
Performance Analysis of UML Models Using
Aspect-Oriented Modeling Techniques

Hui Shen and Dorina C. Petriu

Carleton University, Department of Systems and Computer Engineering
Ottawa, ON Canada, K1S 5B6

{hshen,petriu}@sce.carleton.ca

Abstract. Aspect-Oriented Modeling (AOM) techniques allow software de-
signers to isolate and address separately solutions for crosscutting concerns
(such as security, reliability, new functional features, etc.) This paper proposes
an approach for analyzing the performance effects of a given aspect on the
overall system performance, after the composition of the aspect model with the
primary model of a system. Performance analysis of UML models is enabled by
the "UML Performance Profile for Schedulability, Performance and Time"
(SPT) standardized by OMG, which defines a set of quantitative performance
annotations to be added to a UML model. The first step of the proposed ap-
proach is to add performance annotations to both the primary model and to the
aspect model(s). An aspect model is generic at first, and therefore its perform-
ance annotations must be parameterized. A generic model will be converted
into a context-specific aspect model with concrete values assigned to its per-
formance annotations. The latter is composed with the primary model, generat-
ing a complete annotated UML model. By using existing techniques, the com-
plete model is transformed automatically into a Layered Queueing Network
(LQN) performance model, which can be analyzed with existing solvers. The
proposed approach is illustrated with a case study system, whose primary model
is enhanced with some security features by using AOM. The LQN model of the
primary system was validated against measurements in previous work. The per-
formance effects of the security aspect under consideration are analyzed in two
design alternatives by using the LQN model of the composed sy stem.

1. Introduction

Aspect-Oriented Modeling (AOM) techniques allow software designers to conceptu-
alize, describe and communicate separately solutions for crosscutting concerns (such
as security, reliability, new functional features, etc.) An aspect-oriented arch itecture
model produced by AOM consists of a base architecture model called the primary
model, which reflects core design decisions, and a set of aspect models , each reflect-
ing a concern that crosscuts the primary model [3]. In order to build the complete so-
lution for a system, different aspect models will be composed with the primary sy stem
model. Current AOM research is addressing the following problems: using aspects to
describe crosscutting concern solutions [3, 13]; describing aspect models at different
levels of abstractions (e.g., generic and mechanism specific) [5]; composition of as-

pect and primary models [3, 17, 2]; automation of the AOM approach [8]; analysis of
composed models to identify and resolve conflicts and undesirable properties that
may arise as a result of the composition [5, 3].

According to [7], there are two broad categories of concerns: a concrete concern
can be directly realized by some model elements that specifically address it (e.g., se-
curity), whereas a qualitative concern is based on intrinsic qualities of a system (e.g.,
performance). This paper proposes an approach for analyzing the system-level per-
formance effects of a concrete concern realized as an aspect model, after its compos i-
tion with the primary model. In other words, it becomes possible to analyze the com-
bined effects of any concrete concern with a specific qualitative concern (i.e.,
performance). In order to avoid confusion, the term “aspect model” will be used in the
rest of the paper for the concrete concern only.

Over the years, many modeling formalisms, methods and tools have been devel-
oped for performance analysis. The challenge is not to reinvent new analysis methods
for UML models, but to bridge the gap between UML-based software development
tools and different existing performance analysis tools.

Software Performance Engineering (SPE) is a methodology introduced in [16] that
promotes the integration of performance analysis into the software development pro c-
ess from the early stages and continuing throughout the whole software life cycle. The
"UML Performance Profile for Schedulability, Performance and Time" (SPT) stan-
dardized by OMG enables the application of the SPE methodology to systems devel-
oped with UML [14]. The SPT Profile defines a set of quantitative performance ann o-
tations (such as resource demands made by different software execution steps and
visit ratios) to be added to a given UML model. An annotated UML model can be
transformed into a performance model and analyzed with known analysis techniques
and tools. Since the introduction of SPE, there has been a significant effort to int e-
grate performance analysis into the software development process by using different
performance modeling paradigms: queueing networks, Petri nets, stochastic process
algebras, simulation, etc. [1]. The performance modeling formalism used in this paper
is the Layered Queueing Model (LQN) [18]. The transformation from UML to LQN
used in this paper was developed in previous research for systems designed without
AOM [10, 6, 9, 12, 19].

The paper is organized as follows: section 2 presents the overview of the proposed
approach; section 3 describes how performance annotations are added to aspect and
primary models and how are handled during the composition, which is approached as
a graph rewriting problem; and section 4 analyzes the performance effect s of a co n-
crete aspect under consideration and discusses different design alternatives. The case
study used throughout the paper is an existing application, named the Document Ex-
change Server (DES) that was implemented and measured in previous work [12].
DES is enhanced in this paper with some security features by using AOM. The ap-
proach for defining generic and context -specific aspect models and for combining the
aspect with the primary model is inspired from the work of France et al. [3, 5]. The
original contribution of this paper is two-fold: a) adding performance analysis to
UML models developed with AOM, and b) approaching the composition of the be-
havioural represent ation from the aspect and primary models as a graph rewriting
problem applied to activity diagrams with composite activities.

2. Overview of the Proposed Approach

The long-term goal of the research presented in this paper is to provide tool support to
software developers who are using AOM techniques for assessing the performance ef-
fects of different aspect realizations early in the development cycle. This paper is just
the first step on the road toward such a goal. Fig. 1 illustrates the high-level view of
the proposed approach.

