
From UML descriptions of high-level software architecture
to LQN performance models

Dorina C. Petriu and Xin Wang

Carleton University
Ottawa, Canada, K1S 5B6

e-mail: {petriu|xinw}@sce.carleton.ca

Abstract. Performance characteristics, such as response time and throughput, play an important
role in defining the quality of software products, especially in the case of real-time and distributed
systems. The developers of such systems should be able to assess and understand the performance
effects of various architectural decisions, starting at an early stage, when changes are easy and less
expensive, and continuing throughout the software life cycle. This can be achieved by
constructing and analyzing quantitative performance models that capture the interactions between
the main system components and point to the system’s performance trouble spots. The paper
proposes a formal approach to building Layered Queueing Network (LQN) performance models
from UML descriptions of the high-level architecture of a system, and more exactly from the
architectural patterns used in the system. The performance modelling formalism, LQN, is an
extension of the well-known Queueing Network modelling technique. The transformation from
UML architectural description of a given system to its LQN model is based on PROGRES, a well
known visual language and environment for programming with graph rewriting systems.

1. Introduction

Performance characteristics, such as response time and throughput, play an important role
in defining the quality of software products, especially in the case of real-time and distributed
systems. There is a growing body of research that studies the role of software architecture in
determining software quality in general [2], [17], and performance characteristics in special
[21], [22]. Since architectural decisions are made very early in the software development
process, it would be helpful to be able to assess their effect on software performance as soon
as possible.

Software Performance Engineering (SPE) is a technique introduced in [19] that proposes
to use quantitative methods and performance models in order to assess the performance
effects of different design and implementation alternatives during the development of a
system. SPE promotes the idea that the integration of performance analysis into the software
development process, from the earliest stages to the end, can insure that the system will meet
its performance objectives. This would eliminate the need for “late-fixing” of performance
problems, a frequent practical approach that postpones any performance concerns until the
system is completely implemented. Late fixes tend to be very expensive and inefficient, and
the product may never reach its original requirements.

Although the need for SPE is recognized by industry, there are many barriers that prevent
its wide adoption [9]. Some of these barriers are technical, other related to management
issues. One of the technical problems is the existence of a cognitive gap between the software
and the performance domains. Software developers are concerned with designing,
implementing and testing the software, but they are not trained in performance modelling and
analysis techniques. The software development teams depend usually on specialized
performance groups to do the performance evaluation work, which leads to additional
communication delays, inconsistencies between design and model versions and late feedback.

This paper contributes toward bridging the gap between software architecture and
performance analysis. It proposes a systematic approach, based on graph transformations, to

2

build LQN performance models from UML description of high-level software architecture of
a system. The high-level architecture describes the main system components and their
interactions at a level of abstraction that captures certain characteristics relevant to
performance, such as concurrency, parallelism, contention for software resources (as software
servers and critical sections), synchronization, serialization, etc. This paper is a development
of previous work by the same authors [12], where an “ad-hoc” language for architectural
descriptions was used instead of UML [3]. UML is attractive because it is a standard, and is
rapidly gaining acceptance in the software industry. However, UML is a very rich, sometime
informal language, which raises a number of yet unresolved issues. This paper is but a step in
a longer research effort, whose final objective is to implement the proposed model-building
technique in a tool (most probably in connection with a UML-based CASE tool). By
automating the construction of the performance models from software architectures, the time
and effort required for SPE will be considerably reduced, and the consistency between the
model and the system under development more easily maintained. Such a model will be
solved with existing performance analysis tools, producing much faster feedback for the
software development team.

Frequently used architectural solutions are identified in literature as architectural patterns
(such as pipeline and filters, client/server, client/broker/server, layers, master-slave,
blackboard, etc.) [4], [18]. A pattern introduces a higher-level of abstraction design artifact
by describing a specific type of collaboration between a set of prototypical components
playing well defined roles, and helps our understanding of complex systems. The paper
defines graph transformations from a number of frequently used architectural patterns into
LQN sub-models.

The formalism used for building performance models is the Layered Queueing Network
(LQN) model [23, 24, 13], an extension of the well known Queueing Network model. LQN
was developed especially for modelling concurrent and/or distributed software systems.
Some LQN components represent software processes, others hardware devices. LQN
determines the delays due to contention, synchronization and serialization at both software
and hardware levels (see section 3 for a more detailed description). LQN was applied to a
number of concrete industrial systems (such as database applications [6], web server [8],
telecommunication system [20], etc.) and was proven useful for providing insights into
performance limitations at software and hardware levels.

