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ABSTRACT. The chapter starts with a brief review of performance modelling formalisms and a 
discussion of the performance annotations that need to be added to UML software models in 
order to enable performance analysis. The principles for transforming annotated software 
models into performance models are presented next. Such model transformations must bridge 
a large semantic gap between the source and the target model; hence a pivot model is often 
used. An example of such a transformation is given, from UML extended with the MARTE 
profile to the Layered Queueing Network performance model. The role of an intermediate 
pivot language named Core Scenario Model is also discussed. The chapter ends with a 
discussion of lesson learned and future challenges for integrating the analysis of multiple 
non-functional properties in the context of MDE. 
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1. Introduction 

Model-Driven Development (MDD) is an evolutionary step in the software field 
that changes the focus of software development from code to models. MDD is based 
on abstraction to separate the model of the application under construction from 
underlying platform models, and automation to generate code from models. The 
emphasis on models facilitates the analysis of non-functional properties (NFP), such 
as performance, scalability, reliability, security, safety, etc. of the software under 
development based on its model. This brings more “engineering” into software 
development, leading to the paradigm known as Model-Driven Engineering (MDE).  

Over the years, many formalisms and tools for the analysis of different NFPs 
have been developed, for example queueing networks, stochastic Petri nets, 
stochastic process algebras, fault trees, probabilistic time automata, formal logic, 
etc. The research challenge is to bridge the gap between MDE and existing NFP 
analysis formalisms and tools rather than to “reinvent the wheel”. An approach for 
the analysis of different NFPs composed of the following steps is emerging in the 
literature: a) add annotations describing the respective NFP to the software model, 
b) define a model transformation from the annotated software models to the 
formalism used for NFP analysis, c) analyze the NFP model using existing solvers, 
and d) give feedback to designers. Figure 1 illustrates this process for the case where 
performance is the analyzed NFP; similar “analysis loops” exist for other NFPs. 

In the case of UML-based software development, the extensions required for 
NFP-specific annotations are defined as UML profiles, which provide de additional 
advantage to be processed by standard UML tools without any change in the tool 
support. Two standard UML profiles provide, among other features, the ability to 
define performance annotations: the UML Profile for Schedulability, Performance 
and Time (SPT) defined for UML 1.X versions (OMG, 2005) and the UML Profile 
for Modeling and Analysis of Real-Time and Embedded systems (MARTE) defined 
for UML2.X  versions (OMG, 2009).  
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Software Performance Engineering (SPE) is a methodology introduced by 
(Smith, 1990) with the aim to insure that software products are built to meet their 
performance requirements. SPE uses predictive performance models to evaluate the 
temporal responsiveness of the system (such as response times, delays and 
throughputs) and to compare architectural and design and alternatives for systems 
with timing and capacity requirements. SPE begins early in the software lifecycle, 
before serious barriers to performance are frozen into the design and 
implementation. Since the introduction of SPE, there has been a significant effort to 
integrate performance analysis into the software development process throughout all 
lifecycle phases. A good survey of the techniques for deriving performance models 
from software specifications is given in (Balsamo et al., 2004). 

In the traditional SPE, performance models are built by hand by the analyst. The 
emergence of model-driven engineering has triggered research in the automatic 
transformation of software models into performance models. A high degree of 
automation in building performance models and interpreting their results brings the 
following benefits: 

- higher consistency between the design specification and performance model;  
- traceability of performance effects back to design elements and decisions; 
- fast performance model update and re-evaluation after a design change; 
- stronger analysis for recommending design changes;  
- means to bridge the gap between the designer and the performance engineer. 

2. Performance Models 

There are two kinds of approaches for analyzing the timing properties of real-
time systems: performance and schedulability analysis. Their purpose is different: 
the first is concerned with estimating average resource capacity, queueing delays 
due to contention for resources, throughput and identifying bottlenecks, while the 
second is concerned with finding a feasible schedule that guarantees deadlines 
inherent to hard real-time systems.  

Performance analysis is applied to best-effort and soft real-time systems, such as 
information processing systems, web-based applications and services, multimedia, 
telecommunications, enterprise systems. The input parameters and performance 
results are stochastic variables/processes. On the other hand, schedulability analysis 
is applied to hard real-time systems with strict deadlines, such as embedded systems, 
and the analysis is often based on worst-case execution time and deterministic 
assumptions. This chapter focuses on performance analysis. 