A p rimary model and one or more generic aspect models with performance annot a-
tions, produced with an UML tool, are exported to XMI. The first phase is to instanti-
ate the generic aspect model, producing a context-specific one as in [3, 5], by follow-
ing a set of binding rules provided by the designer. The binding rules are augmented
with instructions on how to transform the parametric annotations of the generic aspect
model into concrete ones. The next step is to compose the context -specific aspect
model(s) with the primary model, according to a set of composition directives. The
result is a composed annotated UML, which can be transformed aut omatically into a
performance model (LQN in this case) by using the transformation techniques from
[19]. The LQN model is analyzed with an existing solver for different workloads and
conditions, and the analysis results are used to draw conclusions about different de-
sign alternatives. The process will be eventually completed with a feedback path,
shown with dotted arrows, whereby the performance results are inserted into prede-
fined annotation placeholders in the XMI file of the composed model, which will be
imported back in the UML tool for display. The composed model can be also im-
ported directly into the UML tool for display without performance results.

The focus of this paper is on the instantiation and composition steps, and esp ecially
on the treatment of performance annotations. The paper also illustrates the application
of the proposed approach to enhance an existing application, the Document Exchange
Server, with some security features (namely authorization). The LQN model of the
primary system was previously validated against measurements in [12]. The perform-
ance effects of the aspect under consideration are analyzed in the paper by solving the
LQN model of the composed system for two design alternatives.

Fig. 1. Approach for performance analysis of UML models using AOM

Binding
Rules

Composition
Directives

UML Generic
aspect model

(XMI)

UML Primary
model
(XMI)

Instantiate Context-spec
aspect model Compose

Composed
UML model

(XMI)

UML tool

UML to LQN
transformation

LQN model

LQN solver

LQN Results
Merge/

FeedbackXMI import

XMI export

Focus of the paper

Binding
Rules

Composition
Directives

UML Generic
aspect model

(XMI)

UML Primary
model
(XMI)

Instantiate Context-spec
aspect model Compose

Composed
UML model

(XMI)

UML tool

UML to LQN
transformation

LQN model

LQN solver

LQN Results
Merge/

FeedbackXMI import

XMI export

Focus of the paper

3. Aspect Oriented Models with Performance Annotations

The SPT Profile [14] contains the Performance Subprofile that identifies the main ba-
sic abstractions used in performance analysis. Scenarios define response paths
through the system, and can have QoS requirements such as response times or
throughput. Each scenario is executed by a workload, which can be closed or open,
and has the usual characteristics (number of clients or arrival rate, etc.) Scenarios are
composed of scenario steps that can be joined in sequence, loops, branches,
fork/joins, etc. A step may be an elementary operation at the lowest level of granular-
ity, or may be a complex sub-scenario. Each step has a mean number of rep etit ions, a
host execution demand, other demand to resources and its own QoS characteristics.
Resources are another basic abstraction, and can be active or passive, each with their
own attributes. A more detailed description of the way to apply the Performance Sub-
profile is given in [11]. Please note that SPT was standardized for UML 1.4; until SPT
will be upgraded for UML 2, we apply its stereotypes to UML 2.

3.1. Primary Model

The primary UML model contains different views neces sary for performance evalua-
tion [10]:
− High-level software architecture represented by one or more class or components

diagrams showing the concurrent (distributed) component instances (Fig. 2).

User

DocServer
Access

<<PAresource>>

Dispatcher

getDocument()

Fig. 2. DES primary model: component diagram with performance annotations

<<PAresource>>
DocMgmt

<<PAresource>> Ethernet

Fig. 3. DES primary model: deployment diagram with performance annotations

doGetDocument()

<<PAresource >>
<<component>>

<<deploy>> <<artifact>>
UserA<<PAresource>>

UDisk
<<PAhost>>
UserCPU

<<component>>
User

<<manifest>>

<<deploy>> <<artifact>>
DocServerA<<PAresource>>

SDisk
<<PAhost>>
ServerCPU

<<component>>
DocServer

<<manifest>>

<<required interface>>
DocServerAccess

getDocument()

<<component>>

DocServer
<<provided interface>>
DocServerAccess

getDocument()

User

DocServer
Access

<<PAresource>>

Dispatcher

getDocument()

Fig. 2. DES primary model: component diagram with performance annotations

<<PAresource>>
DocMgmt

<<PAresource>> Ethernet

Fig. 3. DES primary model: deployment diagram with performance annotations

doGetDocument()

<<PAresource >>
<<component>>

<<deploy>> <<artifact>>
UserA<<PAresource>>

UDisk
<<PAhost>>
UserCPU

<<component>>
User

<<manifest>><<deploy>> <<artifact>>
UserA<<PAresource>>

UDisk
<<PAhost>>
UserCPU

<<component>>
User

<<manifest>>

<<deploy>> <<artifact>>
DocServerA<<PAresource>>

SDisk
<<PAhost>>
ServerCPU

<<component>>
DocServer

<<manifest>><<deploy>> <<artifact>>
DocServerA<<PAresource>>

SDisk
<<PAhost>>
ServerCPU

<<component>>
DocServer

<<manifest>>

<<required interface>>
DocServerAccess

getDocument()

<<component>>

DocServer
<<provided interface>>
DocServerAccess

getDocument()

− Deployment of high-level software components to hardware devices (Fig. 3).
− One or more key performance scenarios annotated with performance information

according to the SPT Profile [14], modeled by interaction or activity diagrams [11].
In the paper we consider the scenario modeled by the activity diagrams in Fig. 4.