The paper is organized as follows: architectural patterns and their representation as UML
collaborations are discussed in section 2, a short description of the LQN model is given in
section 3, transformation of a few frequently utilized architectural patterns into LQN is
presented in section 4, the PROGRES graph schema and the principles for graph
transformations are given in section 5, a case-study telecommunication system is presented in
section 6 and conclusions in section 7.

2. Architectural Patterns and UML Collaborations

According to [2], a software architecture represents a collection of computational
components that perform certain functions, together with a collection of connectors that
describe the interactions between components. A component type is described by a
specification defining its functions, and a set of ports representing logical points of
interaction between the component and its environment. A connector type is defined by a set
of roles explaining the expected behaviour of the interacting parties, and a glue specification
showing how the interactions are coordinated.

3

A similar, even though less formal, view of a software architecture is described in the form
of architectural patterns [4, 18] which identify frequently used architectural solutions, such
as pipeline and filters, client/server, client/broker/server, master-slave, blackboard, etc. Each
architectural pattern describes two inter-related aspects: its structure (what are the
components) and behaviour (how they interact). In the case of high-level architectural
patterns, the components are usually concurrent entities that execute in different threads of
control, compete for resources, and may require synchronization. Concurrency aspects
contribute to system performance, and therefore must be captured in a performance model.

The paper proposes to use high-level architectural patterns as a basis for translating
software architecture into performance models. A subset of frequently used patterns (some of
which are later used in a case study) are described in this section in the form of UML
collaborations (not to be confused with UML collaboration diagrams, a type of interaction
diagrams) [3]. According to the authors of UML, a collaboration is a notation for describing a
mechanism or pattern, which represents “a society of classes, interface, and other elements
that work together to provide some cooperative behaviour that is bigger than the sum of all of
its parts.” A collaboration has two aspects: structural (usually represented by a class/object
diagram) and behavioural (an interaction diagram). Collaborations can be used to hide details
that are irrelevant at a certain level of abstraction; these details can be observed by
“zooming” into the collaboration. The symbol for collaboration is an ellipse with dashed
lines, and may have an “embedded” square showing template classes. Another special UML
notation employed in this section is that of an active class (object) which has its own thread
of control, represented by a square with thick lines. An active object may be implemented
either as a process (identified by the stereotype <<process>>), or as a thread.

The literature identifies a relatively small number of patterns used for high-level
architecture [4, 18]. The following patterns are discussed in the paper: pipeline and filters,
client/server (with and without CORBA interface), and critical section.

The pipeline and filters pattern divides the overall processing task into a number of
sequential stages, which are implemented as filters connected by unidirectional pipes. We are
interested here in active filters [4] that are running concurrently. Each filter is implemented as
an active object that loops through the following steps: “pulls” the data from the preceding
pipe, processes it, and “pushes” the results down the pipeline. The way in which the pipelines
are implemented may have performance consequences, as discussed in section 4, and shown
in Figures 5 and 6.

client fwd-broker server

req_service_k()

service_k()

reply()

return

serve other
requests

. . .
service_k()
. . .

<<process>>
server

<<process>>

fwd-broker

<<process>>

client

1..n

Client

 Broker

Server

FWD_BROKER

Client
Server
Broker

Figure 1. UML collaboration for the forwarding broker pattern

4

The Client-Server pattern is one of the most frequently used in today’s distributed
systems, especially since the introduction of new midware technology such as CORBA [11],
which facilitates the connection between clients and servers running on heterogeneous
platforms across local or wide-area networks. The communication between client and servers
may have an important effect on performance, for which reason different alternatives are
considered in the paper: direct client/server communication through a synchronous message
and three types of connections mediated by brokers.

 Fig. 1 shows the UML collaboration for the forwarding broker pattern [1], where the
broker relays a client’s request to the relevant server, retrieves the response from the server
and relays it back to the client. (When relevant, the “object flow” carried by a message is
represented by a little arrow with a circle, while the message itself is an arrow without circle.
A synchronous message implies a reply, therefore can carry objects in both directions). The
forwarding broker is at the center of all communication paths between clients and servers,
and can provide load balancing or restart centrally any failed transactions. However, there is a
price to pay in terms of performance: a client-server interaction requires four messages,
which leads to excessive network traffic when the client, broker and server reside on different
nodes. An alternative that reduces the network traffic is the half-forwarding broker [1] from

client hfw-broker server

req_service_k()

service_k()

reply()

serve other
requests

. . .
service_k()
. . .

