structure.

“Failure behavior” (DT.FailB) of a component (connector or service) refers to the
specification of failure events/conditions that lead to the degraded/ failure states of
the component (connector or service) as well as the degraded/failure states themselves
[Bondavalli et al. 2001].

For safety-critical systems, the concepts of fault, error and failure are supplemented
with that of hazard. [Leveson 1995] defines hazard as a state or set of conditions in
a system that, together with other conditions in the environment of the system, will
inevitably lead to an accident. An accident is an undesired and unplanned (but not
necessarily unexpected) event that results in (at least) a specified level of loss. For ev-
ery possible hazard in the system it is important to know, at least, its origin (DT.HO)
and main characteristics, i.e., severity (DT.HS) and likelihood (DT.HL) [Leveson 1995].
The hazard severity is defined as the worst accident that could result from the hazard,
and as in the case of failures, hazard severity can be graded by severity levels such
as minor, marginal, critical and catastrophic. The hazard likelihood can be defined
quantitatively or qualitatively (e.g., frequent, probable, occasional, remote, improba-
ble, impossible). Severity and likelihood are combined to obtain the hazard level. Some
safety-critical techniques, such as HAZOP [UK Ministry of Defence 2000], use guide-
words (DT.HGW) and parameters (specifics of the process in study) to identify hazards
in the system. For example, the set of guide-words in HAZOP is: No, More, Less, As
Well As, Reverse and Other Than.

2.3.1. Discussion in the UML context. We found that only two kind of fault characteris-
tics are addressed in the surveyed works: fault persistence (DT.FP) and fault occur-
rence (DT.FO). As for error propagation we found that only its description (DT.EP)
was given in surveyed works, e.g., [Pai and Dugan 2002], and a quantitative charac-
terization (DT.EPQ), e.g., [Yacoub et al. 2004], which basically specifies the probability
of propagation occurrence.

2.4. Dependability means

The problem of achieving a dependable software/system is usually addressed by apply-
ing four technical methods, also known as dependability means [Avizienis et al. 2004]:
fault prevention, fault removal, fault tolerance and fault forecasting. Fault prevention
encourages the use of techniques that prevent the system from faults [Chillarege et al.
1992]. Formal methods are useful for performing automatic software verification that,
together with software testing, are common techniques for fault removal [Boehm 1984;
Weyuker 1982]. Fault tolerance techniques [Avižienis 1967; Lyu 1995] aim at avoiding
failures despite the presence of faults after the software or system is deployed. The last
method, the fault/failure forecasting is carried out through the qualitative and quan-
titative evaluation of the system behavior with respect to faults/failures occurrences
[Meyer 1980].

Fault tolerance techniques offers “system recovery” (FT.R) and “error detection” to
achieve failure avoidance. Recovery tries to transform an erroneous or faulty system
state into a correct one by using “error handling” and “fault handling” techniques. Er-

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



00:10 S. Bernardi et al.

ror handling uses rollback, rollforward and compensation, while fault handling relies
on diagnosis, isolation, reconfiguration and reinitialization.

Fault tolerance techniques can be implemented in different ways (e.g., redundancy,
n-version, reflection or self-checking component) [Avizienis 1985; Huang and Kindala
1996]. “Redundancy” (R) implies to describe:

— type2 (R.T): information, software and hardware;
— level (R.L): number of components in a redundant structure;
— failures (R.F): maximum number of tolerated failures;
— roles played by the component within the FT structure (R.R): replica, controller, ad-

judicator, voter, hot/cold/warm spare.

Maintenance3 follows “fault handling” in the life-cycle and it refers to repairs (M.R)
as well as modifications (M.M) of the system during the use phase [ISO/IEC 14764
2006]. The distinction between fault tolerance and maintenance is that the latter is
carried out by an external actor. Moreover, repair and fault tolerance are much related
concepts; actually, repair is seen sometimes as a fault tolerance activity.

2.4.1. Discussion in the UML context. Among dependability means fault tolerance is the
mean the surveyed works have paid more attention. “System recovery” is the only fault
tolerance technique addressed in the works here surveyed.

Fault prevention and fault removal have not been addressed, it seems reasonable
since fault prevention is mostly a concern of development methodologies rather than
of modeling notations, while fault removal is carried out during the development and
system usage stages, whereas UML is usually exploited in early life-cycle stages. Dif-
ferent is the case of fault/failure forecasting, that can be carried out during devel-
opment (evaluation testing [Boehm 1984]) but also in early stages through modeling.
Dependability models mentioned in Section 2.2 for measures estimation can be also
useful for forecasting faults or failures. A common approach in some of the surveyed
works is that analysts try to identify where the fault/failure could be located in the
dependability model (e.g., a Petri net), and then trace back to the UML design where
the fault/failure emerges in the system.

Table I: Checklist for dependability concepts

(1) Dependability issue addressed in this work
L1 L2 Dependability concept or issue Restriction (1)
DA Dependability attributes

R Reliability �
A Availability repairable system �
M Maintainability repairable system �

Integrity dependability & security
S Safety safety-critical system �

DM Dependability measures
R Reliability measures. �
A Availability measures. repairable system �
M Maintainability measures. repairable system �

Integrity measures.
S Safety measures and safety properties. safety-critical system �
C Software complexity measures. design level �

DR Dependability requirements
BOUND Upper/lower bound requirements on de-

pendability measures.
�

Continued on next page

2Values associated to type, level, failures and roles are representative examples of the ones found in the
works analysed in this paper.
3It is important to note the difference between maintainability (a dependability attribute) and maintenance
(a technical method to achieve dependability).

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



Dependability modeling and analysis of software systems specified with UML 00:11

Table I – continued from previous page
(1) Dependability issue addressed in this work
L1 L2 Dependability concept or issue Restriction (1)

S Safety properties to be checked w.r.t. the sys-
tem behavior.

safety-critical system �

DT Dependability threats (Fault)
FP Fault persistence. �
FO Fault occurrence. �

Other Fault classifications: hw/sw, develop-
ment/operational faults.

FB Faulty behavior of components, connectors,
services.

�

FOQ Fault occurrence quantitative characteriza-
tion.

�

DT Dependability threats (Error)
EB Erroneous behavior (error states). �
EQ Error quantitative characterization. �
EP Error propagation. �
EPQ Error propagation quantitative characteri-

zation.
�

DT Dependability threats (Failure)
FMD Failure mode w.r.t. the domain. �
FMDet Failure mode w.r.t. the detectability. �
FMC Failure mode w.r.t. the consistency. �
FMSL Failure mode w.r.t. the consequence (sever-

ity levels).
�

FMDep Failure mode w.r.t. the dependency. �
FailB Component, connector or service failure be-

haviour.
�

DT Dependability threats (Hazard)
HO Hazard origin. safety-critical system �
HS Hazard severity (severity levels). safety-critical system �
HL Hazard likelihood. safety-critical system �
HGW Hazard guide-words. safety-critical system �

FT Fault tolerance
Error detection.

FT.R Recovery. �
M Maintenance repairable system

M.M Modifications. �
M.R Repair. �

R Redundancy (A fault tolerance implementation)
R.T Type.
R.L Level.
R.F Failures (max. number of tolerated failures).
R.R Roles.

3. EVALUATION CRITERIA

This section introduces and discusses the set of evaluation criteria that constitute the
basis for analysis in the survey. Having a set of evaluation criteria will allow us to
present, discuss and classify the surveyed works, tasks that are carried out in Sec-
tions 4 and 5. For an easy presentation, we merged these criteria into three groups
summarized in Table II. The first group helps to understand how the surveyed ap-
proaches deal with important software engineering and UML modeling aspects. The
second group concentrates on dependability concerns and the third addresses the qual-
ity of the approaches. Some criteria in the first and third groups have been taken from
the surveys of [Balsamo et al. 2004] and [Immonen and Niemelä 2008], the rest have
been identified during literature review, while reading and comparing the surveyed
papers.

3.1. Software engineering and UML

(C1) Life-cycle phase. Almost all of the surveyed approaches aim to obtain depend-
ability results early in the software life-cycle. Advantages of getting dependability
results prior to implementation were discussed in the Introduction. Most of the sur-

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



00:12 S. Bernardi et al.

Table II. Summary of evaluation criteria

Software engineering & UML
Code Criteria Values
C1 Phase requirements; architecture; design; implementation; deploy-

ment
C2 Diagrams class; object; UC; SM; act.; seq.; IOD; col.; comp.; deploy.
C3 Process general; use case; CBSE; SPL; MDD
C4 Software domain general; RTES; SOA
C5 Application domain general; aerospace; automotive; railway control; automated

production
C6 Specification profile; OCL; non-extended UML models; extensions
C7 Tool support yes; no

Dependability characteristics
Code Criteria Values
C8 Attribute DA
C9 Analysis type qualitative; quantitative (stochastic; non stochastic)
C10 Analysis model FMEA; HAZOP; Fault trees; stochastic Petri nets, ...
C11 Input Parameters DM, DT, FT, M, R
C12 Output Parameters DM
C13 Requirements DR

Quality
Code Criteria Values
C14 Validation case studies; empirical analysis; no validation
C15 Compliance compliant; not compliant
C16 Results N/A; basic; UML-feedback; sensitivity analysis
C17 Limitation text describing the limitation

veyed approaches address the following phases: requirements, design and software
architectural design. Although the latter can be considered a design sub-phase, we
decided to analyze it separately due to the high number of approaches addressing
it. We have also found works targetting the implementation and deployment phase.

(C2) Diagrams. As explained in Appendix 6, UML distinguishes between structural
and behavioral diagrams. The kind of UML diagrams used by an approach strongly
relates to the software life-cycle phase the approach addresses. In early phases,
the structural diagrams used are mainly class and object, and the behavioral dia-
grams are use case, sequence, state machines, activity, collaborations and interac-
tion overview diagram. In later phases, component and deployment diagrams are
used.

(C3) Software development process. The surveyed approaches are applied in con-
junction with a variety of software development processes. We identified the fol-
lowing cases:
— general: category including all “traditional” software development processes (it-

erative, incremental, waterfall or a combination of them).
— use case: use-case based process [Jacobson 1995].
— CBSE: component-based software development process [Szyperski 1998].
— SPL: specifically addressing Software Product Lines [Clements and Northrop

2001]
— MDD: Model Driven Development processes [Stahl and Völter 2006]. Although

MDD can be applied in conjunction with all of the above categories, we treat
it separately for simplicity. Note that the categories in the next criterion, the
software domain, can also be addressed by using MDD techniques.

(C4) Software domain. The approaches can also be classified by the specific software
domain they address. We have identified the following:
— RTES: targeted to real-time and embedded systems [Liu 2000].
— SOA: targeted to service-based systems [Bell 2008].

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



Dependability modeling and analysis of software systems specified with UML 00:13

— general: approaches not focused on a specific software domain.
(C5) Application domain. Most of the approaches are focused on the development of

general software systems, so they fall in what we call the general category. How-
ever, a few of them target a specific application domain, in particular: aerospace,
automotive, railway control and automated production.

(C6) Dependability specification. A common technique for introducing dependabil-
ity specifications (input parameters, output parameters and requirements – cri-
teria C11, C12 and C13) in the UML diagrams is by using UML profiles (see
Appendix A for an explanation). However, some of the analyzed works use other
approaches such as OCL restrictions (Object Constraint Language [OCL 2010] of
UML), non-extended UML models or UML extension mechanisms (notes, stereo-
types and tagged values) not organized around a specific profile.

(C7) Tool support. UML diagrams are supported by a large variety of CASE tools
(Computer Aided Software Engineering), both commercial and non-commercial.
The integration of an approach with a tool allows to incorporate the dependabil-
ity specification as extensions to the UML model. The more advanced tools also
incorporate as a feature the analysis of the underlying dependability model, while
others make use of a third-party tool that actually supports the analysis of the
model.

We consider important at this point to highlight that the criteria given in this sec-
tion define differences among UML-based approaches and the rest of model-based ap-
proaches. Differences that remark the need of a separate study of these two concerns
as we justify in the following.

A dependability specification (C6) accomplished with UML will use the resources
UML offers, such OCL or extension mechanisms, however this does not apply to others
model-based approaches. This aspect also involves tool support (C7) since comparisons
among UML and non-UML tools will be meaningless, for the same reasons. Moreover,
tools based on UML are nowadays dominant in the software engineering market and
they have left few room for others. Another important aspect concerns the develop-
ment approaches (C3), since they can be strongly influenced by UML. For example,
CBSE-like approaches develop architectural models according to UML component and
deployment diagrams. More significant is the case of Use case based approaches, since
today all of them follow the UML notation. Last but not least is the importance of
some methodological aspects of the UML diagrams related to the software life-cycle
(C1). When a phase, say for example behavioral design, is accomplished with UML, it
mandatorily has to be carried out using the UML diagrams for the purpose (e.g., state
machines or sequence diagrams). However, for others model-based approaches the field
is opened and they are not restricted by diagrams neither by the phase they can be ap-
plied, so, some of them use formal specification languages (for which hundreds of them
exist, mere examples are Z [Z 2002], Troll [Jungclaus et al. 1996] or process algebra-
like languages [Fokking 2000]), others use formal graphical models (e.g., stochastic
Petri nets [Ajmone-Marsan et al. 1995], or queuing network models [Lazowska et al.
1984]), and the list may continue.

For all the reasons above, we argue that UML has evolved to the verge of being a
language for which methodologies, specifications and tools around it are so complex
and huge in number that conform a body of knowledge that deserves to be studied in
isolation.

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



00:14 S. Bernardi et al.

3.2. Dependability characteristics

This group of criteria is based on the dependability concepts in Table I discussed in
Section 2. Besides, we have added two other important concerns, the analysis type and
the analysis model.

(C8) Attribute. This is a cross-reference to DA from the checklist in Table I, so it refers
to reliability DA.R, availability DA.A, maintainability DA.M and safety DA.S.

(C9) Analysis type. The nature of the dependability analysis may be either quantita-
tive or qualitative [IEC-60300-3-1], and this strongly constraints the type of spec-
ification as we later discuss. For quantitative analysis we have found approaches
that follow either stochastic analysis or not stochastic. For the sake of simplicity,
“stochastic” and “probabilistic” are considered synonymous. In general, qualitative
analysis aims to prove dependability properties, while quantitative analysis aims
to estimate dependability measures.