(b) DES primary model: nested activity diagram doGetDocument

Fig. 4. DES primary model: scenario RetrieveDocwith performance annotations

in

out

User

send request

<<PAstep>>
{PAdemand=(‘msr’,
’mean’, ($G,’ms’)),
PAextOp=(‘network’,1)

Dispatcher DocMgmt

<<PAstep>>
{PAdemand=(‘msr’,
’mean’, ($R,’ms’))}

DocServer

<<PAstep>>
{PAdemand=(‘msr’,’mean’,
(110/$cpuS,’ms’))}

(a) DES primary model: high level activity diagram for RetrieveDoc scenario

RetrieveDoc <<PAcontext>>

idle_D

doGetDocument

accept request

dispatch thread

<<PAstep>>
{PAdemand=(‘msr’,’mean’,
(1.5,’ms’))}

receive
document

A

in

out

<<PAstep>>
{PAdemand=(‘msr’,’mean ’,
(220/$cpuS,’ms’))}

<<PAstep>>
{PAdemand=(‘msr’,’mean’,
(1.30 + 130/$cpuS,’ms’))} <<PAstep>>

{PAdemand=(‘msr’,’mean’,
(35/$cpuS,’ms’)
PAextOp=(‘ readDisk’,$DocS’)}

<<PAstep>>
{PAdemand=(‘msr’,’mean’,
(170/$cpuS,’ms’))}

<<PAstep>>
{PAdemand=(‘msr’,’mean’,
(220/$cpuS,’ms’))}

DocMgmt

<<PAstep>>
{PAdemand=(‘msr’,’mean’,
($scdC/$cpuS,’ms ’)),
PAextOp=(‘network’,$DocS ’)
}

doGetDocument

accept request

read request

update logfile

get document

send document

recycle thread

B

<<PAclosedLoad>>
{PApopulation = $Nusers,
PArespTime=

(‘req’,’mean’, (1,’sec’),
(‘pred’,’mean’,$RespT)}}

(b) DES primary model: nested activity diagram doGetDocument

Fig. 4. DES primary model: scenario RetrieveDocwith performance annotations

in

out

User

send request

<<PAstep>>
{PAdemand=(‘msr’,
’mean’, ($G,’ms’)),
PAextOp=(‘network’,1)

Dispatcher DocMgmt

<<PAstep>>
{PAdemand=(‘msr’,
’mean’, ($R,’ms’))}

DocServer

<<PAstep>>
{PAdemand=(‘msr’,’mean’,
(110/$cpuS,’ms’))}

(a) DES primary model: high level activity diagram for RetrieveDoc scenario

RetrieveDoc <<PAcontext>>

idle_D

doGetDocument

accept requestaccept request

dispatch thread

<<PAstep>>
{PAdemand=(‘msr’,’mean’,
(1.5,’ms’))}

receive
document

A

in

out

<<PAstep>>
{PAdemand=(‘msr’,’mean ’,
(220/$cpuS,’ms’))}

<<PAstep>>
{PAdemand=(‘msr’,’mean’,
(1.30 + 130/$cpuS,’ms’))} <<PAstep>>

{PAdemand=(‘msr’,’mean’,
(35/$cpuS,’ms’)
PAextOp=(‘ readDisk’,$DocS’)}

<<PAstep>>
{PAdemand=(‘msr’,’mean’,
(170/$cpuS,’ms’))}

<<PAstep>>
{PAdemand=(‘msr’,’mean’,
(220/$cpuS,’ms’))}

DocMgmt

<<PAstep>>
{PAdemand=(‘msr’,’mean’,
($scdC/$cpuS,’ms ’)),
PAextOp=(‘network’,$DocS ’)
}

doGetDocument

accept requestaccept request

read requestread request

update logfileupdate logfile

get documentget document

send documentsend document

recycle threadrecycle thread

B

<<PAclosedLoad>>
{PApopulation = $Nusers,
PArespTime=

(‘req’,’mean’, (1,’sec’),
(‘pred’,’mean’,$RespT)}}

The DES system was previously implemented with the ACE reusable fram eworks
[15], and its LQN model was validated against measurements [12]. DES consists of a
document exchange server and multiple clients. There are two types of users: regular
users and system administrator. A regular user can get the document directory from
the server, upload new documents and retrieve documents stored at the server. In this
case study, we will focus on the scenario for retrieving a document, RetrieveDoc ,
as the key scenario for performance analysis. The UML model shown here does not
represent the complete design of the DES system , just the elements necessary for per-
formance analysis. The performance annotations are shown in notes in Figures 2 to 4
to make them visible. Due to space limitations, we give here just a brief overview of
the most important stereotypes and attributes.

T he high -level architecture contains two components, User and DocServer
communicat ing through the interface DocServerAccess , which contains the op-
eration getDocument() . The server component is multithreaded, containing a
Dispatcher thread that accepts the requests and dispatches them to a number of
worker threads named DocMgmt, organized in a thread pool. In Fig. 2, the stereotype
<<PAresource>> is used to indicate those software units that are running under
their own thread of control (in this case, the user component and each server thread).
DES is deployed on a distributed system connected through a local area network, as
shown in Fig. 3. The shared documents are stored on the server’s local disk. A proc-
essor is modeled by the stereotype <<PAhost>>, which has attributes that define its
scheduling policy, processing rate, context switching time and performance measures
such as utilization and throughput. Other non-processing hardware devices that intro-
duce contention in the software may be modeled as <<PAresource>> .