<<process>>
server

<<process>>

hfw -broker

<<process>>

client

1..n

Client

 Broker

Server

HFW_BROKER

Client
Server
Broker

Figure 2. UML collaboration for the half-forwarding broker pattern

client hd-broker server

get_handle()

. . .
service_k()
. . .

<<process>>
server

<<process>>

hd-broker

<<process>>

client

1 ..n

Client

 Broker

Server

HD_BROKER

Client
Server
Broker

service_k()

return

Figure 3. UML collaboration for the handle-driven broker pattern

5

Fig.2, where the server returns the reply directly to the client. This reduces the number of
messages for a client/server interaction to three, while it retains the main advantages of the
forwarding broker (load balancing and centralized recovery from failure). A handle-driven
[1] broker (as in Fig.3) returns to the client a handle containing all the information required to
communicate directly with the server. The client may use this handle to talk directly to the
server many times, thus reducing the potential for performance degradation. However, the
client takes on additional responsibilities, such as checking if the handle is still valid after a
while, and recovering from failures. Load balancing is also more difficult in this case.

The critical section pattern applies to cases where two or more active objects share the
same passive object. The constraint {sequential} attached to the methods of the shared object
indicates that the callers must coordinate outside the shared object (for example, by the
means of a semaphore) to insure correct behaviour. Such a synchronization introduces
performance delays, and it is represented in the performance model as shown in section 4,
Figure 12.

3. LQN Model

In order for the paper to be self-contained, a brief description of the LQN modelling
technique is given in this section. LQN was developed as an extension of the well-known
Queueing Network (QN) model, at first independently in [23, 24] and [13], then as a joint
effort [5, 6]. The LQN toolset presented in [5] includes both simulation as well as analytical
solvers that merge the best previous approaches. The main difference with respect to QN is
that in LQN a server may become a client to other servers while serving its own clients. An
LQN model is represented as an acyclic graph whose nodes are software entities and
hardware devices, and whose arcs denote service requests. The software entities (named also
tasks) are drawn as parallelograms, and the hardware devices as circles. Different nodes play
the roles of clients (only outgoing arcs), intermediate servers (both incoming and outgoing
arcs) and pure servers (only incoming arcs). The last usually represent hardware resources
(such as processors, I/O devices, communication network, etc.) Figure 4 shows a simple
example of an LQN model for a three-tiered client/server system: at the top there are two
groups of stochastic identical clients. Each client sends requests for a certain service offered
by Application task, which represents the business layer of the system. Every kind of service
offered by an LQN task is modelled by a task
entry, drawn as a parallelogram “slice”. An
entry has its own execution times and demands
for other services (given as model parameters).
In this case, each Application entry requires
services from two different Database entries.
The Database can process several requests
concurrently, reason for which is modelled as a
multi-server (i.e., a set of identical servers
sharing a common queue). Each multi-server
replication models a “virtual” thread that serves
a request at a time. (Virtual threads may be
implemented either as software threads of the
same process, or as a set of identical processes
that are serving requests from a common queue).
Every software task is running on a given
processor shown as a circle; more than one task
can share the same processor. The word layered

Application

Database

Proc2Proc1

Proc3

Disk1

Client_1 Client_2

Disk2

Figure 4. Simple LQN model

6

in the name LQN does not imply a strict layering: a task may call other tasks in the same
layer, or skip over layers. All the arcs used in this example represent synchronous requests,
where the sender of a request message is blocked until it receives a reply from the provider of
service. It is possible to have also asynchronous request messages, where the sender doesn’t
block after sending a request, and the server doesn’t reply. Although not explicitly illustrated
in the LQN notation, each server has an implicit message queue where the incoming requests
are waiting their turn to be served. Servers with more than one entry still have a single input
queue, where requests for different entries wait together. The default scheduling policy of the
queue is FIFO, but other policies are also supported. Typical results of an LQN model are
response times, throughput, utilization of servers on behalf of different types of requests, and
queueing delays. LQN was applied to different applications (such as databases [6],
telecommunication systems [8, 20]). The model results help to identify software and/or
hardware bottlenecks [10] that limit the system performance under different workloads and
resource allocations.