(C10) Analysis model. There is a huge variety of dependability models and/or tech-
niques used for dependability analysis. A few of them, like stochastic Petri
nets [Ajmone-Marsan et al. 1995], are useful for both quantitative and qualita-
tive analysis. However, others are exclusively targeted to qualitative analysis, such
as HAZOP [UK Ministry of Defence], and others to quantitative analysis such
Bayesian models or Markov models.

The analysis (either quantitative or qualitative) of a dependability model requires
a proper specification of the input/output parameters and requirements, as explained
below:

(C11) Input parameters. The input dependability parameters required by the approach
to effectively carry out the proposed analysis. They support the specification of de-
pendability characteristics (cross-reference to DM, DT, FT, M, R from the check-
list in Table I).

(C12) Output parameters. The kind of dependability measures or properties the ap-
proach evaluates (cross-reference to DM from the checklist in Table I).

(C13) Requirements. The kind of requirements the approach supports (cross-reference
to DR from the checklist in Table I).

Observe that, both the criteria (C11) and (C12) reference the dependability measure
item of the checklist in Table I (DM). Indeed, an approach may require dependability
measures as input parameters; for example, the Mean Time To Failure (MTTF) of
system components, is needed to evaluate the overall system failure rate.

3.3. Quality

The criteria in this group will help to assess the overall quality and maturity of the
surveyed approaches.

(C14) Validation. Some of the approaches have not been validated at the time of the
publication, while for others a validation effort has been carried out. Most often
the validation is carried out by the means of case studies that demonstrate, us-
ing realistic examples, how the dependability concepts are integrated with UML;
sometimes, it is also shown how to obtain a dependability analysis model from
the UML model. In a few works, empirical analysis is used instead, which mainly
consists in extrapolating information, using testable working hypotheses, from the
application of the proposal by third parties.
Therefore, in this criteria we will distinguish approaches belonging to one of the
following categories: case studies, empirical analysis and no validation.

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



Dependability modeling and analysis of software systems specified with UML 00:15

(C15) Compliance with standards. Several dependability standards exist, some with
general purpose [ISO/IEC9126-1.2 2001; IEC-60300-3-1 2003; IEC-61508 1998],
others targeted to specific application domains [MIL-STD-882d 1999; MIL-STD-
1629A 1984; ARP-4754 1994; 1995; RTCA 1992; EN-50126 1999; 2001; 2001]. Com-
pliance of an approach with a standard represents certainly an asset; this is espe-
cially true in the safety domain, where certifications following standards are com-
mon practice. In this regard we will classify an approach as compliant when it
adheres to some standard or not compliant otherwise.

(C16) Presentation of results. When the dependability analysis has been carried out,
results should be automatically interpreted in the problem domain, and subse-
quently presented to the software engineer. However, this is a tricky concern that,
in our opinion, has not been satisfactorily solved by any of the surveyed approaches
yet. Despite this drawback, some of the approaches present the results in some ba-
sic form (for example, in textual, tabular or plot forms). The best approaches feed-
back results to the same UML model (e.g. using trace visualization on sequence
diagrams) and/or provide support for sensitivity analysis. We classify approaches
in four categories: N/A (do not deal with this aspect), basic (offer some kind of
basic support), UML feedback and sensitivity analysis.

(C17) Limitations. The analyzed approaches present drawbacks related to some of the
previous criteria. For example, a few of them do not offer UML annotations for the
definition of basic input parameters such as failures of components. The large num-
ber and diversity of these limitations hindered us from classifying them. However,
we studied these limitations and pointed out the more relevant.

4. CONTRIBUTIONS

We surveyed 33 approaches (a total of 43 papers) addressing dependability modeling
and analysis of UML-based software systems and collected the information regarding
the criteria in previous section. They are presented according to the dependability
attribute they address (criterion C8), i.e., reliability, availability, maintainability or
safety. Approaches focussed on more than one dependability attribute will be presented
in the last subsection.

4.1. Reliability

A first set of surveyed works contribute specifically to the reliability analysis of UML-
based software systems. Following criterion C1, software architecture and design are
the only phases of the software life-cycle dealt with by these works, so §4.1.1 and §4.1.2
address them, respectively. Since most of the works in this group follow a component-
based approach, criterion C3, §4.1.3 discusses this aspect.

4.1.1. Software architecture. [D’Ambrogio et al. 2002] define a transformation of se-
quence and deployment diagrams (C2) into fault tree models (C10) to predict the sys-
tem failure rate (C12 - DM.R). Although no UML extension standard mechanisms
are used (C6), several UML model elements whose failure (basic events in fault tree
models) can lead to the system failure (top-event in fault tree models) are identified,
such as failure of nodes and communication paths, call/return actions and operations.
Mean Time To Failure (MTTF) is assigned to such elements as input parameter (C11 -
DM.R).

Both [Yacoub et al. 2004] and [Rodrigues et al. 2005] aim at calculating the sys-
tem reliability on-demand (C12 - DM.R) as a function of the component/ connector
reliability (C11 - DM.R) and the scenario execution probabilities. [Yacoub et al. 2004]
consider also the probability of error propagation between components (DT.EPQ). To
compute the metric, [Yacoub et al. 2004] construct a probabilistic model, called Com-

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



00:16 S. Bernardi et al.

Table III. Reliability and software architecture.

Works Criteria
[D’Ambrogio et al. 2002] C2, C6, C10, C11, C12

[Yacoub et al. 2004] C11, C12
[Rodrigues et al. 2005] C2, C10, C11, C12

Table IV. Reliability and software design

Works Criteria
[Singh et al. 2001] C2, C10, C12

[Cortellessa et al. 2002] C2, C10, C11, C12
[Pai and Dugan 2002] C6, C10, C11, C12

[Grassi et al. 2005; 2007] C3, C6, C10, C11, C12
[David et al. 2009] C10, C11, C17

ponent Dependency Graph (CDG), from sequence diagrams and develop an algorithm,
based on the CDG. Instead, [Rodrigues et al. 2005] use Labeled Transition Systems to
synthesize sequence diagrams and interpret them as Markov models (C2,C10).

4.1.2. Software design. [Singh et al. 2001; Cortellessa et al. 2002] use the Bayesian
framework (C10) to derive the probability distribution of the system reliability (C12
- DM.R) from UML use case and sequence diagrams (C2). [Cortellessa et al. 2002]
improve the previous approach of [Singh et al. 2001] by considering also deployment
diagrams and the connector failure (Beta) distribution beside the component failure
(Beta) distribution and the use case execution probabilities (C11 - DM.R).

[Pai and Dugan 2002] use dynamic fault tree as target formalism (C10) to evalu-
ate the system unreliability (C12 - DM.R) of fault-tolerant software systems. Unlike
[D’Ambrogio et al. 2002], [Pai and Dugan 2002] introduce a set of stereotypes and tags
to enrich UML system models with information needed for the reliability analysis (C6).
In particular, tags are used to define input parameters, such as the failure rate of sys-
tem components and the error propagation probability (C11 - DT.EPQ, DM.R). The
method supports the modeling and analysis of sequence error propagations (DT.EP)
that lead to dependent failures (DT.FMDep), redundancies and reconfiguration activ-
ities (FT.R). Several stereotypes are defined to represent different kinds of dependen-
cies between system components and to model the type of spare components, e.g., hot,
cold and warm spares (R.T).

[Grassi et al. 2005; 2007] propose a model-driven transformation framework (C3)
for the performance and reliability analysis of component-based systems. Grassi et al.
build an intermediate model that acts as bridge between the annotated UML models
and the analysis-oriented models. In particular, discrete time Markov process mod-
els (C10) can be derived for the computation of the service reliability (C12 - DM.R).
Grassi et al. uses the UML extensions of [Cortellessa and Pompei 2004] (C6) and com-
plements them, by associating failure input parameters to both hardware and software
components and by considering both atomic failures and failure probability distribu-
tion functions (C11 - DM.R).

Finally, [David et al. 2009] focus on the identification of behavioral failure modes,
e.g., with respect to their detectability (C11 - DT.FMDet), in system design using Fail-
ure Mode and Effects Analysis (FMEA) technique (C10). Beside UML, SysML [SysML
2010] is also considered as modeling notation for the specification of the system func-
tional behavior. The main drawback of the approach is that a Dysfunctional Behavior
data-base, that organizes the knowledge about possible elementary failure modes of
components, needs to be constructed and maintained to support an automated reuse
of the method (C17).

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



Dependability modeling and analysis of software systems specified with UML 00:17

Table V. Reliability and component-based systems.

Works Criteria
[D’Ambrogio et al. 2002] C3, C9

[Yacoub et al. 2004] C3, C9
[Rodrigues et al. 2005] C3, C9, C16

[Singh et al. 2001] C3, C9, C17
[Cortellessa et al. 2002] C3, C9, C17

[Grassi et al. 2005; 2007] C3, C9
[Cortellessa and Pompei 2004] C3, C6, C11

4.1.3. Component-based systems. Component-based modeling approach for the func-
tional specification of the software (C3) is common to all of the aforementioned works,
but [Pai and Dugan 2002] and [David et al. 2009]. These component-based proposals
address reliability analysis from the quantitative and stochastic point of view (C9),
using different dependability techniques. [Yacoub et al. 2004; Rodrigues et al. 2005;
Singh et al. 2001; Cortellessa et al. 2002] assume failure independence of components
and connectors; moreover, [Yacoub et al. 2004] considers independent scenarios and
sequential execution of components and [Singh et al. 2001; Cortellessa et al. 2002]
rely on the regularity assumption of component/ connector failure probability distri-
butions (i.e, component busy periods are characterized by the same failure probability
distribution) - (C17). They all provide support to analyse the sensitivity of the system
reliability to the critical components, but only in [Rodrigues et al. 2005] the results of
the analysis are fed-back to the UML model using annotations (C16).

Finally, [Cortellessa and Pompei 2004] provide support to the reliability analysis of
component-based systems, in both phases (i.e., architecture and design), by proposing
UML extensions within the frameworks of the SPT and QoS&FT standard profiles
(C6). In particular, the set of stereotypes are specialization of stereotypes defined in
the General Resource Modeling package of the SPT profile. The most interesting in-
put parameters considered are the atomic failure probabilities of software components
or (logical/physical) links (C11 - DM.R), that is the probability that a component, or
connector, fails in a single invocation of it.

4.2. Availability

To the best of our knowledge, [Bernardi and Merseguer 2006] is the ony work that
tackles, exclusively, software availability. They devise a method to evaluate the qual-
ity of service (QoS) of fault tolerant (FT) distributed system design specification (C1),
under late-timing failure assumption (C11 - DT.FMD). The QoS metric is defined as a
function of two non-functional requirements (C13 - DR.BOUND): one is related to the
system availability, i.e., the time to detect an error and isolate it (FT.ED), and the other
is related to the cost of the FT strategy, i.e., communication overhead. [Bernardi and
Merseguer 2006] propose a transformation of UML sequence, state-chart and deploy-
ment diagrams (C2), annotated with the SPT profile [UML-SPT], into a performability
Generalized Stochastic Petri Nets (GSPN) model (C10). The latter is then analysed
via simulation to evaluate, under different system configurations, the considered QoS
metric (C16). State-charts are also proposed for the quantitative characterization of
faults (DT.FOQ) as well as for the behavioral specification of different types of fault
with respect to their timing persistency (DT.FP). In this case UML extensions have
been explicitly introduced (C6), since the SPT profile does not support the specification
of dependability parameters (e.g., fault occurrence probabilities).

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



00:18 S. Bernardi et al.

Table VI. Availability.

Works Criteria
[Bernardi and Merseguer 2006] C1, C2, C6, C10 C11, C13, C16

Table VII. Maintainability.

Works Criteria
[Genero et al. 2003; Genero et al. 2007] C1, C2, C11, C12, C14, C15, C17

Table VIII. Safety and requirements elicitation.

Works Criteria
[Allenby and Kelly 2001] C2, C3, C5, C7, C10, C11, C13, C15
[Johannessen et al. 2001] C2, C3, C5, C7, C10, C11, C15

4.3. Maintainability

[Genero et al. 2003; Genero et al. 2007] is the only approach, among the surveyed
ones, that addresses specifically the maintainability of UML specifications during the
design stage of the software lifecycle (C1). They rely on the software quality stan-
dard [ISO/IEC9126-1.2] (C15) and propose a set of metrics as good predictors of two
maintainability sub-characteristics, that is understandability and modifiability (C11
- M.M). The set of metrics includes both typical size metrics (e.g., number of classes,
attributes and methods) and structuraly complexity ones (e.g., number of aggrega-
tions, dependencies and generalizations) - (C12 - DM.C) - which can be applied on
UML class diagrams (C2). An empirical analysis is carried out to evaluate the correla-
tion between the proposed metrics and the considered maintainability characteristics
(C14). Nevertheless, no guidelines are provided to the software designers on how to
use such metrics to evaluate the maintainability of the UML class diagrams (C17).

4.4. Safety

Another group of works focus on safety-critical systems. They are presented accord-
ing to the activities they support along the software life-cycle (C1). Moreover, we have
considered of interest to jointly analyze those works focussed on risk assessment, irre-
spective of the phase of the life-cycle they apply, they are presented in §4.4.5.

4.4.1. Requirements elicitation. The safety requirement elicitation approaches are ap-
plication domain-specific (C5) and use Use Case diagrams (C2,C3) to identify system
level functionalities of aerospace software ([Allenby and Kelly 2001]) or in automo-
tive domain ([Johannessen et al. 2001]). They are both compliant to safety-standards
([ARP-4754],[ARP-4761],[IEC-61508] - C15) and provide systematic methods to iden-
tify failure modes with the help of guidewords (C11 - DT.HGW). In particular, [Al-
lenby and Kelly 2001] apply a subset of HAZard OPerability guidewords (C10) to pre-
and post-condition, guard condition, and scenario sections of use case descriptions to
identify failure modes considering the domain and their consequence (C11 - DT.FMD,
DT.FMSL) and to derive safety requirements related to use cases (C13 - DR.S). In-
stead, [Johannessen et al. 2001] adopt Functional Failure Analysis guidewords (C10)
and failures are classified according to their consequence (C11 - DT.FMSL). Unlike
[Allenby and Kelly 2001], [Johannessen et al. 2001] provide also support to analyse
the consequence of combined failures (C11 - DT.FMDep). Both the approaches are
characterized by a low degree of automation (to the best of our knowledge, no tools are
available to support them - C7).