It is worth observing that both performance and schedulability models represents 
the system at runtime, so the models must include not only the performance 
characteristics of the software itself, but also of the underlying platforms (operating 
system, middleware, hardware). 

A performance models is an abstract representation of a real system that captures 
its performance properties – mostly related to the quantitative use of resources 



4     Proceedings of MDD4DRES 2009 

during runtime behaviour – and is capable of reproducing its performance. The 
model can be used to study the performance impact of different design and/or 
configuration alternatives under different workloads, leading to advice for 
improving the system. Performance evaluation of a model may be done either by 
solving a set of equations by some analytical (possibly numerical) methods or by 
simulating the model and collecting statistical results. Analytical performance 
models are usually based on underlying stochastic models, which are often assumed 
to be Markov processes. A Markov process is a stochastic process with discrete state 
space, where all information about the future evolution of the process is contained in 
the present state, and not on the path followed to reach this state. Markov models 
suffer from a problem known as state space explosion, whereby its number of states 
grows combinatorially with the performance model size. This may introduce severe 
limitations in the size of performance models that can be solved. 

Examples of well-known analytical performance models are queueing networks, 
stochastic Petri nets, stochastic automata networks and stochastic process algebra.  

Queueing Network (QN), one of the best known performance models captures 
very well the contention for resources (Lazowska et al., 1984). Efficient analytical 
solutions exist for a class of QN (separable or product-form QN), which make it 
possible to derive steady-state performance measures without resorting to building 
the underlying state space. The advantage is that the solution is faster and larger 
models can be solved. The disadvantage consists in restrictions on model 
assumptions (e.g., service time distributions, arrival process, scheduling policies). 
Similar to the approach for product-form QN, approximate solutions have been 
developed for non-separable QN. There are many extensions to QN in literature. 
One of them, Layered Queueing Networks, will be discussed in section 2.2. 

Stochastic Petri Nets (SPN) (Ajmone Marsan et al., 1995) are very good flow 
models able to represent concurrency, but not as good at representing resource 
contention and especially queueing policies. Efficient solutions exist only for a 
limited class of SPN; most interesting models are solved with Markov chain-based 
solutions.  

Stochastic Automata Networks (Plateau et al., 1991) are composed of modular 
communicating automata synchronized by shared events and executing actions with 
random execution times. The main disadvantage is the state space explosion of its 
Markovian solution. 

Stochastic Process Algebra, introduced in (Hillston, 1994), takes a compo-
sitional approach by decomposing the system into smaller subsystems easier to 
model. This approach is based on an enhanced process algebra, Performance 
Evaluation Process Algebra (PEPA). The compositional nature of the language 
provides benefits for model solution as well as model construction. The solution is 
based on the underlying Markov process. 

The target performance model in this chapter is a QN extension called Layered 
Queueing Network (LQN). The following discussion focuses on QN and LQN. 
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2.1. Queueing Network Models 

A Queueing Network (QN) model is a directed graph, whose nodes are service 
centres, each representing a resource in the system and arcs with associated routing 
probabilities (or visit ratios) determine the paths that customers take through the 
network. Customers representing jobs are flowing through the system, competing for 
resources. QN are used to model systems with stochastic characteristics. A QN may 
have more than one customer class. Each class contains statistical identical 
customers and has its own workload intensity, service demands and visit ratios. The 
workload of a customer class may be open (customers arrive with a certain rate, 
spend time in the system being served, then leave the system) or closed (the number 
of customer is fixed; after completing a cycle, a customer starts again). The 
performance results will be obtained by customer class. 

A single service center containing a server and a queue has the following 
characteristics (represented by Kendall’s notation A/S/c/m/N): 

A = arrival process (e.g., M-Markov, G-general, D-deterministic distribution) 
S = service rate (uses distribution identifiers as above) 
c  = number of servers available serve the customers from the queue 
m = capacity of the queue (infinite by default)  
N = customer population (also infinite by default) 
scheduling policy (FIFO, LIFO, PS, preemptive priority, etc.). 

An important characteristic of QN models is that the functions expressing the 
queue length and waiting time at a server with respect to workload intensity are very 
non-linear. An intuitive explanation is as follows: at low workload intensity, an 
arriving customer meets low competition, so its residence time is roughly equal to its 
service demand; as the workload intensity rises, congestion increases, and the 
residence time along with it; as the service center approaches saturation, small 
increases in arrival rate result in dramatic increases in residence time (Lazowska et 
al., 1984). The non-linearity of performance results makes it difficult to estimate the 
system performance by simple “rules of thumb”, without solving the system of non-
linear equations with QN solvers.   