filter1 filter2

PIPELINE

WITH MESSAGE

<<process>>

filter1

UpStreamFilter

<<process>>

filter2

DownStreamFilter

UpStreamFilter
DownStreamFilter

Figure 5. Transformation of the Pipeline with Message

push() {sequential}
pull() {sequential}

buffer<< process>>

filter1

1..n << process>>

filter2

1..n

push() pull()

PIPELINE

WITH BUFFER

UpStreamFilter DownStreamFilterBuffer

UpStreamFilter
DownStreamFilter
Buffer

filter1 filter2

semaphore
and buffer

push pull

proc

filter1 filter2

semaphore

proc1 proc2push pull

a) All the filters are running on the
same processor node

b) The filters are running on different
processor nodes

Figure 6. Transformation of the Pipeline with buffer

7

4. Transformations of architectural patterns into LQN

A software system contains many components involved in various architectural
connection instances (each described by a pattern/collaboration), and a component may play
different roles in different patterns. The transformation of the architecture into a performance
model is done in a systematic way, pattern by pattern. As expected, the performance of the
system depends on the performance attributes of its components and on their interaction.
Performance attributes are not central to the software architecture itself, but must be specified
by the user in order to transform the architecture into a performance model. Such attributes
describe the demands for hardware resources by the software components: allocation of
processes to processors, average execution time for each software component, average
demands for other resources such as I/O devices, communication networks, etc.

Pipeline and Filters. Figures 5 and 6 shows the translation of different versions of this
pattern, the first using asynchronous messages for the pipeline, and the other a shared buffer.
Each active filter becomes an LQN software server whose service time includes the
processing time of the filter. The pipeline connector is modelled as an asynchronous LQN
message in Fig. 5. The CPU times for send/receive system calls are added to the service times
of the two LQN tasks, respectively. A network delay for the message can be represented in
LQN as a delay attached to the arc.

In the case of a pipeline with buffer, an asynchronous LQN arc is still required , but this
does not take into account the serialization delay due to the constraint that buffer operations
must be mutually exclusive. A third task will enforce this constraint. It has as many entries as
the number of operations executed by the tasks accessing the buffer (two in this case, “push”
and “pull”). In Fig. 6, exactly the same architectural pattern has two LQN counterparts, due
to a difference in processor allocation. The execution of all buffer operations is charged to the
same processor node in Fig. 6a, and to different processor nodes in Fig.6b.

Fig. 7 represents the transformation for the so-called “double filter” collaboration, that can
be used either in conjunction with a “pipeline with message”, or a “pipeline with buffer”, as
seen in the case-study from section 6. (This collaboration can be generalized for any type of
active objects that are sharing the same execution thread.) It describes the case of two non-
consecutive filters that are running in the same process (i.e., share the same execution thread).
The LQN model captures the contention of the two buffer objects for the same execution
thread. Since the LQN version used for this paper didn’t accept cyclic graphs for reasons
related to deadlock prevention, we represented each passive object filter as a LQN “dummy”
task, therefore treating it as an active object. In order to prevent the dummy tasks from
executing simultaneously, a third "executive" task serializes the first two. All filter’s
processing is charged to the “executive” task entries. The dummy tasks don’t do any real

dummyUpStrm dummyDnStrm

container

upStrm dnStrm

dummy
proc

. . .

proc

<<process>>

doubleFilter

upStrm

downStrm

Filter

DOUBLE FILTER

Filter
Filter
Container

...

...

...

...

Filter

Container

Figure 7. Transformation of the Double Filter Collaboration

8

work, and are waiting instead for the executive task to do the work on their behalf. They are
allocated on a dummy processor (not to interfere with the scheduling of the “real” processor
node).

Client-Server patterns. Fig. 8 shows the transformation to LQN of a direct client/server
connection through a synchronous communication (rendezvous), where the client sends a
request to the server and blocks until the reply from the server comes back. A server may
offer a wide range of services (represented here as the server’s object methods) each one with
its own performance attributes (execution time and number of visits to other servers). A client
may invoke more than one of these services at different times. As in the pipeline connection
case, the CPU time required to execute the system call for send/receive/reply are added to the
service times of the corresponding tasks. The allocation of tasks to processors is not shown in
Fig. 8, because the transformation does not depend on it (each LQN task is allocated exactly
as its architectural component counterpart).