4.4.2. Software architecture. [Hansen et al. 2004] and [Iwu et al. 2007] use HAZard OP-
erability guidewords (C10,C11 - DT.HGW) to identify hazards in software architec-

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



Dependability modeling and analysis of software systems specified with UML 00:19

Table IX. Safety and software architecture.

Works Criteria
[Hansen et al. 2004] C2, C5, C10, C11, C17

[Iwu et al. 2007] C2, C3, C5, C6, C7, C10, C11, C12, C13
[Liu et al. 2007] C2, C3, C6, C10, C11, C12, C13, C16, C17

ture specification. Both the works address specific application domains (automotive in
[Hansen et al. 2004] and embedded systems in [Iwu et al. 2007] - C5). While [Iwu et al.
2007] adopt an approach similar to [Allenby and Kelly 2001] (i.e., use case-based, C3),
[Hansen et al. 2004] considers each model element in package, class, component, ob-
ject, sequence and deployment diagrams (C2). Then, the main drawback of [Hansen
et al. 2004] is the limited scalability of their proposal that, when applied of a real case
study, may result in a time consuming activity (C17).

[Iwu et al. 2007] use also Fault Tree Analysis to combine faults that give rise to
identified hazards (C10). Such faults are related to UML model elements (e.g., classes
in class diagrams, messages in sequence diagrams - C2) and are used to establish
derived safety requirements. Safety requirements and healthiness properties (C13 -
DR.S, C12 - DM.S) are specified using Practical Formal Specification state machines
(C6) and tool support is provided to check their consistency and completeness (C7).

[Liu et al. 2007] address safety analysis on the variations in software product-lines
proposing a five-step approach (C3). In the first step, common and variability analy-
sis is carried out to identify requirements for the entire product line and for specific
product members. Hazard analysis is then performed by using Software Fault Tree
Analysis (SFTA) customized to product-line domain (C10). The root node of the tree is
typically a negation of a safety requirement, or it can be identified from pre-existing
hazard lists (C11 - DT.HGW), while the leaf nodes are labeled with a commonality
or variation, previously identified. In the third step, such leaf nodes are mapped into
architectural components, whose behavior is then modeled with a UML state-chart
(C2). Safety requirement and failure scenarios are then derived from the fault tree
(C13 - DR.S) and, finally, behavioral safety-properties (C12 - DM.S) are checked in
state-based models (C6) through scenario-guided execution or animation (C16). The
safety-properties that can be automatically checked include ordering logic and relative
timing of failures of events while, due to the tool limitations, the verification of exact
time values is not supported (C17).

4.4.3. Software design. [Hawkings et al. 2003], [Pataricza et al. 2003], [Ober et al. 2006]
and [Zoughbi et al. 2007; 2006] consider the UML design of safety critical software.
[Hawkings et al. 2003] address the preliminary system safety assessment of UML de-
sign. They construct a Fault Tree (C10) where hazardous basic events are related to
classes and operations in UML Class Diagrams (C2). Then, the behavior of the classes
- represented by UML StateCharts - is analysed in order to derive detailed safety re-
quirements. Beside the normal behavior, the faulty behavior (C11 - DT.FB) is modeled
by adding extra transitions in the StateCharts with the help of hazard guidewords
(e.g., omission, commission and value) (C11 - DT.FMD, DT.HGW). A reachability anal-
ysis of the mutated StateChart is performed to check whether the introduced faulty
behavior can lead to unsafe states. The derived safety requirements restrict the haz-
ardous behaviors and are specified with OCL (C6) as contracts on classes/operations
(C13 - DR.S).

The modeling of the normal and the faulty behavior of a system component in a sin-
gle state machine (C2,C11 - DT.FB) is also proposed by [Pataricza et al. 2003], whose
objective is to identify the error propagation paths leading to catastrophic failures in
railway control software (C5,C12 - DM.S). They define UML stereotypes (C6) for erro-

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



00:20 S. Bernardi et al.

Table X. Safety and software design.

Works Criteria
[Hawkings et al. 2003] C2, C6, C10, C11, C13
[Pataricza et al. 2003] C2, C5, C6, C11, C12

[Ober et al. 2006] C2, C4, C6, C10, C11, C12, C13,
[Zoughbi et al. 2007; 2006] C2, C5, C6, C11, C12, C14, C16, C17

neous states and correcting transitions in UML State Machines (C11 - DT.EB, DT.EP,
FT.R).

[Ober et al. 2006] present a technique for the verification of safety properties of
real-time and embedded systems (C4) via model checking (C12 - DM.S). A UML pro-
file (OMEGA) is defined (C6) to specify timing constraints in the UML design (Class
Diagrams and State Machines, C2) as well as dynamic and time dependent safety re-
quirements (C13 - DR.S). In particular, the latter are expressed by observers UML
classes, whose behavior is described as a State Machine characterized by error or in-
valid states (C11 - DT.EB). Both design and requirements are then transformed into
communicating extended timed automata (C10) and the design is verified against the
requirements using model checking techniques.

[Zoughbi et al. 2007; 2006] define a UML profile (C6) for the specification of safety
concepts of aerospace software systems (C5) in the design phase to support the au-
tomated generation of certification-related information. The proposed UML exten-
sions are compliant to the airworthiness standard [RTCA] (C15), they are used to
record safety-related design decisions - e.g., failure consequence/ hazard severity (C11
- DT.FMSL, DT.HS), roles within replicated structures (C11 - R.R), safety/confidence
levels (C12 - DM.S) and complexity metrics (C12 - DM.C) for collaboration, class, oper-
ation and relationship (C2) - and trace them back to the requirements (C16). Their ap-
proach is based on a rigorous definition of the profile (through a safety domain model)
and an exhaustive completeness/consistency assessment with respect to the considered
safety standard (C14). The main weakness is the use of dynamic concepts (through
the profile) that extend typically static concepts, then leading to mixed static/dynamic
views in the same UML diagram (Class Diagram) - (C17).

4.4.4. Software architecture, design and implementation. [Cancila et al. 2009] and [Lu and
Halang 2007] focus on the specification of safety-related properties in different phases
of the software life-cycle and for different purposes. Their approaches are character-
ized by a high automation degree, although only the work of [Cancila et al. 2009]
is supported by a software tool (i.e., the used UML profiles are implemented as Pa-
pyrus [CEA-LIST 2008] plug-ins, C7).

[Cancila et al. 2009] consider software architecture and design specifications of rail-
ways transport systems (C5) and propose a UML profile (SOPHIA) for safety concerns
(C6). SOPHIA relies on the OMG standard profile MARTE to express safety metrics
(tolerable accident rate, i.e., TAR, and frequency of an accident C12 - DM.S), require-
ments (i.e., maximum TAR C13 - DR.BOUND), and characteristics (accident severity,
accident severity/frequency table, accident frequency C11 - DT.HS, DT.HL). The work
also proposes an algorithm for the automatic generation of derived safety attribute
values (i.e., TAR) in design model.

[Lu and Halang 2007] address the design of safety-critical distributed embedded
real-time systems (C4) and the automated code derivation from UML design, consid-
ering PEARL as target programming language and Function Blocks [IEC-61131-1]
(C15) to support the code reusability. A set of PEARL code structures are proposed
as suitable for building applications which have to meet safety integrity level require-
ments [IEC-61508] (C13 - DR.BOUND). The SIL-related PEARL constructs are rep-

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



Dependability modeling and analysis of software systems specified with UML 00:21

Table XI. Safety and different phases in the life-cycle.

Works Criteria
[Cancila et al. 2009] C5, C6, C7, C11, C12, C13

[Lu and Halang 2007] C4, C6, C13, C15, C17

Table XII. Safety and risk assessment.

Works Criteria
[Goseva-Popstojanova et al. 2003] C2, C10, C11, C12

[Hassan et al. 2005] C6, C10, C11, C12, C15

resented as UML stereotypes and the Object Constraint Language (OCL) is used to
specify constraints (i.e., pre- and post-conditions, invariants) on the expected execu-
tion of stereotyped components (C6). [Lu and Halang 2007] define UML extensions
also for representing Function Block diagrams as UML component diagrams. A limi-
tation of the approach concerns the timing-related issues which are vaguely dealt in
the paper (C17).

4.4.5. Risk assessment. [Goseva-Popstojanova et al. 2003] and [Hassan et al. 2005] ad-
dress the risk assessment step within the system safety analysis process. They both
consider software architectures specified with UML. [Goseva-Popstojanova et al. 2003]
estimate the scenario risk factor (C12 - DM.S) from risk factors associated to software
components and connectors by constructing and solving a Markovian model (C10). The
component/connector risk factor is computed as the product of two safety metrics: the
severity level (C11 - DT.FMSL, DT.HS) and the complexity/coupling associated to the
component/connector. The severity is obtained using FMEA technique (C10), while the
component complexity and connector coupling are estimated considering the UML dy-
namic specifications - State Machines and Sequence Diagrams - (C2,C12 - DM.C).

[Hassan et al. 2005] focus the problem of evaluating the failure severity based on
UML specification. They integrate different severity techniques (FFA, FMEA and FTA
- C10) to identify and relate system level hazards and component/connector failure
modes (C11 - DT.HO, DT.HL, DT.HGW). A cost of failure graph is then constructed to
evaluate the cost of failure (C12 - DM.S) of system execution scenarios, software com-
ponents/connectors. The costs of failure are reported in the UML models with the use
of notes (C6). Finally, the scenario and component/connector severity (C11 - DT.FMSL,
DT.HS) are obtained from the estimated costs of failure using a non-linear mapping.
Both [Goseva-Popstojanova et al. 2003] and [Hassan et al. 2005] rely on the US mili-
tary standard for safety critical systems [MIL-STD-1629A] (C15).

4.5. More than one dependability attribute

The remaining works address several dependability properties at a time. In the follow-
ing we analyze them.

4.5.1. Reliability and availability. [Bondavalli et al. 2001; Majzik et al. 2003; Pataricza
2000], [DeMiguel et al. 2001] and [Leangsuksun et al. 2003] aim at analyzing the
reliability and availability of UML-based software systems in different phases of the
software life-cycle (from requirement to deployment, C1), using stochastic techniques
(C9). They all adopt a model transformation approach to get an analyzable model from
UML annotated models. Also [Dal Cin 2003] considers the reliability and availability
properties, but his main contribution is providing a support for the specification of
fault-tolerant and real-time software systems rather than the analysis.

[Bondavalli et al. 2001; Majzik et al. 2003; Pataricza 2000] is the most comprehen-
sive approach, with respect to the checklist of Table I, for reliability and availability

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



00:22 S. Bernardi et al.

analysis of UML software architectures (C1). UML standard extension mechanisms
(i.e., stereotypes and tags) are used for annotating dependability properties of soft-
ware systems on UML specifications (C6). Through a rigorous graph transformation
process, Timed Petri Net models (C10) are derived via an intermediate model, that cap-
tures the relevant dependability information from the annotated UML models. Com-
ponent faulty behavior is triggered by independent fault injectors, modelled as State
Machines (C2), which allow one to specify fault activation restrictions, such single fault
assumption (C11 - DT.FO). Several input parameters are defined (C11) for hardware
and software components, such as fault occurrence rate (DT.FOQ), the percentage of
permanent faults (DT.FP), the error latency for components with an internal state
(DT.EQ) and repair delay (DM.M). The approach also supports the specification of
error propagation between components (DT.EPQ) by assigning a probability to the
model elements representing either relationships (e.g., associations) or interactions
between such components (e.g., communication paths, messages). The set of depend-
ability measures that can be evaluated (C12 - DM.R,DM.A) includes the reliability
probability distribution function, MTTF, the steady state and the immediate availabil-
ity. Concerning the type of failures with respect to their dependency, both independent
and dependent failures can be specified (C11 - DT.FMDep). In particular, it is possible
to assign common failure mode occurrence tags to redundant components belonging
to complex FT structures (C11 - R.L, R.R). Failures can be discriminated also with
respect to the domain (C11 - DT.FMD). Extensions for states and events of state ma-
chines representing the behavior of redundancy manager components are introduced,
in order to discriminate normal and failure states and events (C11 - DT.FailB). Such
extensions are used to analyse the failure conditions of the FT structures. The main
drawback of the UML extensions proposed by [Bondavalli et al. 2001; Majzik et al.
2003; Pataricza 2000] is the introduction of unnecessary redundant information in the
UML system model, since the specification of some parameters requires the joint use
of more than one stereotype (C17). For example, a node, that models a hardware com-
ponent in UML, must be stereotyped as hardware and stateful to specify the error
latency.

[DeMiguel et al. 2001] consider the software architecture and detailed design UML
specification of distributed real-time systems (C1,C4). Simulation models are gener-
ated automatically from UML models, annotated with dependability input parame-
ters (C11) - i.e., object and network error occurrence, object time to failure and repair
(DT.EB, DT.EQ, DM.R, DM.M). In particular, the tool [OpNet 1999] is used as sim-
ulation kernel (C7). The approach supports the evaluation of several dependability
measures, such as object and network availability, object failure distribution (C12 -
DM.A, DM.R), and different type of statistics can be computed (i.e., mean, variance,
distribution).

[Leangsuksun et al. 2003] derive from UML deployment diagrams (C2), normally
used during the late software design and deployment stages (C1), fault tree and
Markov chain models (C10) for the analysis of the reliability and availability (C8),
respectively. The UML diagrams are annotated (C6) with node failure rate and re-
pair rate parameters (C11 - DM.R, DM.M). The method supports the computation of
the reliability (i.e., survival function) and the steady state availability (C12 - DM.R,
DM.A), under hardware failure independence assumptions.