The activity diagram for the RetrieveDoc scenario (Fig. 4) shows that the
Dispatcher loops infinitely, going back to accep ting a new request once the prev i-
ous one was dispatched. The detailed processing of the operation doGetDocu-
ment()performed by a DocMgmt thread is encapsulated in the composite activity
given in Fig.4.b, which has an input pin in and an output pin out. The call of this
operation is shown in gray in the main activity diagram from Fig.4.a. The labels A
and B are used to mark possible insertion points for the aspect behaviour during
model composition, as discussed later in section 3.4.

The main activity diagram is stereotyped as an SPT analysis context <<PAcon-
text>>, and each activity as a scenario step <<PAstep>>. The first step carries
the workload stereotype <<PAclosedLoad>> with a given number of users
$Nusers , and the scenario overall performance measures, which can be required
(‘req’), measured (‘msr’), estimat ed (‘assm’) or predicted (‘pred’). (Note
that in SPT variable names begin with ‘$’.) For example, the scenario from Fig. 4
has a required mean response time of 1 second for the specified number of users
$Nusers , and the response time predicted by the LQN model will be stored in the
variable $RespT, as indicated in the following tagged value:
PArespTime= ((‘req’,mean,(1,‘sec’)),(‘pred’,mean,$RespT))
A PAdemand tagged value indicates the execution time on the host processor for

the respective step. For instance, the activity accept request from Fig. 4 .b has :
PAdemand=(‘msr’,’mean,(220/$cpuS,‘ms’))

which indicates that the mean measured value of the CPU demand is given by the ex-
pression (220/$cpuS) in milliseconds, where the variable $cpuS is the frequency
of the host processor in MHz. The variables used in performance annotations capture
application or platform-specific performance values. The following variables used in
the example are dependent on the disk I/O mechanism and the doc ument size:
 $gcdC = CPU demand for getting a document from the disk

 $scdC = CPU demand for sending a document to the network
The following variables are application dependent:
 $RP = the size of a request message in data packets

$DocP = document size in data packets (given by the ratio between the
document size and network packet size rounded up to the closest integer).

3.2. Generic Aspect Model

AOM is applied in this paper to extend the original DES system with a security re-
lated crosscutting concern, whereby only authorized clients are allowed to get docu-
ments from the DES server. The approach for expressing the solution to this concern
as an aspect was inspired from [3], where a generic aspect model that describes the
general structure and behaviour of a generic authorization solution is defined with
UML 2 templates. More precisely, in [3] the generic aspect structure is modeled with
classifier templates (classes or structured classes) and the behaviour with interaction
templates. The generic aspect model is instantiated to get a context-specific aspect
model by binding the template parameters t o application-specific values.

Our approach is similar to [3], except that the software architecture is modeled
with component templates (with offered and required interfaces), and the behaviour
with activity templates, as shown in Fig.5. We are making use of the UML 2 feature
that all subclasses of Classifier - such as Class, Collaboration, Component, Interface -
and all subclasses of Behavior - such as Activity, Interaction - are templateable. C om-
ponents and/or structured classes allow for a clear separation between their external
use and their internal structure/behaviour, and are more suitable than the traditional
class diagrams for representing the kind of systems for which performance analysis is
important (usually distributed and/or concurrent systems). We chose activity diagrams
rather than interaction diagrams because of their ability to describe both inter- and in-
tra-object behaviour as flow s of actions, and to express concurrency more naturally,
like in Petri nets. We propose to approach the behaviour composition as a graph re-
writing problem applied to activity diagrams, as described in section 3.4.

Fig. 5.a shows that there are three kinds of components in the generic aspect
model: |Client, |Server and |AuthorizationRep. (Note that we use the same
not ation for template parameters as in [3], i.e., a parameter name begins with a ‘|’).
The |Server component provides the interface |ServerAccess containing the op-
eration template |operation, and requires the interface |Authorization-
Access containing the operation template |checkAuth . The aspect model does not
know anything about the internal structure of |Server, nor any details about the ac-
tual functionality of |operation , which are given in the primary model.

The generic aspect model shows that, when a request for |operation arrives
from |Client to |Server, the latter must check with the component
|AuthorizationRep whether the client is authorized to perform the
|operation . More exactly, |Server invokes |checkAuth , waits for the reply,
and then verifies the result. If this indicates a not authorized access, then |Server
will reply to |Client that the access is denied; otherwise, it delegates the actual exe-
cution of the required functionality to |doOperation (which will be detailed only
in the primary model). The signatures and parameters of the operation templates are
similar to those from [3] and are not described here due to space limitations.

(b) Generic Authorization aspect model: activity diagram

Fig.5. Generic aspect model with parametric performance annotations

(a) Generic Authorization aspect model: component diagram

|Client

request
|operation

idle_AR

accept
request

check
rights

<<PAstep>>
{Pademand =$C1}

accept
request

request
|checkAuth

|Server |AuthorizationRep

|doOperation

accept
result

access
denied

Authorization <<PAcontext>>

[invalid]

[valid]

<<classifier template>>
|Server

<<provided interface>>
|ServerAccess

|operation()

<<required interface>>
|AuthorizationAccess

|checkAuth()

|doOperation()

|ServerAccess
<<classifier
template>>

|Client

<<classifier template>
|AuthorizationRep

<<provided interface>>
|AuthorizationAccess

|checkAuth ()

|Authorization
Access

<<required interface>>
|ServerAccess

|operation()