Software developers of client-server systems are mostly interested in the components that
are part of their application, and less in the details of the underlying midware, operating
system or networking software. The use of UML collaborations comes in handy, because it
allows us to hide unnecessary details. For example, client/server applications using a CORBA
interface do not have to show explicitly the “broker” component in their architecture (as it is
not part of the software application). Instead, a collaboration (such as those defined in Fig. 1,
2, and 3) can be used to indicate the type of desired client/server connection. However, the
performance model will represent explicitly the broker and it’s interaction with the client and
server counterparts.

Figures 9, 10 and 11 illustrate the transformation of three client-server connections
through different kinds of CORBA interfaces. The connections have similar architectural
descriptions, differentiated only by the kind of UML collaboration used. However, their LQN
models are quite different, as the connections have very different operating modes and
performance characteristics. The forwarding broker (Fig.9) is modelled as an LQN multi-
server with as many entries as server entries. Each task replication models a “virtual” thread
of the broker. A thread accepts a client’s request, passes it on to the server, then remains
blocked waiting for the server’s reply to come back and to relay it to the client. During the
time a thread is blocked, other threads get to run on the CPU on behalf of other requests.
Therefore, the multi-server models in this case a singer broker that can serve concurrently
more than one request.

client1 client2

server

service1 service2

service1()
service2()

server

<<process>>

client2

1..n
<<process>>

client1

1..n

Client Client

Server

CLIENT SERVER

Client
Server

service1() service2 ()
service2 ()

Figure 8. Transformation of the Client-Server pattern with a direct connection

9

The half-forwarding broker model (Fig.10) uses LQN forwarding arcs (drawn with dotted
lines) which have a special semantic. After accepting a request from a client, the acceptor
task will do some processing, then will forward the request to another task. The forwarder is
free to continue its activity, while the client remains blocked, waiting for the reply. The
second task that continues to serve the request may eventually complete it and send the reply
directly back to the client, or may decide to forward the request to another task. The LQN

service1()

service2()

server

<<process>>

client2

1..n<<process>>

client1

1..n

Client Client

Server

FWD_BROKER

Client
Server

service1() service2 ()

service2 ()

Broker

client1 client2

forwarding
broker

serverservice1 service2

Figure 9. Transformation of the Client-Server pattern with Forwardin g Broker

service1()
service2()

server

<<process>>

client2

1..n
<<process>>

client1

1 ..n

Client Client

Server

HFW_BROKER

Client
Server

service1()
service2 ()

service2 ()

Broker

client1 client2

half-
forwarding

broker

serverservice1 service2

Figure 10. Transformation of the Client-Server pattern with Half-Forwardin g Broker

service1()
service2()

server

<<process>>

client2

1..n<<process>>

client1

1..n

Client Client

Server

HD_BROKER

Client
Server

service1() service2 ()

service2 ()

Broker

client1 client2

server

service1 service2
handle-driven

broker

Figure 11. Transformation of the Client-Server pattern with Handle-Driven Broker

10

semantic implies that a reply will be sent to the client by the last task in the forwarding chain
(but the reply is not represented as an arc in the model). In Figure 10, the broker is the task
that receives the requests from the clients and forwards them to the appropriate entry of the
server. The broker must have a separate entry for each entry it forwards to, otherwise the
clients would be unable to choose the server entry they need. Figure 11 represents the LQN
model for the handle-driven broker that sends two separate messages for each client request:
one to the broker for getting the handle, the other directly to the desired server entry. Since
the broker does the same kind of work for all the requests no matter what server entry they
need, the broker may be have a single entry in this case.

Critical Section. The transformation of the critical section collaboration produces either
the model given in Fig. 12a or 12b, depending on the allocation of user processes to processor
nodes (similar to the pipeline case). The premise is that an LQN task cannot change its
processor node. Since the operations on the shared object (i.e., critical sections) may be
executed by different threads of controls of different users running on different processors,
each operation is modelled as an entry that belongs to a different task f1 to fN running on its
user’s node. However, these tasks must be prevented from running simultaneously, reason for

shared

<<process>>

userN
<<process>>

user1

Accessor Accessor

Shared

CRITICAL SECTION

Accessor
Shared

f1 () fN ()

. . .

user1 userN

semaphore

proc1 procN

f1 fN

. . .

1 2 . . . N

. . .

user1 userN

proc

. . .

semaphore and
critical sectionsf1 f2 . . . fN

a) All the users are running on the same
processor node

b) The users are running on different processor
nodes

f1() {sequential}
f2() {sequential}
 . . .
fN() {sequential}

Figure 12. Transformation of the Critical section collaboration

11

which the semaphore task was introduced. The performance attributes to be provided for each
user must specify critical and non-critical execution times separately.