[Dal Cin 2003] proposes a UML profile (C6) for designing dependability mechanisms,
that is hardware/ software components to be implemented or integrated in the real-
time system (C4) to ensure fault tolerance (C11 - FT.ED, FT.R, R.R). The proposed
profile is aimed at supporting the quantitative evaluation of the effectiveness of the
fault tolerant strategy adopted (C9), in terms of reliability and steady state availabil-
ity (C12 - DM.R, DM.A). It provides a language (i.e., SQIRL) for specifying stochastic

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



Dependability modeling and analysis of software systems specified with UML 00:23

Table XIII. Reliability and availability.

Works Criteria
[Bondavalli et al. 2001; Majzik et al. 2003; Pataricza 2000] C1, C2, C6, C9, C10, C11, C12, C17

[DeMiguel et al. 2001] C1, C4, C9, C11, C12
[Leangsuksun et al. 2003] C1, C2, C6, C8, C9, C10, C11, C12

[Dal Cin 2003] C4, C6, C9,, C11, C12, C13, C17

reliability and availability requirements of such mechanisms (C13 - DR.BOUND).
However, the profile lacks of a support to the modeling of the interactions among de-
pendability mechanisms and the system components (C17).

4.5.2. Reliability, availability and maintainability. The following two approaches deal, as the
previous ones, with reliability and availability, besides they address also maintain-
ability (C8). Both [Addouche and Antoine 2004; Addouche et al. 2006] and [Bernardi
et al. 2004a; 2004b] provide support in the requirement and design phases (C1) of the
real-time software development (C4). In particular, the considered application domains
are, respectively, automated production systems and distributed control automation
systems (C5).

[Addouche and Antoine 2004; Addouche et al. 2006] define a profile (C6) that is com-
pliant with General Resource Modeling package of the SPT profile [UML-SPT]. The
UML extensions are used to annotate UML models with QoS characteristics (C11 -
DM.R, DM.M) and to derive probabilistic time automata (C10) for the verification of
dependability properties via temporal logic formulas and model checking (C12 - DM.R,
DM.A, DM.M). A pair of stereotypes is also defined to include probabilistic aspects of
functioning and malfunctioning. The static model of the system is enriched with new
stereotyped classes that are associated with each class representing a system resource.
Such new classes are used to specify, via their attributes, the failure conditions and the
possible degraded/ failure states of the resources (C11 - DT.FailB). This mechanism
can be used by the analyst to specify components state-based conditional failures (C11
- DT.FMDep). The negative aspect of the approach is the poor separation of concerns,
in fact new classes need to be defined and introduced in the system model, beside the
classes representing the actual system components, for dependability analysis pur-
poses (C17).

[Bernardi et al. 2004a; 2004b] propose a set of UML class diagrams (C2), struc-
tured in packages (i.e., a CD framework), as a reusable pattern to collect dependabil-
ity and real-time requirements of distributed control automation systems and to sup-
port the design of an appropriate fault tolerance strategy. They also propose a system-
atic method for the derivation of dependability analysis models, such as TRIO [Ghezzi
et al. 1990] temporal logic models (C10). The class attributes define dependability or
fault tolerance (R.T) characteristics; they can represent either input or output pa-
rameters (C11,C12 - DM.R, DM.A, DM.M) or upper/lower bound requirements (C13
- DR.BOUND), depending on the type of stereotype associated to the attribute (C6).
The fault-error-failure (FEF) chain [Avizienis et al. 2004] as well as the fault tolerance
mechanisms are represented as class diagrams. In particular, fault classes include at-
tributes that characterize the fault timing persistency and occurrence rates (C11 -
DT.FP, DT.FOQ) in system components. Error classes allows one to quantify error la-
tencies, error probability and bit error rates (C11 - DT.EQ) in automation functions.
Finally, failures are classified according to their impact on the automation system in
halting, degrading and repairing failures (C11 - DT.FMD). From the analysis of TRIO
temporal logic models it is possible to visualize traces of the system execution that con-
centrate on the predicates of interest (C16). The requirement specification and analy-
sis approach is compliant with the standard dependability management process [IEC-

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



00:24 S. Bernardi et al.

Table XIV. Reliability, availability and maintainability.

Works Criteria
[Addouche and Antoine 2004; Addouche et al. 2006] C1, C4, C5, C6, C8, C10, C11, C12, C17

[Bernardi et al. 2004a; 2004b] C1, C2, C4, C5, C8, C10, C11, C12,
C13, C14, C15, C16, C17

Table XV. Reliability and safety.

Works Criteria
[Mustafiz et al. 2008; Mustafiz and Kienzle 2009] C1, C2, C3, C6, C8, C10, C11,

C12, C13, C14
[Zarras et al. 2004] C1, C4, C6, C8, C10, C11, C12

[Jürjens 2003; Jürjens and Wagner 2005] C1, C6, C8, C10, C11, C12, C13

60300-3-1] (C15) and it has been applied on a primary substation of power distribution
network (C14). Unfortunately, the customization of the CD framework for a given ap-
plication is a time consuming activity; moreover, it requires modelers with expertise in
TRIO language to express predicates/axioms as well as to conduct the analysis of the
TRIO models (C17).

4.5.3. Reliability and safety. Reliability and safety (C8) topics are jointly treated by
[Mustafiz et al. 2008; Mustafiz and Kienzle 2009], [Zarras et al. 2004] and [Jürjens
2003; Jürjens and Wagner 2005]. The three approaches provide support in different
phases of the software life-cycle, that is respectively, requirement, software architec-
ture and design (C1).

[Mustafiz et al. 2008; Mustafiz and Kienzle 2009] devise a requirement engineer-
ing process (DREP) for the elicitation, specification and analysis of reliability and
safety requirements. They extend use cases (C2,C3) to discover exceptional situa-
tions that can interrupt the system normal behavior and to define derived require-
ments to handle such situations. Use cases are mapped to DA-Charts (C6), a type
of state-charts where probabilities are associated to success/failure transitions (C11
- DT.FailB, DM.R). A Markov chain is then constructed from a DA-Chart (C10) to
compute the reliability on demand and the probability of reaching safe states from
the initial system state (C12 - DM.R, DM.S). The dependability analysis produces
information to the designer on the maximal achievable reliability and safety (C13 -
DR.BOUND), considering only the failures of the system environment (e.g., hw sen-
sor failures) and assuming the system under development be reliable. The applicability
and effectiveness of the DREP approach has been evaluated empirically, in academic
environment, using an electronic toll collection system as case study (C14).

[Zarras et al. 2004] address mainly reliability and safety analysis of composite web
services (C4); availability is also dealt, but as secondary dependability property. They
consider BPEL [BPEL 2007] as software architecture specification language and pro-
pose a UML representation of BPEL constructs through stereotypes. UML extensions
are also defined to express the parameters necessary for dependability analysis (C6).
In particular, they include: reliability, safety and availability measures (C12 - DM.R,
DM.S, DM.A) to be computed, the fault characterization of objects (C11 - DT.FP,
DT.FO, DT.FOQ) - e.g., fault rate, fault persistency, phase of occurrence, boundary
and nature - the failure domain and consistency (C11 - DT.FMD, DT.FMC), and re-
dundancy schema within the devised FT techniques (C11 - R.L, R.F, R.R) - e.g., the
type of adjudicators in error-detection mechanisms, the redundancy level and FT level
of a redundant schema. The UML annotated models are then transformed into Block
Diagrams and Markov models which enable the dependability evaluation of the com-
posite web services (C10).

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



Dependability modeling and analysis of software systems specified with UML 00:25

Table XVI. RAMS.

Works Criteria
[Bernardi et al. 2009] C1, C6, C8, C11, C13

[Jürjens 2003; Jürjens and Wagner 2005] define safety and reliability checklists,
using UML stereotypes and tags (C6), to support the analyst in the identification of
failure-prone components (C12 - DM.S, DM.C) in the software design. The UML ex-
tensions are used to specify requirements on communication - e.g., maximum proba-
bility of message loss, safety/reliability level (C13 - DR.BOUND, DR.S) - and failure
assumptions (C11 - DM.R) of communication links/nodes as a function of the failure
domain (C11 - DT.FMD) and of the type of voters within redundancy structures (C11
- R.R). A precise semantics is provided to check the design, via temporal logic formu-
las (C10), against the requirements and constraints specified with the proposed UML
extensions.

4.5.4. Reliability, availability, maintainability and safety. [Bernardi et al. 2009] propose a
UML profile (namely DAM, C6), as a specialization of the OMG standard [UML-
MARTE 2009], to support the dependability analysis of UML-based software systems,
in the early phases of the software life-cycle (i.e., requirement, software architecture
and design, C1). In particular, the DAM profile focuses on the RAMS properties (C8)
and its definition was based on a thorough analysis of different approaches, included
in the present survey, for dependability specification and analysis within UML. The
main objective of the work has been to unify the terminology and concepts for different
dependability aspects C11-13 - (DR.BOUND, DM, DT, FT.R, M.R, R.L, R.L, R.R)
under a common consistent dependability domain model, reusing the best practices
and choices reported in literature on model transformation to generate formal depend-
ability analysis models.

5. DISCUSSION

In this section we analyze, from a critical perspective, the set of contributions pre-
sented in Section 4. We use the criteria presented in Section 3 as guidelines for our
discussion. Some considerations about the fulfillment of the dependability concepts
from the checklist (Table I) by the surveyed works will be also provided. In Table XVII
we have summarized each approach and labeled them with an identifier that will be
used throughout this section. The Table is arranged according to the order of pre-
sentation of the approaches in Section 4 and the last column indicates the concrete
subsection where the approach is discussed.

5.1. Software engineering and UML criteria

5.1.1. Life-cycle phase. The support provided by the approaches within the software
lifecycle spans from the requirement to the deployment phases (Figure 2, Table XVIII)
although major contributions are given in the early phases, in particular during the re-
quirement, software architecture and design specification. This is an expected result,
as occurred for performance model-based approaches [Balsamo et al. 2004], since the
major modeling effort is placed early in the life-cycle, where the detection of both func-
tional and non functional (e.g., dependability, performance) problems is more effective
from the software costs point of view.

We observed that a significant number of works aim at providing approaches to the
dependability analysis of software systems, while few contributions address require-
ment elicitation or just dependability specification (i.e., how to express dependability
characteristics in the software specification). Among the surveyed works, only Goseva
and Hassan provide methods for the risk assessment of safety-critical systems.

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



00:26 S. Bernardi et al.

Table XVII. List of surveyed approaches

Approach ID Authors Papers Section
D’Ambrogio D’Ambrogio A., Iazeolla G., Mirandola

R.
[D’Ambrogio et al. 2002] §4.1.1,§4.1.3

Yacoub Yacoub S.M., Cukic B., Ammar H.H. [Yacoub et al. 2004] §4.1.1,§4.1.3
Rodrigues Rodrigues G.N., Rosemblum D.S.,

Uchitel S.
[Rodrigues et al. 2005] §4.1.1,§4.1.3

Singh Singh H., Cortellessa V., Cukic B.,
Gunel E., Bharadwaj V.

[Singh et al. 2001; Cortel-
lessa et al. 2002]

§4.1.2,§4.1.3

Pai Pai G.J., Dugan J. [Pai and Dugan 2002] §4.1.2
Grassi Grassi V., Mirandola R., Sabetta A. [Grassi et al. 2005; 2007] §4.1.2,§4.1.3
David David P., Idiasak V., Kratz F. [David et al. 2009] §4.1.2
Cortellessa Cortellessa V., Pompei A. [Cortellessa and Pompei

2004]
§4.1.3

Bernardi-a Bernardi S., Merseguer J. [Bernardi and Merseguer
2006]

§4.2

Genero Genero M., Piattini M., Manso E., Can-
tone G., Visaggio A., Canofra G.

[Genero et al. 2003; Genero
et al. 2007]

§4.3

Allenbi Allenbi K., Kelly T. [Allenby and Kelly 2001] §4.4.1
Johannessen Johannessen P., Grante C., Alminger

A. Eklund U., Torin J.
[Johannessen et al. 2001] §4.4.1

Hansen Hansen K., Wells L., Maier T. [Hansen et al. 2004] §4.4.2
Iwu Iwu F., Galloway A., McDermid J.,

Toyn I.
[Iwu et al. 2007] §4.4.2

Liu Liu J., Dehlinger J., Lutz R.R. [Liu et al. 2007] §4.4.2
Hawkins Hawkings R., Toyn I, Bate I. [Hawkings et al. 2003] §4.4.3
Pataricza Pataricza A., Majzik I., Huszerl G.,

V‘arnay G.
[Pataricza et al. 2003] §4.4.3

Ober Ober I., Graf S., Ober I. [Ober et al. 2006] §4.4.3
Goseva Goseva-Popstojanova K., Hassan A.,

Guedem A., Abdelmoez W., Nassar
D.E.M., Ammar H., Mili A.

[Goseva-Popstojanova et al.
2003]

§4.4.5

Hassan Hassan A., Goseva-Popstojanova K.,
Ammar H.

[Hassan et al. 2005] §4.4.5

Cancila Cancila D., Terrier F., Belmonte F.,
Dubois H., Espinoza, H., Grard S.,
Cuccuru A.

[Cancila et al. 2009] §4.4.4

Zoughbi Zoughbi G., Briand L., Labiche Y. [Zoughbi et al. 2007; 2006] §4.4.3
Lu Lu S., Halang W. [Lu and Halang 2007] §4.4.4
Bondavalli Bondavalli A., Dal Cin M., Latella D.,

Majzik I., Pataricza A., Savoia G.,
[Bondavalli et al. 2001; Ma-
jzik et al. 2003; Pataricza
2000]

§4.5.1

DeMiguel DeMiguel M., Lambolais T., Piekarec
S., Betgé-Brezetz S., Péquery J.

[DeMiguel et al. 2001] §4.5.1

Leangsuksun Leangsuksun C., Song H., Shen L. [Leangsuksun et al. 2003] §4.5.1
DalCin Dal Cin M. [Dal Cin 2003] §4.5.1
Addouche Addouche N., Antoine C., Montmain J. [Addouche and Antoine

2004; Addouche et al. 2006]
§4.5.2

Bernardi-b Bernardi S., Donatelli D. Dondossola
G.