Another important concept in a QN is the bottleneck service center, the one that 
saturates first and throttles the system. Identifying correctly the bottleneck center is 
important for performance analysis, because the bottleneck must be relieved first in 
order to improve the system performance. In the case of multiple customer classes, 
the bottleneck may be different for each class. 

QN are widely used for modeling a variety of systems. Although they represent a 
system at a rather abstract level, QN are a useful tool for predicting the performance 
of a system. The expected accuracy of QN models according to experience is within 
5% to 10% for utilizations and throughputs and within 10% to 30% for response 
times (Lazowska et al, 1984). 
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2.2. Layered Queueing Network Model 

The LQN model (Woodside et al., 1995) is a QN extension which can represent 
nested services (i.e., a server may also be also a client to other servers). A LQN 
model is a graph whose nodes are either software tasks (thick rectangles) or 
hardware devices (circles) and the arcs denote service requests, as illustrated in 
Figure 2. The nodes with outgoing but no incoming arcs play the role of clients, the 
intermediate nodes with both incoming and outgoing arcs are usually software 
servers and the leaf nodes are hardware servers. A software or hardware server node 
can be either a single-server or a multi-server. Software tasks have entries 
corresponding to different services. Although not explicitly shown in the LQN 
notation, every server (software or hardware) has an implicit message queue where 
incoming requests for any offered service are waiting their turn. There are three 
types of service requests: synchronous (filled arrow), asynchronous (stick arrow) 
and forwarding (dotted arrow). 

Figure 2 shows an example of an LQN model of a web server: at the top there 
are two customer classes with a given number of stochastically identical clients. 
Each client sends demands for two services e3 and e4 of the WebServer (drawn as 
thin rectangles attached to the respective task). Every entry has its own execution 
times and demands for other services (given as model parameters). In this case, the 
WebServer entries require a service from eCommServer, which in turn calls 
different entries of two database tasks – a secure and a regular one. Each software 
task is running on a processor shown as a circle. Also as circles are shown the 
communication network delays and the disks used by the databases.  
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Figure 2.Example of LQN model 
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All arcs used in this example represent synchronous requests, for which the 
sender is blocked until it receives a reply from the provider of service. It is possible 
to have also asynchronous requests, where the request sender does not expect any 
reply from the server. Another communication style in LQN called “forwarding”, 
allows for a client request to be processed by a chain of servers: the first server in 
the chain will forward the request to the second, etc., and the last server in the chain 
will reply to the client.  

A server entry may be decomposed in two or more sequential phases of service. 
Phase 1 is the portion of service when the client is blocked waiting for a reply from 
the server (it is assumed that the client has made a synchronous request). At the end 
of phase 1, the server will reply to the client, which will unblock and continue its 
execution. The remaining phases, if any, will be executed in parallel with the client. 
An extension to LQN (Franks, 2000) allows for an entry to be decomposed into 
activities if more details are required to describe its execution (as for example entry 
e5 of task eCommServer in Figure 2). The activities are connected together to form a 
directed graph, which may branch into parallel threads of control like in Figure 2, or 
may choose randomly between different branches. Just like phases, activities have 
execution time demands, and can make service requests to other entries. 

3. Software Model with Performance Annotations 

3.1. Performance domain model 

In order to understand what kind of performance annotations need to be added to 
UML software models, we need to look at the basic concepts  – or in other words at 
the domain model – for performance analysis. Performance is determined by how 
the system behaviour uses system resources. Scenarios define execution paths with 
externally visible end points. Quality of Service (QoS) requirements (such as 
response time, throughput, probability of meeting deadlines, etc.) can be placed on 
scenarios. In SPT, the performance domain model describes three main types of 
concepts: resources, scenarios, and workloads (OMG, 2005). 

The resources used by the software can be active or passive, logical or physical 
software or hardware. Some of these resources belong to the software itself (e.g., 
critical section, software server, lock, buffer), others to the underlying platforms 
(e.g., process, thread, processor, disk, communication network). 