5. Graph schema and transformation approach

The graph schema defined according to the PROGRES language [14 to 16] is presented in
Figure 13. The upper part of the figure contains the input schema for architectural
descriptions and the lower part the output schema for LQN models (light-gray nodes). The
input schema does not capture all the richness of UML, but only those elements that are
necessary for converting a high-level architecture into an LQN model. The advantage of
basing the transformation on architectural patterns expressed by UML collaborations is that

real

integer Forward

OBJ_TASK OP_ENTRY

OBJECT

PASSIVE

OPERATION

NonShared

Device

Multiplicity

Processor

integer

stringstring[0::n]

NODE

Name

string

Entr y

Device Sync Async

ARC_PARAM real
NbVisits

owns

uses

real

ServiceTimes
Multiplicity

integer

SeviceTime

Multiplicity

inout
out

in
out

in

Task

link

has

invokes

Shared Active

COLLABORATION

PIPELINE &
FILTERS

contains

CLIENT_SERVERclient

server

upStrmFilter
downStrmFilter

DoubleFilterCriticalSection

broker

container

filter
shared

accessor

Pipeline
with Message

Pipeline
with Buffer

Direct
Client-Server

Handle-driven
Broker

Half-forwardin g
Broker

Forwarding
Broker

Constraint
string

ExecTime real

Figure 13. Joint graph schema for architectural patterns and LQN models

12

such higher-level of abstraction artifacts greatly simplify the graph schema and the
transformation process. The disadvantage is that these artifacts have to be pre-identified and
represented in the schema and by the transformation rules, which limits the extendibility of
the transformation process. This disadvantage is somehow mitigated by the fact that the
number of high-level architectural patterns is relatively small.

In order to accommodate graphs in intermediary translation stages, the two schemas are
joined together by three nodes shown in dark-gray at the base of the node class hierarchy
(NODE, OBJ_TASK, and OP_ENTRY). The collaborations nodes representing architectural
patterns make up a big part of the input schema. Inheritance is useful for classifying the
different patterns and their variants. “Role” edges connect the collaboration nodes to the
architectural component nodes, which are active and passive objects, their operations and
links. The output schema reflects closely the LQN graph notation presented in section 3. The
node types are “task”, “device” and “entry”. The LQN arcs may represent three types of
requests (synchronous, asynchronous and forwarding); a parameter indicates the average
number of visits associated with each request. Since PROGRES edges cannot have attributes,
we represent an LQN arc by three elements: an incoming edge, a node carrying the parameter
and an outgoing edge.

Graph transformation rules have been defined for each architectural pattern, following
closely the transformations shown in Fig 5 through 12. A PROGRES transaction is executed
for every architectural pattern found in the input architectural description graph. The
translation process ends when all the patterns have been processed. The final result is an LQN
model that can be written to a file according to a predefined LQN model format [5]. The
following translation approach was followed:

· The collaboration nodes do not have an LQN equivalent.

· Each architectural component (i.e., object) is converted to an LQN task, for which reason
a common base class OBJ_TASK was defined in the graph schema. However, the
correspondence between components and tasks is not bijective, as in some cases a single
object may generate more than one task for the following reasons: to charge correctly the
execution times to various processors (Fig. 6.b and 12.b), or to model processes that are
not part of the application, but of the underlying midware (such as brokers in Fig. 9 -11).

· Object operations are usually converted into an LQN entry, with some exceptions as in
Fig. 6.b and 12.b, when an operation is converted into an entry and a task.

· Processes and devices, which are attributes in the architectural view, become full-fledged
nodes in LQN. This happens because the issue of resource allocation is secondary to the
software development process, but is central to performance analysis.

6. Case-study: a Telecommunication System

This section presents the architecture of an existing telecommunication system which is
responsible for developing, provisioning and maintaining various intelligent network
services, as well as for accepting and processing real-time requests for these services (see Fig.
14). The system was modelled in LQN, and its performance analysed in [20]. Here we
consider only the transformation from the system’s UML architecture to its LQN model. The
real time scenario modelled in [20] starts from the moment a request arrives to the system and
ends after the service was completely processed and a reply was sent back. As shown in
Figure 14, a request is passed through several filters of a pipeline: from Stack process to IO
process to RequestHandler and all the way back. The main processing is done by the
RequestHandler, which accesses a real-time database to fetch an execution "script" for the

13

desired service, then executes the steps of the script accordingly. The script may vary in size
and types of operations involved, and hence the workload varies largely from one type of
service to another (by one or two orders of magnitude). Due to experience and intuition, the
designers decided from the beginning to allow for multiple replications of the
RequestHandler process in order to speed up the system. Two shared objects, ShMem1 and
ShMem2, are used by the multiple RequestHandler replications.