[Bernardi et al. 2004a;
2004b]

§4.5.2

Mustafiz Mustafiz S., Sun X., Kienzle J.,
Vangheluwe H.

[Mustafiz et al. 2008;
Mustafiz and Kienzle 2009]

§4.5.3

Zarras Zarras A., Vassiliadis P., Issarny V. [Zarras et al. 2004] §4.5.3
Jüriens Jüriens J., Wagner S. [Jürjens 2003; Jürjens and

Wagner 2005]
§4.5.3

Bernardi-c Bernardi S., Merseguer J., Petriu D.C. [Bernardi et al. 2009] §4.5.4

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



Dependability modeling and analysis of software systems specified with UML 00:27

Table XVIII. Contributions by life-cycle phase.

Approach ID Requirements Architecture Design Impl./Deployment
D’Ambrogio �
Yacoub �
Rodrigues �
Singh �
Pai �
Grassi �
David �
Cortellessa � �
Bernardi-a �
Genero �
Allenbi �
Johannessen �
Hansen �
Iwu � � �
Liu �
Hawkins � �
Pataricza �
Ober �
Goseva �
Hassan �
Cancila � �
Zoughbi �
Lu � �
Bondavalli �
DeMiguel � �
Leangsuksun � �
DalCin � �
Addouche � �
Bernardi-b � �
Mustafiz �
Zarras �
Jüriens �
Bernardi-c � � �

The implementation and deployment stages are addressed by only one contribution
each (Lu and Leangsuksun, respectively), while none of the considered works focus
on the testing activities. We think that research efforts should be devoted to combine
model-based approaches with experimental ones in the testing phase, e.g., by exploit-
ing use-case to drive the testing activities through test cases and to trace back the
latter to dependability requirements.

5.1.2. Diagrams. Concerning the UML specifications assumed as input to the method,
class and deployment are the mostly used structural diagrams (Table XIX). Unlike
in performance analysis of UML-based systems, where UML behavioral specifications
are necessary to get a performance model, dependability models can also be derived
from only structural specifications.

At the first sight, it seems unusual that deployment diagrams are used in works
which address the early phases of the software life-cycle. This can be justified, con-
sidering that dependability issues can arise not only from software faults but also
from hardware ones (e.g., node crashes, broken communication physical links). There-
fore, dependability requirements for a software system need to address not only the
software, but also the platform dependent architectures of the entire system (usually
modeled by deployment diagrams).

Use case, sequence and state machines are the typically assumed behavioral dia-
grams. In particular, use case diagrams are used not only in requirement elicitation

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



00:28 S. Bernardi et al.

Fig. 2. Contribution to life-cycle phases.

Table XIX. UML diagrams.

Approach ID Class Object UC SM Act. Seq. IOD Col. Comm. Deploy.
D’Ambrogio � �
Yacoub �
Rodrigues � �
Singh � � �
Pai � � � �
Grassi � � � � �
David �
Cortellessa � � � � �
Bernardi-a � �
Genero �
Allenbi �
Johannessen �
Hansen � � � � �
Iwu � � �
Liu � � �
Hawkins � � �
Pataricza �
Ober � �
Goseva � � � �
Hassan � �
Cancila � �
Zoughbi �
Lu � �
Bondavalli � � � � � � �
DeMiguel � � � � �
Leangsuksun �
DalCin � � � �
Addouche � � �
Bernardi-b �
Mustafiz � �
Zarras � � �
Jüriens � � � �
Bernardi-c � � � � � � � � � �
Total 14 5 12 12 5 18 2 7 8 13

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



Dependability modeling and analysis of software systems specified with UML 00:29

Fig. 3. UML versions.

approaches, but also in the works addressing dependability analysis, mainly, to specify
the operational profile (e.g., Singh and Cortellessa).

Observe that, apart from Bernardi-c, which provides support - through a profile - to
dependability specification (only) for all UML diagrams, all the other surveyed works
consider only a sub-set of UML diagrams. Note that Bondavalli is the contribution that
enables to analyze dependability based on the largest sub-set of UML diagrams.

The surveyed works rely upon different UML versions (i.e., 1.4, 1.5 and 2.0), mainly
according to the year of publication (Figure 3). In general, the most important changes
between UML 1.x and 2.x concern behavioral diagrams, specifically activity and se-
quence. However, none of the surveyed approaches that rely upon UML 1.x use activity
diagrams. The ones that use sequence diagrams (D’Ambrogio, Yacoub, Singh, Hansen,
Goseva, Bondavalli and De Miguel) can, in principle, be applied to UML 2.x, since
they consider independent execution scenarios - modelled each one by a simple se-
quential SD (i.e., without alternative, parallel, optional sub-scenarios). Obviously, the
software tools that support such approaches and rely on the UML meta-model (e.g.,
to produce automatically a formal dependability model) would need to be upgraded to
the new UML version. UML2.0 supports more types of diagrams than UML1.*, in par-
ticular the interaction overview diagrams (IOD), which are a combination of activity
and sequence diagrams. IOD allow one to model system scenarios using a hierarchi-
cal approach. Nevertheless, even though the majority of the surveyed works support
UML2.0, only Rodrigues and Bernardi-c use IOD.

5.1.3. Software development process. Most of the approaches follow the traditional soft-
ware life-cycle (Table XX). The use-case approach is applied in some works to capture
dependability requirements, besides the functional ones.

We can observe that there are several contributions using the component-based
software development process. However, only one work, Liu, addresses the software
product-line development process. Note also that a few surveyed works apply model-
driven development techniques, where software models are the main focus of the devel-
opment. The use of model transformations to generate not only code, but also analysis
models is an intrinsic part of model-driven development.

5.1.4. Software and Application domains. As shown in Figure 4, most of the works either
do not focus on a specific software domain or provide specific support to real-time (em-
bedded) systems. Only Zarras addresses the SOA domain. The majority of the surveyed
works support reliability analysis of general software systems, possibly fault-tolerant
and distributed. We observe that the kind of dependability property to be evaluated is
influenced by the software and the application domains considered by a given work.
For instance, contributions focusing on real-time (embedded) systems are mainly con-
cerned with safety issues. In particular, considering in detail the application domain

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



00:30 S. Bernardi et al.

Table XX. Contributions by software development process.

Approach ID general UC CBSE SPL MDD
DAmbrogio �
Yacoub �
Rodrigues � �
Singh �
Pai �
Grassi � �
David �
Cortellessa �
Bernardi-a �
Genero �
Allenbi �
Johannessen �
Hansen �
Iwu �
Liu � �
Hawkins �
Pataricza �
Ober �
Goseva � �
Hassan �
Cancila � �
Zoughbi � �
Lu �
Bondavalli � �
Demiguel �
Leangsuksun �
DalCin �
Addouche �
Bernardi-b �
Mustafiz �
Zarras �
Jüriens �
Bernardi-c � �
Total 20 5 9 1 6

Fig. 4. Software domain

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



Dependability modeling and analysis of software systems specified with UML 00:31

Table XXI.

Approach ID general aerospace automotive railway automated healthcare transaction
D’Ambrogio �
Yacoub �
Rodrigues �
Singh �
Pai �
Grassi �
David �
Cortellessa �
Bernardi-a �
Genero �
Allenbi �
Johannessen �
Hansen �
Iwu �
Liu �
Hawkins �
Pataricza �
Ober �
Goseva �
Hassan �
Cancila �
Zoughbi �
Lu �
Bondavalli �
DeMiguel �
Leangsuksun �
DalCin �
Addouche �
Bernardi-b �
Mustafiz �
Zarras �
Jüriens �
Bernardi-c �
Total 17 5 2 2 2 3 2

(Table XXI), we notice that most of the works that address aereospace, automotive,
railways control software and healthcare systems are interested in providing support
for safety analysis. On the other hand, in the case of transaction applications it is of-
ten desirable to guarantee the continuity and the promptness of service delivery, when
requested by the end-user. Therefore, reliability and availability are the main issues
addressed by the works dealing with this type of applications (Singh, Zarras).

5.1.5. Dependability specification. The specification of dependability requirements and
properties can be done by a) providing a specific UML profile; b) a set of UML standard
extensions (that is stereotypes and tagged values), not structured in a profile4; c) using
regular non-extended UML models and d) using OCL (Figure 5). In particular, when
regular models are used, they are the same UML diagrams - like use cases applied
in the requirement elicitation approaches - or ad hoc ones - like state-machine vari-
ants (Mustafiz, Iwu). Other approaches use UML models to extrapolate dependability
informations (Genero, Hansen, Goseva). Finally, only Hawkins and Lu use the Object
Constraint Language (OCL) to specify safety related requirements and constraints.

Table XXII details the type of specification used by each considered approach. The
definition of a UML profile requires more effort with respect to propose a set of exten-
sions, but has the advantage of defining consistent extensions in a structured frame-
work. The majority of the approaches that resort to profiling technique, define the pro-
file in the context of existing standard OMG UML profiles, such as the Schedulability,
Performance and Time [UML-SPT 2005] (Rodrigues, Grassi, Cortellessa, Bondavalli,
Addouche) and the Modeling and Analysis of Real-Time Embedded System [UML-
MARTE 2009] (Cancila, Bernardi-c), which has the advantage of exploiting the speci-
fication capabilities of the standard profile. Although a lot of efforts has been devoted
to propose UML extensions to support dependability specification in UML-based sys-
tems, less attention has been paid to providing a solution for the unification of the
different proposals. Indeed, to the best of our knowledge, only Bernardi-c tackled this

4Observe that the type of specification b) refers to the surveyed works that rely upon UML 1.*.

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



00:32 S. Bernardi et al.

Fig. 5. Type of specification.

Table XXII.

Approach ID profile OCL non-ext. UML extensions
D’Ambrogio �
Yacoub �
Rodrigues �
Singh �
Pai �
Grassi �
David �
Cortellessa �
Bernardi-a � �
Genero �
Allenbi �
Johannessen �
Hansen �
Iwu �
Liu �
Hawkins �
Pataricza �
Ober �
Goseva �
Hassan �
Cancila �
Zoughbi �
Lu � �
Bondavalli � �
DeMiguel �
Leangsuksun �
DalCin �
Addouche � �
Bernardi-b �
Mustafiz � �
Zarras �
Jüriens �
Bernardi-c �

issue. Currently, a standard OMG proposal for a dependability profile does not exist
yet. We think that more research should be invested in providing a common UML
framework for the modeling and analysis of different NFPs in order to support the
consistent specification of different NFPs and their relationships, as well as the trade-
off analysis between different NFPs (such as performability, performance and security,
security and dependability).

5.1.6. Tool support. As shown in Figure 6, the majority of works provides tool support
for the approaches they propose. Although most of the tools are research prototypes
that do not cover all the aspects, the potential for building more powerful tool sup-
port exists. Many approaches could be automated since they propose either rigorous
transformation techniques of UML annotated models into formal dependability mod-

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



Dependability modeling and analysis of software systems specified with UML 00:33

Fig. 6. Tool support

Fig. 7. Dependability attribute

els or dependability annotations through the UML profiling mechanism. Only a few
proposals are difficult to implement or do not provide any indication of an existing im-
plementation. These are mainly approaches that address dependability requirements
elicitation via use cases (Allenby and Johannessen) or class diagrams (Bernardi-b) or
focus on severity analysis (Hassan).

5.2. Dependability characteristics criteria

5.2.1. Attribute. Concerning the type of dependability attribute, most of the surveyed
approaches address either reliability or safety issues, while few efforts have been de-
voted to maintainability and availability (Figure 7). Indeed, the latter are often consid-
ered as secondary dependability issues. In particular, the stochastic approaches pro-
posed for reliability analysis can be also used, as claimed by their authors, to compute
availability and maintainability measures (e.g., steady state availability, MTTR) given
that the additional quantitative characterization of the repair or recovery activities is
provided (e.g., repair rate) as input parameter. A unique exception is Genero where a
set of size and complexity metrics for UML class diagrams are proposed as indicators
of the software specification maintainability.

5.2.2. Analysis type. One of the considered criteria is the type of dependability analy-
sis proposed, that is qualitative or quantitative (Figure 8). Qualitative analysis aims to
identify, classify and rank the hazards or failure modes in the software systems, while
quantitative analysis mainly aims to compute dependability measures. We notice that
safety-related contributions fall basically in the first category (i.e., qualitative) while
the works that focus on reliability, maintainability and availability belong to the sec-

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



00:34 S. Bernardi et al.

Fig. 8. Analysis type

ond one (i.e., quantitative). There are some exceptions that support both types of anal-
ysis, like the works on safety of Ober, Goseva, Hassan and Cancila, and the works of
Bernardi-b, DalCin, Jüriens and Bernardi-c, providing support for dependability spec-
ification.

Considering the approaches aimed at quantitative dependability analysis, the ma-
jority of them rely on stochastic (or probabilistic) assumptions. Nevertheless, there are
also non-stochastic approaches to the dependability analysis, like Ober and Bernardi-
b, that support the verification of time-dependent dependability requirements of real-
time systems.

5.2.3. Analysis model. Table XXIII summarizes the techniques adopted by the surveyed
works to support dependability analysis of UML-based specifications. This criterion
does not apply to the approaches that provide support only for dependability specifica-
tion (shown in grey in Table XXIII).

Some of the used techniques are those suggested by dependability standards, such
as FMEA, HAZOP, Petri Net, Fault Tree, Markov model, Bayesian model and Block
diagram [IEC-60300-3-1 2003]. In particular, Fault tree and its variants (e.g., dy-
namic fault tree) is the mostly used dependability technique, followed by Markov mod-
els. Fault trees have been applied in both reliability (D’Ambrogio, Pai, Leangsuksun)
and safety works (Iwu, Liu , Hawkins, Hassan), and for both qualitative (Iwu, Liu,
Hawkins, Hassan) and quantitative (D’Ambrogio, Pai, Leangsuksun) analysis.