<<PAstep>>
{Pademand =$C2}

<<PAstep>>
{Pademand =$S1}

<<PAstep>>
{Pademand =$S2}

<<PAstep>>
{Pademand =$S3}

<<PAstep>>
{Pademand =$A1}

<<PAstep>>
{Pademand =$A2}

(b) Generic Authorization aspect model: activity diagram

Fig.5. Generic aspect model with parametric performance annotations

(a) Generic Authorization aspect model: component diagram

|Client

request
|operation

idle_AR

accept
request

check
rights

<<PAstep>>
{Pademand =$C1}

<<PAstep>>
{Pademand =$C1}

accept
request

request
|checkAuth

|Server |AuthorizationRep

|doOperation

accept
result

access
denied

Authorization <<PAcontext>>

[invalid]

[valid]

<<classifier template>>
|Server

<<provided interface>>
|ServerAccess

|operation()

<<required interface>>
|AuthorizationAccess

|checkAuth()

|doOperation()

|ServerAccess
<<classifier
template>>

|Client

<<classifier template>
|AuthorizationRep

<<provided interface>>
|AuthorizationAccess

|checkAuth ()

|Authorization
Access

<<required interface>>
|ServerAccess

|operation()

<<classifier template>>
|Server

<<provided interface>>
|ServerAccess

|operation()

<<required interface>>
|AuthorizationAccess

|checkAuth()

|doOperation()

|ServerAccess
<<classifier
template>>

|Client

<<classifier
template>>

|Client

<<classifier template>
|AuthorizationRep

<<provided interface>>
|AuthorizationAccess

|checkAuth ()

|Authorization
Access

<<required interface>>
|ServerAccess

|operation()

<<PAstep>>
{Pademand =$C2}

<<PAstep>>
{Pademand =$C2}

<<PAstep>>
{Pademand =$S1}

<<PAstep>>
{Pademand =$S1}

<<PAstep>>
{Pademand =$S2}

<<PAstep>>
{Pademand =$S2}

<<PAstep>>
{Pademand =$S3}

<<PAstep>>
{Pademand =$S3}

<<PAstep>>
{Pademand =$A1}

<<PAstep>>
{Pademand =$A1}

<<PAstep>>
{Pademand =$A2}

<<PAstep>>
{Pademand =$A2}

It is worthwhile to mention here that the behaviour model from Fig. 5.b contains
two kinds of activities: some represent the new functionality associated with the as-
pect (such as checking the access rights and letting the client know when the access is
denied) and others represent “embedding” activities, which show where to insert the
new behaviour relative to the primary model behaviour. In our example, the new au-
thorization functionality must take place every time when the client sends a request to
the server, but before the request will be actually served. More on the embedding of
the aspect behaviour in the primary model behaviour will be discussed in section 3.4.

It was mentioned that activity diagram can represent both intra- and inter-object
behaviour. For instance, an |operation request is modeled by a CallOperationAc-
tion metaobject with a transition that crosses the swimlane boundary from |Client
to |Server, whereas the execution of |operation is represented by the activities in
the shaded area from |Server’s swimlane, start ing with the acceptance of the re-
spective call (represented by an AcceptCallAction or AcceptEventAction metao bject
in UML 2), and ending with the call of |doOperation (represented by an Invoca-
tionAction metaobject). Similarly, the execution of operation |checkAuth is repre-
sented by the shaded area from the swimlane of |AuthorizationRep .

In what regards the performance annotations, each activity is stereotyped as an
SPT <<PAstep>>, whose tagged values provide performance information such as
CPU demand, probability of execution, external operations, etc. [14]. The stereotype
attributes are not assigned concrete values, but are represented instead by SPT vari-
ables that are treated as “performance parameters”. These variables will receive co n-
crete values when it becomes known how the context -specific aspect model is instan-
tiated, what primary model is composed with and what kind of platform the final
composed model will be run on. The types of these performance parameters are de-
fined in the SPT profile, and some can be rather complex, such as the types for time
and performance values, PAtimeValue and PAperfValue [14]. However, a
UML tool treats them as string values assigned to the respective stereotype attributes.

3.3. Context-Specific Aspect Model

The next step is to instantiate the template aspect model for a given application co n-
text by binding the template parameters to application-specific values. According to
[5], a generic aspect model can be instantiated multiple times to produce multiple
context -specific aspect models based on different binding rules. The result is a con-
text -specific aspect model. In our approach, the binding rules have two parts: one for
the “traditional” AOM approach, and the other for performance annotations.

In terms of “tradit ional” AOM binding, our approach is almost the same as in [3],
except for the fact that our templates refer to components and act ivities. The binding
rules for operation signatures, similar to [3], and are not shown here due to space limi-
tations. The bindings for structural elements used in our case study, listed here as
(formal parameter, actual parameter) pairs, would be normally given in a UML dia-
gram:
− Component bindings: (|Client, User); (|Server, DocServer);
(|AuthorizationRep, DocAuthorizationRep)

− Interface bindings: (|ServerAccess, DocServerAccess);
(|AuthorizationAccess, DocAuthorizationAccess);

− Operation bindings: (|operation, getDocument); (|doOperation,
doGetDocument); (|checkAuth, checkDocAuth).
In the structural view, some of the component (operation) templates are bound to

actual counterparts that exist in the application context, while others are bound to new
components/interfaces/operations (shown in boldface in the above list). For instance,
DocAuthorizationRep, along to its interfaces and operations, is a new compo-
nent that does not have a counterpart in the primary model of the application.