The system was meant to run either on a single-processor or on a multi-processor with
shared memory. Processor scheduling is such that any process can run on any free processor
(i.e., the processors were not dedicated to specific tasks). Figure 15 shows the LQN model of
the system obtained by applying the graph transformations proposed in the paper. The
performance analysis of the model is presented in [20] and is, unfortunately, beyond the
scope of this paper. The model was solved with existing LQN solvers [5], and the highest
achievable throughput was found for different loads and configurations. The analysis has also
exposed some weaknesses in the original software architecture due to excessive serialization
at the IO process and the double buffer, which starts showing up when more processing
capacity is added to the system. After removing the serialization constraints, a new software
bottleneck emerges at the database, which leads to the conclusion that the software
architecture does not scale up well [20]. The study illustrates the usefulness of applying
performance modelling and analysis to software architectures.

PIPELINE
WITH BUFFER

UpStrmFilter
DownStrmFilter
BufferPIPELINE

WITH MESSAGE

UpStrmFilter
DownStrmFilter

DOUBLE FILTER

DoubleFilter
FirstFilter
ScndFilter

 <<process>>

RequestHandler

1..n

<<process>>

IO

IOin

IOout

<<process>>

Stack

StackIn

StackOut

doubleBuffer

inBuffer

outBuffer

DOUBLE FILTER

DoubleFilter
FirstFilter
ScndFilter

PIPELINE
WITH BUFFER

UpStrmFilter
DownStrmFilter
BufferPIPELINE

WITH MESSAGE

UpStrmFilter
DownStrmFilter

CRITICAL SECTION

Accessor
Shared

CRITICAL SECTION

Accessor
Shared

CLIENT SERVER

Client
Server

alloc() {sequential}
free() {sequential}

ShMem1

update() {sequential}

ShMem2 <<process>>

DataBase

Figure 14. UML description of the high-level architecture of a telecommunication system

14

7. Conclusion

The main challenge for the automatic generation of LQN performance models from
software architecture descriptions stems from the fact that the two views have different
semantic, purpose and focus, which must be bridged by the translation process. The
architectural view represents only the software components of the application under
development, and may hide operating system and midware services that must be represented
in the performance model. On the other hand, many details of the architecture are irrelevant
to the performance model. The issue of resource allocation and resource demands represents
another important discrepancy between the two views. Another challenge is dealing with the
richness of the UML language. This paper is only a step in a longer research effort which
aims to bridge the gap between software architecture and performance modelling. So far, the
graph rewriting formalisms has proven very useful in dealing with these challenges.

8. References

 [1] O. Adebayo, J. Neilson, D. Petriu, “A Performance Study of Client-Broker-Server Systems”, in
Proceedings of CASCON’97, pp 116-130, Toronto, Canada, November 1997.

 [2] R.Allen, D. Garlan, “A Formal Basis for Architectural Connection”, ACM Transactions on
Software Engineering Methodology, Vol.6, No.3, pp 213-249, July 1997.

 [3] G.Booch, J.Rumbaugh, I.Jacobson, The Unified Modeling Language User Guide, Addison-
Wesley, 1999.

 [4] F. Buchmann, R. Meunier, H. Rohnert, P. Sommerland, M. Stal, Pattern-Oriented Software
Architecture: A System of Patterns, Wiley Computer Publishing, 1996.

 [5] G. Franks, A. Hubbard, S. .Majumdar, D. Petriu, J. Rolia, C.M. Woodside, “A toolset for
Performance Engineering and Software Design of Client-Server Systems”, Performance
Evaluation, Vol. 24, Nb. 1-2, pp 117-135, November 1995.

 [6] G. Franks, S. Majumdar, J. Neilson, D. Petriu, J. Rolia, C.M. Woodside. "Performance
Analysis of Distributed Server Systems". In Proceedings of the 6th International Conference
on Software Quality, pp. 15-26, Ottawa, Canada, October 1996.