 Each scenario is composed from scenario steps joined by predecessor-successor 
relationships, which may include fork/join, branch/merge and loops. A step may 
represent an elementary operation or a whole sub-scenario. Quantitative resource 
demands for each step must be given in the performance annotations. Each scenario 
is executed by a workload, which may be open (i.e., requests arriving in some 
predetermined pattern) or closed (a given number of users or jobs).  
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In the SPT profile, the domain models for schedulability and performance and 
their corresponding sub-profiles were defined independently, which made it difficult 
to reuse annotated models for different analyses. In MARTE (OMG, 2009), the 
foundation concepts and non-functional properties (NFPs) shared by different 
quantitative analysis domains are joined in a single package called Generic 
Quantitative Analysis Model (GQAM), which is further specialized by the domain 
models for schedulability (SAM) and performance (PAM). Other domains for 
quantitative analyses, such as reliability, availability, safety, are currently being 
defined by specializing GQAM.  

Core GQAM concepts describe how the system behavior uses resources over 
time, and contains the same three main categories of concepts presented at the 
beginning of the section: resources, behaviour and workloads. 

GQAM Resource Concepts. A resource is based on the abstract Resource class 
defined in the General Resource Model and contains common features such as 
scheduling discipline, multiplicity, services. The following types of resources are 
important in GQAM: a) ExecutionHost: a processor or other computing device on 
which are running processes; b) CommunicationsHost: hardware link between 
devices; c) SchedulableResource: a software resource managed by the operating 
system, like a process or thread pool; and d) CommunicationChannel: a middleware 
or protocol layer that conveys messages.  

Services are provided by resources and by subsystems. A subsystem service 
associated with an interface operation provided by a component may be identified as 
a RequestedService, which is in turn a subtype of Step, and may be refined by a 
BehaviorScenario. 

GQAM Behaviour/Scenario Concepts. The class BehaviorScenario describes a 
behavior triggered by an event, composed of Steps related by predecessor-successor 
relationships. A specialized step, CommunicationStep, defines the conveyance of a 
message. Resource usage is attached to behaviour in different ways: a) a Step 
implicitly uses a SchedulableResource (process, thread or task); b) each primitive 
Step executes on a host processor; c) specialized steps, AcquireStep or ReleaseStep, 
explicitly acquire or release a Resource; and d) BehaviorScenarios and Steps may 
use other kind of resources, so BehaviorScenario inherits from ResourceUsage 
which links resources with concrete usage demands. 

GQAM Workload Concepts. Different workloads correspond to different operating 
modes, such as takeoff, in-flight and landing of an aircraft or peak-load and average-
load of an enterprise application. A workload is represented by a stream of 
triggering events, WorkloadEvent, generated in one of the following ways: a) by a 
timed event (e.g. a periodic stream with jitter); b) by a given arrival pattern 
(periodic, aperiodic, sporadic, burst, irregular, open, closed); c) by a generating 
mechanism named WorkloadGenerator; d) from a trace of events stored in a file.  

As mentioned above, the Performance Analysis Model (PAM) specializes the 
GQAM domain model. It is important to mention that only a few new concepts were 
defined in PAM, while most of the concepts are reused from GQAM. 
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PAM specializes a Step to include more kinds of operation demands during a 
step. For instance, it allows for a non-synchronizing parallel operation, which is 
forked but never joins (noSync property). A new step subtype, PassResource, 
indicates the passing of a shared resource from one process to another. 

In term of Resources, PAM reuses ExecutionHost for processor, Schedulable 
Resources for processes (or threads) and adds a LogicalResource defined by the 
software (such as semaphore, lock, buffer pool, critical section). A runtime object 
instance (PaRunTInstance) is an alias for a process or thread pool identified in 
behavior specifications by other entities (such as lifelines and swimlanes). 

A UML model intended for performance analysis should contain a structural 
view representing the software architecture at the granularity level of concurrent 
runtime components and their allocation to hardware resources, as well as a 
behavioural view showing representative scenarios with their respective resource 
usage and workloads. 

3.2. Source model example 

This section presents an example of UML+MARTE source model based on 
TPC-W, a benchmark of the Transaction Processing Performance Council which 
models the workload of an on-line bookstore (TPC, 2002). 

The components of TPC-W are logically divided into three tiers: a) a set of 
emulated web browsers (EB), b) a web tier including web servers and image servers 
and c) a persistent storage tier. TPC-W emulates customers browsing and buying 
products from a website, with 14 different web pages that correspond to typical 
customer operations. The user starts at the “Home” page that includes the company 
logo, promotional items and navigation options to best selling books, new books, 
search pages, the shopping cart, and order status pages. At every page, the user is 
offered a selection of pages that can be visited next. The user may browse pages 
containing product information, perform searches with different keys and put items 
in the cart. 