Some contributions propose instead techniques which are not traditionally aimed
at dependability analysis, e.g., component dependency graphs (Yacoub). Finally, there
are a few approaches, like Hassan and Iwu, that suggest the combined use of several
complementary techniques.

5.2.4. Parameters and requirements. Figure 9 shows three histograms that represent
the number of surveyed approaches addressing the items of the checklist in Table I,
namely the dependability requirements (upper-left histogram), the dependability mea-
sures (upper-right histogram) and the other dependability parameters (bottom his-
togram). We observe that the specification of dependability requirements is supported
by few approaches. In particular, most of the works that aim at evaluating the sys-

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



Dependability modeling and analysis of software systems specified with UML 00:35

Table XXIII. Dependability analysis models

Approach H
az

ar
d

an
al

ys
is

F
M

E
A

H
A

Z
O

P

F
F

A

S
to

ch
as

ti
c

P
et

ri
n

et

L
ab

el
ed

tr
an

s.
sy

st
em

F
or

m
al

st
at

e
m

ac
h

in
e

D
at

afl
ow

n
et

w
or

k

S
im

u
la

ti
on

m
od

el

F
au

lt
T

re
e

C
os

t
of

fa
il

u
re

gr
ap

h

C
om

p
.D

ep
.G

ra
p

h

M
ar

k
ov

m
od

el

B
ay

es
ia

n
m

od
el

P
ro

b
.t

im
ed

au
to

m
at

a

T
im

ed
au

to
m

at
a

T
em

p
or

al
lo

gi
cs

B
lo

ck
d

ia
gr

am

D’Ambrogio �
Yacoub �
Rodrigues � �
Singh �
Pai �
Grassi �
David �
Cortellessa
Bernardi-a �
Genero
Allenbi �
Johannessen �
Hansen �
Iwu � � �
Liu �
Hawkins �
Pataricza � �
Ober � �
Goseva � � �
Hassan � � � �
Cancila
Zoughbi
Lu
Bondavalli �
DeMiguel �
Leangsuksun � �
DalCin �
Addouche �
Bernardi-b �
Mustafiz �
Zarras � �
Jüriens �
Bernardi-c

tem reliability do not provide support for the validation of the estimated reliability
measures w.r.t. the requirements.

Concerning the dependability measures, they are often considered as both in-
put parameters and output results in a given approach (D’Ambrogio, Yacoub, Ro-
drigues, Singh, Pai, Grassi, Cortellessa, DeMiguel, Leangsuksun, Addouche, Bernardi-
b, Mustafiz, Bernardi-c). For example, the failure occurrence rate is associated to soft-
ware component/connectors (i.e., input parameters for the method) and to the system
level as well (i.e., output result provided by the method).

None of the surveyed approaches provide any indication on how to assign values to
the input parameters. Input parameters are simply assumed values. The value assign-
ment can be trivial for some input parameters, such as MTTF of hardware components
that is usually provided by the manufacturer, however this is not the case for most of
the parameters (e.g., how to assign a MTTF value to a software component ?).

The most frequent items are reliability measures (DM.R) and safety properties
(DM.S): this is not surprising, since most of the surveyed works address reliability
and safety issues.

Considering the other dependability parameters, although each item is addressed by
at least a work, several of them are marginally dealt with. In particular, special atten-
tion has been devoted to the specification of failure modes with respect to the domain
(DT.FMD) and to the use of hazard guide-words (DT.HGW), while few works consider,
other classifications of failure modes, such as failure detectability (DT.FMDet) and
consistency (DT.FMC). On the other hand, few efforts have been devoted to mainte-
nance issues, i.e., modifications (M.M - Genero) and repair (M.R - Bernardi-c), and
to supporting a comprehensive specification of redundancy in fault-tolerant systems.

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



00:36 S. Bernardi et al.

Fig. 9. Number of approaches addressing each checklist item.

For instance, only Zarras provides UML extensions to specify the maximum number
of replica failures that can be tolerated (R.F).

Figure 10 shows the number of checklist items addressed by each surveyed ap-
proach. Such a number is a raw quality metric for the evaluation of the approach
itself, giving some insight of its comprehensiveness in providing support for depend-
ability modeling and/or analysis. Obviously, such a metric should not be considered
in isolation since other aspects are important as well, as discussed in the next sub-
section. Note that Bernardi-c is the approach that considers most of the items, since it
actually builds on several approaches considered in the survey. Nevertheless, it does
not provide a specific method to analyze the system dependability but, rather, supports
the dependability specification through a UML profile. On the other hand, Bondavalli
is the second approach in the checklist coverage; unlike Bernardi-c, it also proposes a
method to derive formal models amenable for dependability analysis.

5.3. Quality criteria

5.3.1. Validation and Compliance with standards. The method validation is not a primary
issue (Figure 11(a)). Indeed 12 out of 33 of the surveyed approaches do not consider
it at all. On the other hand, when validation is a concern, it is carried out mainly to
show the applicability and/or the scalability of the method to realistic examples, i.e.,

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



Dependability modeling and analysis of software systems specified with UML 00:37

Fig. 10. Number of checklist items addressed by each approach

Fig. 11. (a) Validation. (b) Compliance with standards.

(a) (b)

through case studies. The 19 approaches that address a case study are: Singh, Pai,
David, Bernardi-a, Allenbi, Johannessen, Hansen, Iwu, Liu, Patarizca, Ober, Goseva,
Hassan, Zoughbi, Bondavalli, Bernardi-b, Zarras, Jüriens and Bernardi-c. Only few
works (Genero and Mustafiz) conduct empirical analysis in an academic environment,
to assess the effectiveness of the proposed approaches beside their applicability.

We observed that all approaches providing support for quantitative dependability
analysis are in fact missing the validation of the correctness of the proposed methods.
This could be achieved, for example, by comparing the analysis results with the ones
obtained in testing activities by injecting faults during the system execution.

Concerning the compliance of the method with respect to dependability engineer-
ing standards, only 12 out of 33 approaches adheres to some standard, as shown in
Figure 11(b). Most of the compliant approaches focus on safety issues in the develop-
ment of real-time and embedded systems (Allenbi, Johannessen, Iwu, Goseva, Hassan,
Cancila, Zoughbi, Lu) for which a certification from third parties is required.

5.3.2. Presentation of results. The majority of the approaches addressing dependability
analysis provide a basic support to present the results of the analysis (Figure 12). The
most common way is textual presentation, followed by graphical and tabular one. We
observed that sensitivity analysis is supported by several works that address reliabil-

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



00:38 S. Bernardi et al.

Fig. 12. Presentation of the results.

ity and availability analysis. The most promising approaches are those that feedback
the results to the original UML specification (Rodriguez, Liu, Pataricza, Hassan and
Jüriens); this makes the analysis process transparent to the software analyst.

However, further research is needed to address this issue. In particular, the problem
of how to identify the critical elements of the UML specification that cause depend-
ability properties not to be satisfied is still open. Good solutions are those that provide
useful information to the software engineers for changing the design accordingly. Fi-
nally, in Figure 12, there are seven approaches classified as not available (i.e., NA):
they are either aimed at dependability specification, rather than the analysis, or pro-
vide transformation techniques without focusing on the analysis of the derived formal
models.

5.3.3. Limitations. Almost all the surveyed approaches present limitations, as summa-
rized in detail in Table XXIV. In particular, several proposals aimed at reliability anal-
ysis assume failure independence of system components (Yacoub, Rodrigues, Singh,
Grassi, Zarras, Leangsuksun). However, this assumption, which facilitates the analy-
sis of the derived reliability model, may not hold for systems characterized by tightly
coupled components. An example of such systems are the even demanding complex,
large scale ICT infrastructures that control distributed embedded systems (e.g., dis-
tributed SCADA systems controlling power production and distribution plants located
in a given geographical area). Another limitation that is common to some approaches
is low scalability (Bernardi-a, Hansen, Hawkins) that can make the validation and
verification activities time consuming and risky from the point of view of software de-
velopment process management or, even worse, unfeasible.

6. CONCLUSION

We have surveyed approaches in the literature addressing dependability modeling and
analysis of software systems specified with UML. The survey covers contributions pub-
lished in the last decade that focus on different facets of dependability, namely relia-
bility, availability, maintainability and safety. Several open research issues emerged
from the study. Firstly, most of the works focus on reliability and safety and fewer
efforts have been devoted to availability and maintainability modelling and analysis.
Moreover, we have not found any work addressing specifically how to extend UML with
integrity NFP, which is also a dependability concern.

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



Dependability modeling and analysis of software systems specified with UML 00:39

Table XXIV. Limitations

Approach ID Limitations
D’Ambrogio Lack of UML extensions. Informal treatment of spatial redundancy.
Yacoub Execution scenario independent assumption. Parallel execution of components is not

supported. Component failure independence assumption
Rodrigues Component failure independence assumption.
Singh Component/connector failure independence assumption. Time-independent failure

probability.
Pai Use of class diagrams to represent hardware components and explicit error propa-

gation associations between hardware components.
Grassi Failure independence assumption.
David A Dysfunctional Behavior dababase needs to be constructed.
Cortellessa No annotations for hw failure supported.
Bernardi-a Limited scalability that may lead to the generation of intractable dependability mod-

els from the analysis point of view.
Genero Lack of guidelines about how to use the proposed metrics to evaluate the maintain-

ability of the UML specifications.
Allenbi Operations in emergency/degraded states and multiple failure identification are not

supported.
Johannessen
Hansen Limited scalability that may lead to a time consuming activity.
Iwu Lack of relationships between UML specification and PFS requirements.
Liu The state-based modeling technique is not suitable for testing border (exact) time

values.
Hawkins Limited scalability in the hazard detection approach that may lead to an uncon-

trolled generation of mutant transitions.
Pataricza
Ober
Goseva Use case/scenario independent assumption.
Hassan Low traceability of the results derived from each applied severity technique.
Cancila
Zoughbi Use of dynamic concepts (defined with the profile) to extend static concepts. This

leads to mixed static/dynamic views in the same diagram (CD).
Lu Timing specification issues are vaguely dealt.
Bondavalli Introduction on unnecessary redundant information in the UML models, since some

input parameters require the joint use of more than one stereotype.
DeMiguel
Leangsuksun Node failure independence assumption, single-failure assumption.
DalCin Lack of support to the modeling of the interaction among dependability mechanisms

and the system components.
Addouche Poor separation of concerns (new classes need to be defined and introduced in the

system model, beside the classes representing the system components).
Bernardi-b Expertise of the modeler required to specify the predicates/axioms in TRIO language.
Mustafiz Failure assumptions limited to failures coming from the system environment (hw

sensor failure). Use of no standard state-charts (DA-Chart).
Zarras Object failure independence assumption.
Jüriens
Bernardi-c Lack of support for the specification of path properties. Limited support for the spec-

ification of FT mechanism (only redundancy aspects are dealt).

Secondly, the surveyed works provide support mainly in the early phases of the soft-
ware life-cycle (i.e., from requirement to design), while there is a lack of support for
later phases, as for example for testing dependability NFPs guided by the use cases.

Thirdly, those contributions that support model transformation mainly focus on ob-
taining formal models which are amenable for dependability analysis. However, only a
few go one step further to provide a feedback from the analysis results to the original
UML model specification, in order to pinpoint to requirement inconsistencies or de-
sign flaws. It is also worth noticing that tool support and method validation are crucial
factors to make an approach effectively applicable. Although the majority of the sur-
veyed approaches are characterized by a high automation degree, most of them are not
fully supported by a software tool. Moreover, in many cases method validation consists
only in applying the proposed method to a case study. Considering the approaches that
provide support for quantitative dependability analysis, the validation of the correct-

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



00:40 S. Bernardi et al.

ness of the proposed methods is in fact missing. More efforts should be devoted to the
validation of the methods themselves.

Last but not least, more research work should be invested in providing a standard
common UML framework for the modelling and analysis of several NFPs, in order to
support the consistent specification of different NFPs and their relationships, as well
as the trade-off analysis between different NFPs (such as performability, performance
and security, security and dependability).

Finally, an important issue to consider for the future work is to investigate the cur-
rent request for proposals (RFPs) for UML that are now being considered and their
potential impact to the area of dependability modeling with UML.

APPENDIX

The Unified Modeling Language [UML 2005] is a general purpose standardized mod-
eling language used for software development. It proposes a set of diagrams that allow
description of the structural and behavioral views of a system as well as the hardware
platform where the same is deployed. UML has an extensive tool support.

The system structure may be described in UML by a component diagram and/or a
class diagram. The first contains components and connectors that can be packaged or
grouped to form subsystems, which in turn are grouped to form higher level subsys-
tems and eventually a system. Components can be logical or physical. A component
provides services offered through its interfaces and may require services from other
components. A class diagram allows for representing in detail the internal structure
of the system components. The behavioral view of the system is specified using use
cases, activity diagrams, sequence diagrams and state machines, or a combination of
them. Section A.1 offers some examples of UML diagrams and a brief explanation to
understand their basic features.

UML 2 introduced the profile mechanism as a meta-modeling technique to extend
and adapt the language for different purposes. Reasons to extend UML are of dif-
ferent nature, for example to introduce terminology adapted to a given platform or do-
main (e.g., the EJB profile [UML-EDOC 2001]) or to add semantics not already present
in UML that can be used for model transformation purposes (e.g., the profile [UML-
MARTE 2009] extends UML with concepts from the real-time and embedded systems
domain, facilitating the derivation of performance or schedulability analysis models
from UML+MARTE models). Since profiles are standard extension mechanisms, they
are recognized by standard UML tools and can be exchanged among them.

Stereotypes and tagged-values are extension mechanisms used to define a profile. A
stereotype extends one or more UML meta-classes and can be applied to UML model
elements (components, states, transitions, etc.). For example, MARTE introduces a
stereotype for a well-known concept from the the real-time domain, that of “type of
clock” , which extends the UML meta-class “Class”. Figure 13 (a) depicts the definition
of the stereotype “clockType”. The stereotype can be applied to any Class instance in
a UML+MARTE model by labeling it with clockType, as shown in Figure 13 (b). Last,
tagged-values represent the attributes of the stereotypes; for instance, in Figure 13 (a)
are given the attributes of “clockType” stereotype (nature, unitType and so on).