There is another issue concerning the model structure that has to be resolved du r-
ing the creation of the context -specific model: the allocation of the software compo-
nents to hardware resources. This is important for performance analysis. The rule is as
follows: if a component template is bound to an existing component, then the host
pro cessor is already known from the primary model. However, for new components,
the designer has to specify the deployment explicitly (either on existing nodes or on
new ones).

The instantiation of the template activity diagram has two parts: one is concerned
with binding activity templates from the generic to the application-specific context,
and the other with assigning concrete values to the “performance parameters” identi-
fied in the previous section as part of the performance annotations. The binding of ac-
tivity templates will be done according to the binding of the corr esponding operation
templates from the structural view. For instance, the activity template that requests
|operation will be bound to an activity that requests getDocument, and so on.
The activity diagram of the context-specific model is represented in Fig. 6.a.

The issue of binding “performance parameters” cannot be solved through the UML
2 template mechanism, because it requires the “binding” of new values to stereotype
attributes. For instance, the variable $A1 from Fig. 5.b, which represents the tagged
value PAdemand of the step accept_request, should be assigned the value

(‘assm’,’mean,(220/$cpuS,‘ms’))
of type PAperfValuedefined in SPT. We propose to use an auxiliary XML file for
“performance bindings” which gives all the values to be assigned to the performance
parameters representing stereotype attributes in the generic aspect model.

Choosing the values to be assigned to the performance parameters of the context-
specific aspect model is not a simple problem; some difficulties are related to per-
formance evaluation issues rather than to UML modeling. In general, it is difficult to
estimate quantitative resource demands for each activity in the design phase, when an
implementation does not exist and measurements cannot be performed yet. Several
approaches are used by the performance analysts to come up with reasonable esti-
mates in the early design stages: expert experience with previous versions or with
similar software, understanding of the algorithm complexity, measurements of reused
software, measurements of existing libraries, or using time budgets. As the project
advances, early estimate can be replaced with measured values for the most critical
parts. However, this is not to say that performance analysis should be deferred until
late in the lifecy cle, when the system is implemented and can be measured, because
by then it may be too late to correct costly performance mistakes frozen in the code
(see [16] for more details on software performance engineering).

3.4. Model Composition

The role of model composition is to integrate a context-specific aspect model with the
primary model in all three relevant views: architecture, deployment and behaviour.

Composing the software architecture is not as difficult as composing the behaviour.
The context -specific aspect model contains either components that exist in the pri-
mary model or new ones, with well-defined interfaces. The composed model will co n-
tain the union of all the components from the two models. It is however possible that
a component in the aspect model does not contain the level of details from the pri-
mary model (for example, DocServer is multithreaded in the primary model only).
A recursive approach, similar to that at the system level, will be applied to compose
the internal structure of each component in turn. The composition at the deployment
level, which is also a structural view, can be tackled in a sim ilar way , adding new
nodes to he ones that exist already in the primary model.

The composition of the behaviour view is more challenging. Conceptually, we
propose to approach the composition of activity diagrams as a graph-rewriting pro b-
lem, where a subgraph X found inside of a larger host graph H is isolated and replaced
by another subgraph Y. Subgraph X is described by the left-hand -side and Y by the
right -hand side of a r ewriting rule, which also specifies how to embed (i.e., connect) Y
within the host graph H. In our case, the host graph is the activity diagram of the pri-
mary model, Y is the subset of activities from the context -specific model that bring
new functionality to the whole, and X is an element of the host H that pinpoints the
insertion place. The proposed approach is illustrated in Fig. 6.

Fig. 6.a shows the activity diagram for the behaviour of the context -specific model,
which contains two kinds of activities , as already mentioned in section 3.2: a) new
functionality introduced by the aspect (the shaded area in Fig. 6.a), and b) “embed-
ding” activities repeated from the primary model that indicate where to insert the new
functionality (the non-shaded area). We propose to isolate the activities from the
shaded area and to encap sulate them in a UML 2 complete structured activ ity with in-
put and output pins, which corresponds to the connecting points between the new
functionality from the shaded area with the embedding activities from the non-shaded
area, as shown in Fig. 6.b. In this case, there is only one input and one output pin, but
in general more than one input/output pins may be necessary. The designer has the re-
sponsibility to indicate which sub -area of the aspect model contains new functionality
and should be converted into a complete structured activity, to play the role of Y in the
rewrit ing rule.

The role of X is played by an element from the activity diagram of the primary
model that indicates the insertion place. In our case study, we have considered two
design alternatives: i) insert the authorization checking functionality in the Dis-
patcher thread in Fig.4.a, point A, and ii) insert it in the DocMgmt thread in Fig.
4.b, point B. As shown in the next section, the choice of the insertion point will have a
strong impact on the overall performance without changing in any way the aspect
model or its performance annotations.

T he outcome of the composition for Design A is illustrated by the component dia-
gram in Fig. 7.a and the activity diagram in Fig. 7.b. The composed deployment dia-
gram is not given, as it is very similar to the deployment of the primary model from
Fig. 3.