A new customer has to fill out a customer registration page; for returning 
customers, the personal information is retrieved from the database. Before ordering, 
the user may update the shopping cart content. When deciding to buy, the user enters 
the credit card information and submits the order. The system obtains credit card 
authorization from a Payment Gateway Emulator (PGE) and presents the user with 
an order confirmation page. At a later date the user can view the status of the last 
order.  

The UML+MARTE source model to be transformed in a performance model is 
shown in Figure 3. It is composed of a structural view showing the concurrent 
runtime component instances and their deployment to processors in Figure 3.a, and a 
behavioral view showing the scenario  for one of  the  pages needed  for buying  pro- 
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ducts in Figure 3.b. Usually the source model contains several performance-critical 
scenarios that are used to generate the system performance model, but only one is 
given here due to space limitations.  

The deployment diagram from Figure 3.a shows the runtime components at the 
bottom, their corresponding artifacts and the deployment on processing nodes. The 
processing nodes are stereotyped as «GaExecHost» and the communication network 
nodes as «GaCommHost». The stereotype attributes commRcvOvh and commTxOvh 
are host-specific costs of receiving and sending messages, resMult=5 describes a 
symmetric multiprocessor with 5 processors, while blockT and capacity describe a 
pure latency and bandwidth for the link. 

The scenario GetBuyConfirmPage is represented in Figure 3.b. The scenario 
transfers the shopping cart content into a newly created order for the registered 
customer, executes a payment authorization, and returns a page with the details of 
the order to the EB. The following operations are performed: 

- EB issues a request to WebServer for “buy confirm page”; 
- WebServer gets the corresponding shopping cart object; 
- With 5% probability (modeled as an opt fragment), a shipping address is 

obtained and WebServer tries to match it with information from the database; 
- If no address record is found, insert a new address record (modeled as a nested 

opt fragment) 
- Invoking the Checkout sub-scenario (modeled as a ref fragment, not shown); 
- WebServer gets necessary images from ImageServer; 
- WebServer constructs the html code for “buy confirm page” and returns it to 

EB. 
Some example of MARTE performance annotations used in the scenario model 

are used to indicate the scenario steps, the workload and the concurrent runtime 
instances corresponding to the lifeline roles. Two kinds of step stereotypes are 
applied to messages: «PaStep» representing the execution of the operations invoked 
by the message and «PaCommStep» for the communication costs involved with 
passing the message. Examples of execution step attributes are hostDemand giving 
the value and unit for the required execution time and prob giving the probability for 
the optional steps. The communication steps have an attribute msgSize giving the 
value and unit of the message size.  The first step of the scenario has the scenario 
workload «GaWorloadEvent» attached to it, which defines a closed workload with a 
population given by the variable $Nusers and a think time for each user given by the 
variable $ThinkTime. Each lifeline role is related to a runtime concurrent component 
instance, as indicated by «PaRunTInstance».  

4. Mapping from Software to Performance Model 

The definition of UML performance annotations has enabled research to 
transform UML design specifications into many kinds of performance models, based 



12     Proceedings of MDD4DRES 2009 

for example on Queueing Networks (Cortellessa et al., 2000), Layered Queueing 
Networks (Petriu et al., 2002), (Petriu, 2005), (Woodside et al., 2005), Stochastic 
Petri nets (Bernardi et al., 2002), PEPA (Cavenet et al., 2004), and simulation 
(Balsamo et al., 2003). 

In this section, the mapping concepts from software to performance models are 
explained by using a direct transformation from annotated UML to LQN; another 
possible transformation approach using a pivot language is discussed in section 5. In 
the direct approach, the structure of the LQN model is generated from the high-level 
software architecture and deployment. In principle, active software component 
instances and hardware devices (which are all resources) are mapped to LQN tasks. 
In some cases, LQN tasks are also generated from passive instances, which are 
logical resources shared by active instances. In fact, the mapping to tasks is guided 
by the architectural patterns used in the system, such as pipeline and filters, 
client/server, client/broker/server, layers, master-slave, blackboard, etc. Each pattern 
describes two inter-related aspects: its structure (what are the interacting 
components) and behaviour (how they interact). The architectural patterns 
components are usually concurrent entities that execute in different threads of 
control, compete for resources, and may require some synchronization in their 
interaction. For more details on the transformation rules from UML to LQN based 
on different architectural patterns see (Petriu et al, 2000).  