A.1. Examples of UML-annotated models

The purpose of this sub-section is twofold: on the one hand, a reader non-familiar with
UML can learn a few essential aspects of some of the most important UML diagrams;
on the other hand, we show excerpts of some of the works surveyed in this paper.
This way the reader can see how stereotypes and tagged-values are used to model de-
pendability concepts within UML models (it is informally known as “UML-annotated
models for dependability”).

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



Dependability modeling and analysis of software systems specified with UML 00:41

<<stereotype>>

clockType

nature: TimeNatureKind[1]
unitType: Enumeration[0..1]
isLogical: Boolean[1]=false
resolAttr: Property[0..1]
maxValAttr: Property[0..1]
offsetAttr: Property[0..1]

UML::Classes::Kernel::Class
<<metaclass>>

<<clockType>>
{nature=dense, 
unitType=TimeUnitKind}

IdealClock

currentTime(): Real

(a)

(b)

Fig. 13. UML stereotypes and tagged-values.

A use case diagram (UCD) identifies the functionalities of the system at a high ab-
straction level. Each functionality is depicted as an ellipse (called use case) that in-
teracts with actors (humans or other systems) to carry out the system responsibilities.
Figure 14 depicts the UCD of a system meant to provide reliable communication; it
has only one use case and two actors, the client sending the messages and the receiver.
The use case is stereotyped as a reliability handler following [Mustafiz et al. 2008],
which means that the use case addresses exceptional situations that threaten system
reliability. The diagram also depicts an annotation from [Bernardi et al. 2009], which
defines the use case as a service. This annotation assesses that service availability
should be predicted (by analysis) as a rate of the successful messages ($Xack) out of all
delivered messages ($Xrequest).

The deployment diagram (DD) identifies the system software components as well
as the hardware nodes in which the former are deployed. In this case, we have used
the proposal of [Bondavalli et al. 2001; Majzik et al. 2003], see Figure 14. It identi-
fies which software and hardware are stateful or stateless and which components are
working as redundancy managers, variants or adjudicators in a fault tolerance archi-
tecture.

The sequence diagram shows the messages exchanged between the system compo-
nents. It provides useful constructors such as loops, alternatives or parallel execution.
The example illustrated in Figure 15 corresponds to [Cortellessa and Pompei 2004].
It offers roles for the components, connectors and actors as well as probabilities of
execution or failure for all these elements. This sequence diagram partially describes
the system scenario represented by the previous use case, i.e., the message replication
service.

The activity diagram, see Figure 16, specifies the control flow of a component, sub-
system or system. It is widely used for modeling business processes, workflows or sys-
tem low level processes. It features most of the common control flow structures such
as decision, fork, join, loop or merge. Figure 16 models a partial behavior of a reli-
able communication system and illustrate the failure specification using the proposal
of [Bernardi et al. 2009].

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their valuable help to improve this work.

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



00:42 S. Bernardi et al.

LAN
Message
Replicator

Client

Controller

Payload

<<stateful>>
<<variant>>

Receiver

<<redundancy manager>>

WAN

Client Receiver

Message Redundacy
          Service

<<DaService>>
{availability=(expr=$Xack/$Xrequest, source=pred)}

UCD

DD

<<realibility handler>>

<<stateful>>

<<stateful>>
<<stateless>>

Payload

<<stateful>>

Fig. 14. Use case diagram (UCD) and deployment diagram (DD).

REFERENCES

ADDOUCHE, N., ANTOINE, C., AND MONTMAIN, J. 2006. Methodology for UML Modeling and Formal Veri-
fication of Real-Time Systems. In International Conference on Computational Intelligence for Modelling
Control and Automation (CIMCA 2006), International Conference on Intelligent Agents, Web Technolo-
gies and Internet Commerce (IAWTIC 2006). IEEE Computer Society, Sydney, Australia, 17.

ADDOUCHE, N. AND ANTOINE, C.AND MONTMAIN, J. 2004. UML models for dependability analysis of real-
time systems. In Proc. International Conference on Systems, Man and Cybernetics. Vol. 6. IEEE CS., The
Hague, Netherlands, 5209–5214.

AJMONE-MARSAN, M., BALBO, G., CONTE, G., DONATELLI, S., AND FRANCESCHINIS, G. 1995. Modelling
with Generalized Stochastic Petri Nets. Wiley Series in Parallel Computing. John Wiley and Sons, Eng-
land.

ALLENBY, K. AND KELLY, T. 2001. Deriving safety requirements using scenarios. In 5th IEEE International
Symposium on Requirements Engineering. IEEE Computer Society, Washington, DC, USA, 228–235.

ANSI/IEEE. 1991. Standard glossary of Software Engineering Terminology. Tech. Rep. STD-729-1991,
ANSI/IEEE.

ARNOLD, T. 1973. The concept of coverage and its effect on the reliability model of a repairable system.
IEEE Transactions on Computers 22, 251–254.

ARP-4754 1994. Certification considerations for highly-integrated or complex aircraft systems. Society of
Automotive Engineers.

ARP-4761 1995. Guidelines and methods for conducting the safety assessment of civil airbone systems and
equipment. Society of Automotive Engineers.

AVIŽIENIS, A. 1967. Design of fault-tolerant computers. In Proceedings of the Fall Joint Computer Confer-
ence. AFIPS ’67 (Fall). ACM, New York, NY, USA, 733–743.

AVIZIENIS, A. 1985. The N-Version approach to Fault-Tolerant software. IEEE Transactions on Software
Engineering SE-11, 12, 1491–1501.

AVIZIENIS, A., LAPRIE, J.-C., RANDELL, B., AND LANDWEHR, C. 2004. Basic concepts and taxonomy of
dependable and secure computing. IEEE Transactions on Dependable and Secure Computing 01, 1, 11–
33.

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



Dependability modeling and analysis of software systems specified with UML 00:43

<<REuser>>    
{REaccessprob=0.6,       

REserviceprob=(0.4,sd)(0.6,re)}

MessageReplicator

Payload

Controller
message(receiver,file) create(receiver,file)

s&d(file)
result(myRes)

message(file)

destroy()

    <<REuser>>
Receiver

sd

loop[2]
create(file)

MRS

alt

noResult()[not OK]

decide()

[OK]

loop[2]

loop[2]

Client

<<REcomponent>>
{REcompfailprob=0.009.

REbp=1}

<<REcomponent>>
{REcompfailprob=0.001.

REbp=2}

<<REconnector>>
{REconnpfailprob=0.005.

REnummsg=1}

Fig. 15. Sequence diagram.

scan4virus

<<DaStep>>
{kind=failure;
 failure=(Fcause=((occurrenceRate=
(value=100000,unit=s,source=assm))))}

compose log

decipher
contents

composeMsg
4receiver&send

Fig. 16. Activity diagram.

BALSAMO, S., MARCO, A. D., INVERARDI, P., AND SIMEONI, M. 2004. Model-based performance prediction
in software development: a survey. IEEE Transactions on Software Engineering 30, 5, 295–310.

BELL, M. 2008. Service-Oriented Modeling (SOA): Service Analysis, Design and Architecture. Wiley & Sons.,
Hoboken, New Jersey (US).

BERNARDI, S., DONATELLI, S., AND DONDOSSOLA, G. 2004a. A class diagram framework for collecting de-
pendability requirements in automation systems. In Proc. of the 1st International Symposium on Lever-
aging Applications of Formal Methods (ISOLA’04). Dept. of Computer Science, University of Cyprus,
Paphos (Cyprus).

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



00:44 S. Bernardi et al.

BERNARDI, S., DONATELLI, S., AND DONDOSSOLA, G. 2004b. Towards a methodological Approach to Spec-
ification and Analysis of Dependable Automation Systems. In Proc. of the 1st International Joint Con-
ference on Formal Modelling and Analysis of Timed Systems (FORMATS) and on Formal Techniques in
Real-Time and Fault Tolerant System (FTRTFT). Springer, Grenoble (France), 36–51.

BERNARDI, S. AND MERSEGUER, J. 2006. QoS Assessment via Stochastic Analysis. IEEE Internet Comput-
ing 10, 3, 32–42.

BERNARDI, S., MERSEGUER, J., AND PETRIU, D. 2009. A dependability profile within MARTE. Software
and Systems Modeling, 1–24. 10.1007/s10270-009-0128-1.

BIBA, K. J. 1977. Integrity considerations for secure computer systems. Tech. Rep. MTR-3153, Mitre Corpo-
ration, Bedford MA. April.

BILLINTON, R. AND ALLAN, R. N. 1992. Reliability evaluation of engineering systems: concepts and tech-
niques. Springer.

BOEHM, B. 1984. Verifying and validating software requirements and design specifications. IEEE Soft-
ware 1, 75–88.

BONDAVALLI, A., DAL CIN, M., LATELLA, D., MAJZIK, I., PATARICZA, A., AND SAVOIA, G. 2001. Depend-
ability analysis in the early phases of UML-based system design. Int. Journal of Computer Systems
Science & Engineering 16, 5, 265–275.

BPEL 2007. Web Services Business Process Execution Language. Version 2.0.
CANCILA, D., TERRIER, F., BELMONTE, F., DUBOIS, H., ESPINOZA, H., GRARD, S., AND CUCCURU, A.

2009. Sophia: a modeling language for model-based safety engineering. In 2nd International Work-
shop On Model Based Architecting And Construction Of Embedded Systems, S. Van Baelen, T. Weigert,
I. Ober, and H. Espinoza, Eds. CEUR, Denver, Colorado, USA, 11–26.

CEA-LIST. 2008. Papyrus: open source tool for graphical UML modelling. Available at:
http://www.papyrusuml.org/.

CHILLAREGE, R., BHANDARI, I. S., CHAAR, J. K., HALLIDAY, M. J., MOEBUS, D. S., RAY, B. K., AND
WONG, M.-Y. 1992. Orthogonal defect classification-a concept for in-process measurements. IEEE
Trans. Softw. Eng. 18, 943–956.

CLARK, D. D. AND WILSON, D. R. 1987. A comparison of commercial and military computer security poli-
cies. In Proceedings of the IEEE Symposium on Security and Privacy. IEEE CS Press, Oakland, Califor-
nia, USA, 184–195.

CLEMENTS, P. AND NORTHROP, L. 2001. Software Product Lines: Practice and Patterns. Software Engineer-
ing Institute. Addison-Wesley, US.

CORTELLESSA, V. AND GRASSI, V. 2007. A modeling approach to analyze the impact of error propaga-
tion on reliability of component-based systems. In Proceedings of the 10th international conference on
Component-based software engineering. CBSE’07. Springer-Verlag, Berlin, Heidelberg, 140–156.

CORTELLESSA, V. AND POMPEI, A. 2004. Towards a UML Profile for QoS: a contribution in the reliability
domain. In Proceedings of the Fourth International Workshop on Software and Performance (WOSP’04).
ACM, New York, NY, USA, 197–206.

CORTELLESSA, V., SINGH, H., AND CUKIC, B. 2002. Early reliability assessment of UML based software
models. In Workshop on Software and Performance. ACM, New York, NY, USA, 302–309.

DAL CIN, M. 2003. Extending UML towards a Useful OO-Language for Modeling Dependability Features. In
Proc. of 9th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS
2003 Fall). IEEE Computer Society, Anacapri (Capri Island), Italy, 325–330.

D’AMBROGIO, A., IAZEOLLA, G., AND MIRANDOLA, R. 2002. A method for the prediction of software relia-
bility. In Proc. of the 6-th IASTED Software Engineering and Applications Conference (SEA2002). ACTA
press, Cambridge, MA, USA.

DAVID, P., IDASIAK, V., AND KRATZ, F. 2009. Improving reliability sudies with SysML. In RAMS09: Pro-
ceedings of the Reliability and Maintainability Symposium. IEEE Computer Society, Fort Worth, Texas,
(USA).

DE SOUZA E SILVA, E. AND GAIL, H. R. 1989. Calculating availability and performability measures of
repairable computer systems using randomization. J. ACM 36, 171–193.

DEMIGUEL, M., LAMBOLAIS, T., PIEKAREC, S., BETGÉ-BREZETZ, S., AND PÉQUERY, J. 2001. Automatic
generation of simulation models for the evaluation of performance and reliability of architectures spec-
ified in UML. In EDO’00: Revised Papers from the Second International Workshop on Engineering Dis-
tributed Objects. Springer-Verlag, London, UK, 83–101.

EN-50126 1999. Application ferroviaires - Spécification et démonstration de Fiabilité, Disponibilité, Main-
tenabilit’e et Sécurité (FMDS). Norme.

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



Dependability modeling and analysis of software systems specified with UML 00:45

EN-50128 2001. Applications ferroviaires - Système de signalisation, de télécommunication et de traitement
- Logiciels pour systèmes de commande et de protection ferroviaire. Norme.

EN-50129 2001. Application ferroviaires - Système de signalisation, de télécommunication et de traitement
- systèmes électroniques relatifs à la sécurité pour la signalisation. Norme.

FOKKING, W. 2000. Introduction to Process Algebra. Springer-Verlag, Berling-Heidelberg.
GENERO, M., MANSO, E., VISAGGIO, A., CANOFRA, G., AND PIATTINI, M. 2007. Building measure-based

prediction models for UML class diagram maintainability. Empirical Software Engineering 12, 517–549.
GENERO, M., PIATTINI, M., MANSO, E., AND CANTONE, G. 2003. Building UML class diagram maintain-

ability prediction models based on early metrics. In METRICS ’03: Proceedings of the 9th International
Symposium on Software Metrics. IEEE Computer Society, Washington, DC, USA, 263.

GHEZZI, C., MANDRIOLI, D., AND MORZENTI, A. 1990. Trio: A logic language for executable specifications
of real-time systems. J. Syst. Softw. 12, 2, 107–123.

GOKHALE, S. S. 2007. Architecture-based software reliability analysis: Overview and limitations. IEEE
Transactions on Dependable and Secure Computing 4, 1, 32–40.