Fig. 6. Generating a complete structured activity with pins that contains the
aspect model sub-behaviour to be inserted into the primary model behaviour

Authorization
User

request
getdocument

idle_AR

accept
request

check
rights

accept
request

request
checkDocAuth

DocServer
DocAuthorization

Rep

doGetDocument

accept
result

access
denied

[invalid]

[valid]

begin

User DocServer
DocAuthorization

Rep

getDocument

end

(a) Context-specific aspect model behaviour (b) Complete structured activity with pins

(b) Composed DES model: high-level activity diagram

Fig. 7. Composed DES model

User

send request

Dispatcher DocMgmt

DocServerRetrieveDoc <<Pacontext>>

idle_D

doGetDocument

dispatch thread

accept request

receive
document

in

out

getDocument

begin

end

(a) Composed DES model: component diagram

<<component>>
DocServer

DocServer
Access

<<PAresource >>
<<component>>

User

<<PAresource>>
<<component>

DocAuthorizationRep
DocAuthorization
Access

<<provided interface>>
DocAuthorizationAccess

checkDocAuth ()

<<PAresource >>
Dispatcher

getDocument()

<<PAresource >>
DocMgmt

doGetDocument()

<<required interface>>
DocServerAccess

getDocument()

idle_AR

accept
request

check
rights

request
checkDocAuth

accept
result

access
denied

[invalid]

[valid]

Fig. 6. Generating a complete structured activity with pins that contains the
aspect model sub-behaviour to be inserted into the primary model behaviour

Authorization
User

request
getdocument

idle_AR

accept
request

check
rights

accept
request

request
checkDocAuth

DocServer
DocAuthorization

Rep

doGetDocument

accept
result

access
denied

[invalid]

[valid]

begin

User DocServer
DocAuthorization

Rep

getDocument

end

(a) Context-specific aspect model behaviour (b) Complete structured activity with pins

(b) Composed DES model: high-level activity diagram

Fig. 7. Composed DES model

User

send request

Dispatcher DocMgmt

DocServerRetrieveDoc <<Pacontext>>

idle_D

doGetDocument

dispatch thread

accept requestaccept request

receive
document

in

out

getDocument

begin

end

(a) Composed DES model: component diagram

<<component>>
DocServer

DocServer
Access

<<PAresource >>
<<component>>

User

<<PAresource>>
<<component>

DocAuthorizationRep
DocAuthorization
Access

<<provided interface>>
DocAuthorizationAccess

checkDocAuth ()

<<PAresource >>
Dispatcher

getDocument()

<<PAresource >>
DocMgmt

doGetDocument()

<<required interface>>
DocServerAccess

getDocument()

idle_AR

accept
request

check
rights

request
checkDocAuth

accept
result

access
denied

[invalid]

[valid]

4. Performance Analysis

This section presents the performance analysis experiments conducted with the LQN
models obtained from: a) the primary model, b) the composed model for design A,
and c) the composed model for design B. The LQN models were obtained with the
methodology from [19]. The LQN models are not described in the paper due to space
limitations. The LQN model of the DES application without authorization was vali-
dated against measurements, as described in [12].

In the first set of experiments, we compared the effect of Design A authorization
on the response time perceived by a user who is ret rieving documents, when the num-
ber of identical users is increasing from 1 to 15. The analysis was done for two docu-
ment sizes: short (5K B) and long (50 KB).

The analysis shows that the effect of the authorization aspect on the response time
depends strongly on the document size: there is almost no effect for large documents
(see Fig. 8), whereas there is an important effect for small documents (see in Fig. 9).
To understand the reason for this performance behaviour, we looked at the utilization
of different resources to identify the system bottleneck (i.e., the resource that saturates
first, has the longest waiting queue and limits the system throughput) . For large
documents, the bottleneck device is the Local Area Network, which is utilized close
to 100% for 15 users, as shown in Fig. 10. Other resources, such as ServerCPU and
SDisk are utilized much less than the network (only about 55% for 15 users). How-
ever, t he new authorization functionality adds no extra load on the network, but uses
instead ServerCPU and SDisk , which have enough available capacity. Therefore
the response time increases very little because of the additional work introduced by
the authorization functionality in the case of long documents.

The situation is different for short documents, where the bottleneck is the Dis-
patcher thread, as shown in Fig. 11. The choice of inserting the authorization re-
sponsibility in the Dispatcher in Design A serializes considerably the execution of
the requests in the system, as a lot of work is done in a single thread. This is an exam-
ple of so called “software bottleneck”, where none of the hardware resources gets to
be fully utilized due to the low concurrency levels in the software. In order to solve
the software bottleneck, we consider Design B, where the authorization functionality
is inserted in each of the DocMgmt threads (i.e., the authorization for different re-
quest is done in parallel). This insures higher concurrency levels in the system and
gives better response time than Design A, as long as DocAuthorizationRep is
also able to process requests concurrently. Fig. 12 shows that for small messages, the
response time of Design B is very close to that of the primary system. This is an illus-
tration of the fact that a small design difference may have a big performance impact.

Fig. 13 shows that in the case of Design B, the hardware resources (such as
ServerCPU) are indeed utilized at a higher level than in Design A, whereas the Dis-
patcher thread is no longer the bottleneck. This explains why Design B has better per-
formance than Design A.

Performance analysis allows developers to gain insight on the location of perform-
ance trouble spots under different workload conditions. The goal is to help developers
to evaluate and choose better design alternatives as early as possible in the develop-
ment process.