Dummy
Proc

pull push alloc free

IOin

Request
Handler

IOout

StackExec

ShMem2

DataBase

Proc

IOexec

StackIn

StackOut

Buffer ShMem1

l

update

Figure 15. LQN model of the telecommunication system

15

 [7] G. Franks, C.M.Woodside, “Performance of Multi-Level Client-Server Systems with Parallel
Service Operations”, Proceedings of the First International Workshop on Software and
Performance, Santa Fe, USA, pp.120-130, Oct. 1998.

 [8] J.Dilley, R.Friedich, T.Jin, J.Rolia, "Measuremnt Tool and Modelling Techniques for
Evaluating Web Server Performance" in Lectures Notes in Computer Science, vol.1245,
Springer, pp.155-168, R.Marie, B.Plateau, M.Calzarosa, G.Rubino (eds), Proc. of 9-th Int.
Conference on Modelling Techniques and Tools for Performance Evaluation, June 1997.

 [9] Mary Hesselgrage, “Avoiding the Software Performance Crisis”, Proc. of the First Inter-
national Workshop on Software and Performance, Santa Fe, USA, pp.78-79, Oct.1998.

 [10] J.E.Neilson, C.M.Woodside, D. Petriu, and S. Majumdar, "Software bottlenecking in client-
server systems and rendezvous networks", IEEE Transactions on Software Engineering, vol.
21(19) pp.776-782, September 1995.

 [11] Object Management Group, The Common Object Request Broker: Architecture and
Specification, Object Management Group and X/Open, Framingham, MA and Reading
Berkshire UK, 1992.

 [12] D. Petriu, X.Wang, “Deriving Software Performance Models from Architectural Patterns by
Graph Transformations”, Proc. of the Sixth International Workshop on Theory and
Applications of Graph Transformations TAGT’98, Paderborn, Germany, Nov. 1998.

 [13] J.A. Rolia, K.C. Sevcik, “The Method of Layers”, IEEE Trans. On Software Engineering,
Vol. 21, Nb. 8, pp 689-700, August 1995.

 [14] A. Schuerr, “PROGRES: A Visual Language and Environment for PROgramming with Graph
Rewrite Systems”, Technical Report AIB 94-11, RWTH Aachen, Germany, 1994.

 [15] A. Schuerr, “Introduction to PROGRES, an attribute graph grammar based specification
language”, in Graph-Theoretic Concepts in Computer Science, M. Nagl (ed), Vol. 411 of
Lecture Notes in Computer Science, pp 151-165, 1990.

 [16] A. Schuerr, “Programmed Graph Replacement Systems”, in Handbook of Graph Grammars and
Computing by Graph Transformation, G. Rozenberg (ed), pp 479-546, 1997.

 [17] M. Shaw, D. Garlan, Software Architectures: Perspectives on an Emerging Discipline, Prentice
Hall, 1996.

 [18] M. Shaw, “Some Patterns for Software Architecture” in Pattern Languages of Program Design
2 (J.Vlissides, J. Coplien, and N. Kerth eds.), pp.255-269, Addison Wesley, 1996.

 [19] C.U. Smith, Performance Engineering of Software Systems, Addison Wesley, 1990.

 [20] C.Shousha, D.C. Petriu, A. Jalnapurkar, K.Ngo, “Applying Performance Modelling to a
Telecommunication System”, Proceedings of the First International Workshop on Software
and Performance, Santa Fe, USA, pp.1-6, Oct.1998.

 [21] B.Spitznagel, D.Garlan, “Architecture-Based Performance Analysis”, Proc. of the Int.
Conference on Software Eng. and Knowledge Eng. SEKE’98, pp. 146-151, 1998.

 [22] L.G Williams, C.U.Smith, “Performance Evaluation of Software Architectures”, Proceedings
of the First International Workshop on Software and Performance, Santa Fe, USA, pp.164-177,
Oct. 1998.

 [23] C.M. Woodside. "Throughput Calculation for Basic Stochastic Rendezvous Networks".
Performance Evaluation, vol.9(2), pp. 143-160, April 1988.

 [24] C.M. Woodside, J.E. Neilson, D.C. Petriu, S. Majumdar, “The Stochastic Rendezvous Network
Model for Performance of Synchronous Client-Server-like Distributed Software”, IEEE
Transactions on Computers, Vol.44, Nb.1, pp 20-34, January 1995.