GOSEVA-POPSTOJANOVA, K., HASSAN, A., GUEDEM, A., ABDELMOEZ, W., NASSAR, D. E. M., AMMAR,
H., AND MILI, A. 2003. Architectural-level Risk Analysis Using UML. IEEE Transactions on Software
Engineering 29, 10, 946–960.

GRASSI, V., MIRANDOLA, R., AND SABETTA, A. 2005. From design to analysis models: a kernel language
for performance and reliability analysis of component-based systems. In Proceedings of the Fifth Inter-
national Workshop on Software and Performance (WOSP’05). ACM, New York, NY, USA, 25–36.

GRASSI, V., MIRANDOLA, R., AND SABETTA, A. 2007. Filling the gap between design and perfor-
mance/reliability models of component-based systems: A model-driven approach. Journal of Systems
and Software 80, 4, 528–558.

HANSEN, K., WELLS, L., AND MAIER, T. 2004. HAZOP analysis of UML-based software architecture de-
scription of safety-critical systems. In Second Nordic Workshop on UML, Modeling, Methods and Tools,
K. Koskimies, L. Kuzniarz, J. Lilius, and I. Porres, Eds. TUCS, Turku, Finland.

HASSAN, A., GOSEVA-POPSTOJANOVA, K., AND AMMAR, H. 2005. UML Based Severity Analysis Method-
ology. In Proc. of Annual Reliability and Maintainability Symposium (RAMS 2005). IEEE, Alexandria,
VA.

HAWKINGS, R., TOYN, I., AND BATE, I. 2003. An approach to Designing Safety Critical Systems using the
Unified Modelling Language. In Workshop on Critical Systems Development with UML. San Francisco
(USA), 3–18.

HOSFORD, J. 1960. Measures of dependability. Operations Researchs 8, 1, 204–206.
HUANG, Y. AND KINDALA, C. 1996. Software fault tolerance in the application layer. In Software Fault

Tolerance, M. R. Lyu, Ed. John Wiley and Sons Ltd., Chapter 10, 231–248.
IEC-60300-3-1 2003. Dependability Management. Part 3: Application Guide, Section 1: Analysis Techniques

for dependability: Guide on methodology.
IEC-61131-1 1992. Programmable controllers, part 3: Programming languages. International Electro-

technical Commission.
IEC-61508 1998. Functional safety of electrical/electronic/programmable electronic safety-related systems.

International Electro-technical Commission.
IMMONEN, A. AND NIEMELÄ, E. 2008. Survey of reliability and availability prediction methods from the

viewpoint of software architecture. Software and System Modeling 7, 1, 49–65.
ISO/IEC 14764 2006. Standard for Software Engineering – Software Life Cycle Processes - Maintenance.

International Organization for Standardization/International Electro-technical Commission.
ISO/IEC9126-1.2 2001. Information technology - software product quality. part 1: quality model. Interna-

tional Electro-technical Commission.
IWU, F., GALLOWAY, A., MCDERMID, J., AND TOYN, I. 2007. Integrating safety and formal analyses using

UML and PFS. Reliability Engineering and System Safety 92, 2, 156–170.
JACOBSON, I. 1995. Object-Oriented Software Engineering: a Use Case driven Approach. Addison–Wesley,

Wokingham, England.
JüRJENS, J. AND WAGNER, S. 2005. Component-based Development of Dependable Systems with UML. In

Component-Based Software Development, A. et al., Ed. LNCS Series, vol. 3778. Springer-Verlag, Berlin/
Heidelberg, 320–344.

JOHANNESSEN, P., GRANTE, C., ALMINGER, A., EKLUND, U., AND TORIN, J. 2001. Hazard analysis in
object-oriented design of dependable systems. In Proc. of the International Conference on Dependable
Systems and Networks (DSN01). IEEE Computer Society, Washington, DC, USA, 507–512.

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



00:46 S. Bernardi et al.

JOHNSON, B. W. 1989. Design and analysis of fault-tolerant digital systems. Addison-Wesley.
JUNGCLAUS, R., SAAKE, G., HARTMANN, T., AND SERNADAS, C. 1996. Troll: a language for object-oriented

specification of information systems. ACM Trans. Inf. Syst. 14, 175–211.
JÜRJENS, J. 2003. Developing safety-critical systems with UML. In UML 2003, San Francisco. LNCS Series,

vol. 2863. Springer-Verlag, Berlin/ Heidelberg, 360–372.
LAMPORT, L., SHOSTAK, R., AND PEASE, M. 1982. The byzantine generals problem. ACM Trans. Program.

Lang. Syst. 4, 382–401.
LAZOWSKA, E., ZAHORJAN, J., SCOTT GRAHAM, G., AND SEVCIK, C. 1984. Quantitative System Perfor-

mance: Computer System Analysis Using Queueing Network models. Prentice-Hall, New Jersey (USA).
LEANGSUKSUN, C., SONG, H., AND SHEN, L. 2003. Reliability modeling using UML. In Proceedings of the

International Conference on Software Engineering Research and Practice (SERP03), B. Al-Ani, H. R.
Arabnia, and Y. Mun, Eds. CSREA Press, Las Vegas, Nevada (USA), 259–262.

LEVESON, N. G. 1995. Safeware. Addison-Wesley, USA.
LITTLEWOOD, B. AND STRIGINI, L. 1993. Validation of ultrahigh dependability for software-based systems.

Commun. ACM 36, 69–80.
LIU, J., DEHLINGER, J., AND LUTZ, R. R. 2007. Safety analysis of software product lines using state-based

modeling. Journal of Systems and Software 80, 11, 1879–1892.
LIU, J. W. 2000. Real-time Systems. Prentice Hall, Upper Saddle River, New York.
LU, S. AND HALANG, W. A. 2007. A UML profile to model safety-critical embedded real-time control systems.

In Contributions to Ubiquitous Computing, B. J. Krämer and W. A. Halang, Eds. Studies in Computa-
tional Intelligence Series, vol. 42. Springer, Berlin, Heidelberg, 197–218.

LYU, M. 1995. Software Fault Tolerance. John Wiley & Sons, Ltd.
LYU, M. R., Ed. 1996. Handbook of Software Reliability Engineering. IEEE Computer Society Press, NY.
MAJZIK, I., PATARICZA, A., AND BONDAVALLI, A. 2003. Stochastic Dependability Analysis of System Archi-

tecture Based on UML Models. In Architecting Dependable Systems, LNCS 2677, R. De Lemos, C. Gacek,
and A. Romanovsky, Eds. Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, New
York, 219–244.

MEYER, J. F. 1980. On evaluating the performability of degradable computing systems. IEEE Trans. Com-
put. 29, 720–731.

MIL-STD-1629A 1984. Procedures for performing failure mode effects and criticality analysis. US Military
standard, MIL-STD-1629A/ notice 2.

MIL-STD-882d 1999. System safety program requirements. MIL-STD-882, United States of America.
MUSTAFIZ, S. AND KIENZLE, J. 2009. DREP: A requirements engineering process for dependable reactive

systems. In Methods, Models and Tools for Fault Tolerance, M. J. Butler, C. B. Jones, A. Romanovsky, and
E. Troubitsyna, Eds. Lecture Notes in Computer Science Series, vol. 5454. Springer, Berlin / Heidelberg,
220–250.

MUSTAFIZ, S., KIENZLE, J., AND BERLIZEV, A. 2008. Addressing degraded service outcomes and excep-
tional modes of operation in behavioural models. In SERENE ’08: Proceedings of the 2008 RISE/EFTS
Joint International Workshop on Software Engineering for Resilient Systems. ACM, New York, NY, USA,
19–28.

MUSTAFIZ, S., SUN, X., KIENZLE, J., AND VANGHELUWE, H. 2008. Model-driven assessment of system
dependability. Software and System Modeling 7, 4, 487–502.

OBER, I., GRAF, S., AND OBER, I. 2006. Validating timed UML models by simulation and verification.
STTT 8, 2, 128–145.

OCL 2010. Object Constraint Languageo. Version 2.2.
OpNet 1999. OpNet modeler. http://www.opnet.com/solutions/network rd/modeler.html.
PAI, G. J. AND DUGAN, J. 2002. Automatic Synthesis of Dynamic Fault Trees from UML System Mod-

els. In Proc. of 13th International Symposium on Software Reliability Engineering (ISSRE-02). IEEE
Computer Society, Annapolis, MD, USA, 243–256.

PATARICZA, A. 2000. From the General Resource Model to a General Fault Modelling Paradigm ? Workshop
on Critical Systems, held within UML’2000.

PATARICZA, A. AND GYÖR, F. 2004. Towards unified dependability modeling and analysis. In Workshops
Proceedings Organic and Pervasive Computing. Lecture Notes in Informatics. GI, Gesellschaft für In-
formatik, Bonn, Germany, 113–122.

PATARICZA, A., MAJZIK, I., HUSZERL, G., AND V‘ARNAY, G. 2003. UML-based design and formal analysis of
a safety-critical railway control software module. In In Proc. of Symposium Formal Methods for Railway

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



Dependability modeling and analysis of software systems specified with UML 00:47

Operation and Control Systems (FORMS03), G. Tarnai and E. Schnieder, Eds. Budapest (Hungary),
125–132.

POWELL, D. 1992. Failure mode assumptions and assumption coverage. In Fault-Tolerant Computing,
1992. FTCS-22. Digest of Papers., Twenty-Second International Symposium on. IEEE Computer Society,
Boston, MA, USA, 386 –395.

RODRIGUES, G. N., ROSENBLUM, D. S., AND UCHITEL, S. 2005. Reliability prediction in model-driven de-
velopment. In Model Driven Engineering Languages and Systems, 8th International Conference (MoD-
ELS 2005), L. C. Briand and C. Williams, Eds. Lecture Notes in Computer Science Series, vol. 3713.
Springer, Montego Bay, Jamaica, 339–354.

RTCA. 1992. Software considerations in airbone systems and equipment certification. Radio Technical Com-
mission for Aeronautics (RTCA), European Organization for Civil Aviation Electronics (EUROCAE),
no.DO-178B/ED-12B.

RUMBAUGH, J. E., BLAHA, M. R., PREMERLANI, W. J., EDDY, F., AND LORENSEN, W. E. 1991. Object-
Oriented Modeling and Design. Prentice-Hall.

SAILER, R., ZHANG, X., JAEGER, T., AND VAN DOORN, L. 2004. Design and implementation of a tcg-based
integrity measurement architecture. In Proceedings of the 13th conference on USENIX Security Sympo-
sium - Volume 13. SSYM’04. USENIX Association, Berkeley, CA, USA, 223–238.

SCHMIDT, D. C. 2006. Guest editor’s introduction: Model-driven engineering. IEEE Computer 39, 2, 25–31.
SINGH, H., CORTELLESSA, V., CUKIC, B., GUNEL, E., AND BHARADWAJ, V. 2001. A Bayesian approach to

reliability prediction and assessment of component based systems. In 12th International Symposium
on Software Reliability Engineering (ISSRE 2001), 27-30 November 2001, Hong Kong, China. IEEE
Computer Society, Washington, DC, USA, 12–21.

STAHL, T. AND VÖLTER, M. 2006. Model-driven software development. John Wiley & Sons, Ltd., New York.
SysML 2010. System Modeling Language. Version 1.2, formal/2010-06-01.
SZYPERSKI, C. 1998. Component Software: Beyond Object-Oriented Programming. ACM Press and Addison-

Wesley, New York, NY.
TCG 2011. http://www.trustedcomputinggroup.org.
TRIVEDI, K. 2001. Probability and Statistics with Reliability, Queuing, and Computer Science Applications.

John Wiley and Sons, NY.
UK Ministry of Defence 2000. HAZOP Studies on Systems Containing Programmable Electronics. UK Min-

istry of Defence. Glasgow (UK).
UML 2005. Unified Modeling Language: Superstructure. Version 2.0, formal/05-07-04.
UML-EDOC 2001. UML Profile for Enterprise Distributed Object Computing. Version 1.0.
UML-MARTE 2009. UML profile for Modeling and Analysis of Real-Time and Embedded Systems (MARTE).

Version 1.0, OMG document formal/2009-11-02.
UML-QoS&FT 2008. UML Profile for Modeling Quality of Service and Fault Tolerant Characteristics and

Mechanisms. V1.1, formal/08-04-05.
UML-SPT 2005. UML Profile for Schedulabibity, Performance and Time Specification. Version 1.1,

formal/05-01-02.
VESELY, W., GOLDBERG, F., ROBERTS, N., AND HAASL, D. 1981. Fault Tree Handbook. System and Relia-

bility Research, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washing-
ton, D.C. 20555.

WEYUKER, E. J. 1982. On Testing Non-Testable Programs. The Computer Journal 25, 4, 465–470.
YACOUB, S. M., CUKIC, B., AND AMMAR, H. H. 2004. A scenario-based reliability analysis approach for

component-based software. IEEE Transactions on Reliability 53, 4, 465–480.
Z 2002. Z Formal Specification Notation: Syntax, Type System and Semantics. ISO/IEC 13568:2002 ed.
ZARRAS, A., VASSILIADIS, P., AND ISSARNY, V. 2004. Model-driven dependability analysis of webservices.

In On the Move to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE, OTM Confederated
International Conferences, Agia Napa, Cyprus, October 25-29, 2004, Proceedings, Part II, R. Meersman
and Z. Tari, Eds. Lecture Notes in Computer Science Series, vol. 3291. Springer, Berlin / Heidelberg,
1608–1625.

ZOUGHBI, G., BRIAND, L., AND LABICHE, Y. 2006. A UML profile for developing airworthiness-compliant
(RTCA DO-178B) safety-critical software. Tech. rep., Carleton University, Canada, tech.rep.SCE-05-19.

ZOUGHBI, G., BRIAND, L., AND LABICHE, Y. 2007. A UML Profile for Developing Airworthiness-Compliant
(RTCA DO-178B), Safety-Critical Software. In Proceedings of Models 2007, G. Engels, Ed. LNCS Series,
vol. 4735. Springer-Verlag, Berlin, Heidelberg, 574–588.

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.



00:48 S. Bernardi et al.

Received 0000; revised 0000; accepted 0000

ACM Computing Surveys, Vol. 0, No. 0, Article 00, Publication date: 2011.