Design A: response t ime for large

docs . (50 KB) and 5 worker th reads

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n o . o f c l i e n t s

R T
ms Primary Model

Composed Model

Fig. 8. Design A: Response time for the

retrieval of large documents

 Design A: Response t ime for smal l

d o c u m e n t s (5 K B) a n d 5 w o r k e r t h r e a d s

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

n o . o f c l i e n t s

RT
ms Primary Model

Composed Model

Fig. 9. Design A: Response time for the

retrieval of small doc uments

Design A: Ut i l izat ions
for large documents

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
no. of clients

U
%

Network
Dispatcher
ServerCPU

SDisk

Fig.10. Design A: Utilization of resources for

the retrieval of large documents

Design A: Uti l izat ions
for small documents

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12
no. of clients

U
%

Dispatcher

ServerCPU

DocMgmt

Fig.11. Design A: Utilization of resources for

the retrieval of small documents

Response times for
different designs

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 1 11 1 1 1 15
no. of c l ients

RT
ms

Design A

Design B

Primary Model

Fig.12. Response times for different

designs alternatives

Design B: Ut i l izat ions for
 small documents, 15 threads

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

no. of cl ients

U
%

ServerCPU

DocMgmt

Dispatcher

Fig.13. Design B: Utilization of resources for

the retrieval of small documents

5. Conclusions

This paper proposes an approach for combining Aspect Oriented Modeling techniques
with performance analysis of UML models. The long-term goal of the research is to
provide tool support to software developers who are using AOM techniques for as-
sess ing the performance effects of different aspect realizations early in the develop-
ment cycle. There is ongoing work to develop fully the proposed approach and to
build a tool prototype.

References

1. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M., "Model-based performance predic-
tion in software development: a survey" IEEE Transactions on Software Engineering, Vol
30, No.5, pp.295-310, May 2004.

2. Clarke, S. and Walker, R. J., “Composition patterns: An approach to designing reusable as-
pects”, In Proc. of 23rd Int. Conf. on Software Engineering (ICSE), Toronto, Ca nada, 2001.

3. R. B. France, R.B., Ray, I. ,.Georg, G. and Ghosh, S., "Aspect-Oriented Approach to D esign
Modeling," IEE Proceedings - Software, Special Issue on Early Aspects: Aspect -Oriented
Requirements Engineering and Architecture Design, 151(4):173--185, August 2004.

4. Franks, G., Hubbard, A., Majumdar, S., Petriu, D.C., Rolia, J., Woodside, C.M., A toolset
for Performance Engineering and Software Design of Client-Server Sy stems, Performance
Evaluation, Vol. 24, Nb. 1-2 (1995) 117-135.

5. Georg, G., France, R. and Ray, I. “An Aspect -Based Approach to Modeling Security Co n-
cerns”.In Proceedings of the Workshop on Critical Systems Development with UML, Dres-
den, Germany, 2002.

6. Gu, G., and Petriu, D.C. "XSLT Transformation from UML Models to LQN Performance
Models", Proc. of 3rd Int. Workshop on Software and Performance WOSP'2002, pp.227-
234, Rome, Italy, 2002.

7. Kande, M., “A Concern-Oriented Approach to Software Architecture”, PhD thesis, EPFL,
Lausanne, Switzerland, 2003.

8. Mekerke, F., Georg, G., France, R., and Alexander, R. “Tool Support for Aspect -Oriented
Design”, In Advances in Object-Oriented Information Systems: OOIS2002 Workshops.
Springer-Verlag, 2002.

9. Petriu, D.B. and Woodside, C.M., "A Metamodel for Generating Performance Models from
UML Designs," in In Proc. «UML» 2004 - Modelling Languages and Applications, 7th Int.
Conference, Lisbon, Portugal, vol. LNCS 3273, Springer 2004, pp. 41-53.

10.Petriu, D.C. and Shen, H. “Applying the UML Performance Profile: Graph Grammar based
derivation of LQN models from UML specifications”, in Computer Performance Evalua-
tion: Modelling Techniques and Tools, (T. Fields, P. Harrison, J. Bradley, U. Harder, Eds.)
LNCS 2324, pp.159-177, Springer, 2002.

11.Petriu,D.C. and Woodside, C.M., "Performance Analysis with UML," in UML for Real, B.
Selic, L. Lavagno, and G. Martin, pp. 221-240 Kluwer, 2003.

12.Petriu,D.C., Zhang, J., Gu, G and Shen, H., “Performance Analysis Based on the UML SPT
Profile”, to appear in MDD for Distributed Real-time Embedded Systems (Eds. J.-P. Babau,
J. Champeau and S. Gérard), Hermes, Paris, 2005.

13.Ray, I., France, R., Li, N., Georg, G. An aspect-based approach to modeling access control
concerns”, Information and Software Technology, 46 (2004) 575–587.

14.Object Management Group, UML Profile for Schedulability, Performance, and Time Speci-
fication , OMG Adopted Specification ptc/02-03-02, July 1, 2002.

15.Schmidt, D.C., Huston, S. D., C++ Network Programming Vol 2: Systematic Reuse with
ACE and Frameworks, Addison-Wesley, 2002.

16.Smith, C.U., Performance Engineering of Software Systems, Addison Wesley, 1990.
17.Straw, G., Georg, G., Song, E., Ghosh, S., France, R., Bieman, J.M., “Model Composition

Directives”, In Proc. «UML» 2004 - Modelling Languages and Applications, 7th Int. Co n-
ference, Lisbon, Portugal, LNCS 3273, pp 84-97, Springer 2004.

18.Woodside, C.M., Neilson, J.E., Petriu, D.C., Majumdar, S., “The Stochastic Rende zvous
Network Model for Performance of Synchronous Client-Server- like Distributed Software”,
in IEEE Transactions on Computers, Vol.44, Nb.1, pp. 20-34, 1995.

19.Woodside, C.M, Petriu, D.C., Petriu, D.B., Shen, H, Israr, T., and Merseguer, J. " Perform-
ance by Unified Model Analysis (PUMA)", In Proc. 5th Int. Workshop on Software and Per-
formance WOSP'2005, Palma, Spain, July 2005.