Figure 4 gives the direct transformation algorithm from annotated UML to LQN, 
assuming that the scenario models are represented by sequence diagrams. A similar 
pattern-based approach is presented in (Petriu et al., 2002), where the scenarios are 
modeled as activity diagrams. A graph-grammar based algorithm was proposed to 
divide the activity diagram into activity subgraphs, which are further mapped to 
LQN phases or activities. Such a transformation from software to performance 
model is an abstraction-raising transformation, as shown in (Petriu et al., 2005). 

 
1. Generate LQN model structure  
      1.1 map high-level component instances to LQN tasks according to patterns; 
      1.2 map deployment diagram nodes to LQN hardware devices; 
2. Generate LQN entries, phases, activities from scenarios 
      2.1 for each scenario { 
            2.1.1 generate a LQN reference task and its dummy processor corresponding 
                     to the scenario workload; 
            2.1.1 match messages with inter-component communication style from patterns; 
            2.1.2 map external message calls to entries; 
            2.1.3 for each entry { 
                     2.1.3.1 group corresponding execution occurrences according to patterns; 
                     2.1.3.2 map groups to phases or activities; 
                     2.1.3.3 for each phase and activity  
                                 2.1.3.3.1 compute service time and number of calls; 
                     } 
      }       

Figure 4. Algorithm for direct transformation from annotated UML to LQN 
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Figure 5 illustrates the application of the algorithm from Figure 4 (more 
specifically, the loop body 2.1.1 to 2.1.3) to the scenario GetBuyConfirmPage from 
Figure 3. It so happens that a single architectural pattern -  client/server -  is used 
repeatedly in this scenario, as the four lifeline roles interact through synchronous 
messages. The corresponding LQN model fragment shown in Figure 5.b contains 
five LQN tasks: four correspond to the active runtime component instances eb, 
webserver, imageserver and database (according to the «PaRunTInstance» 
stereotypes from Figure 3.b) and the fifth, refTask, is a reference task controlling the 
scenario workload. Each task has an entry for every external message it receives. 
For example, the database task has two entries because two different calls, 
matchAddrRecord and insertAddrRecord are made to this task. The shaded areas in 
Figure 5.a are grouping behaviour occurrences (stereotyped as scenario steps) which 
are further mapped to phases belonging to entries. (This example has no LQN 
activities). For each entry, the group of steps executed between the acceptance of the 
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corresponding synchronous request and the sending of the reply is mapped to phase 
1. For instance, the steps corresponding to the behaviour executions triggered by the 
messages getBuyConfirmPage, getShoppingCart and setShippingAddr are all 
included in phase 1 of entry getBuyConfirmPage. Also included in this phase are the 
steps executed by this lifeline inside the fragment Checkout (which is not detailed 
here). In fact, the fragment Checkout may also add entries to the tasks imageserver 
and database corresponding to all the messages sent to these lifelines by other 
lifelines. The service time parameter of each phase is obtain by summing up the host 
demand of the included steps. Similarly is obtained the number of calls made by 
every phase to other entries. 

5. Using a pivot language: Core Scenario Model (CSM) 

A pivot language, also known as intermediate or bridge language, can be used as 
an intermediary for translation in cases where many source languages are translated 
to many target languages. A pivot language avoids the combinatorial explosion of 
translators across every combination of languages and allows for a smaller semantic 
gap during each transformation. Such an approach is taken, for example, in the 
model-driven performance evaluation project called Performance by Unified Model 
Analysis PUMA (Woodside et al., 2005) which enables the integration of 
performance analysis in a UML-based software development process. PUMA uses a 
pivot language Core Scenario Model (CSM) to extract and audit performance 
information from different kinds of design models (e.g., different UML versions of 
activity and sequence diagrams) and to support generation of different kinds of 
performance models (e.g., QN, LQN, Petri nets, simulation). Figure 6 illustrates the 
PUMA transformation and analysis chain. There are other intermediate languages 
for performance analysis proposed in literature, such as Klaper (Grassi et al., 2005) 
and Palladio Component Model (Becker et al., 2007). 

CSM is focused on modeling scenarios, which are implicit in many software 
specifications; they are useful for communicating partial behaviours among diverse 
stakeholders and provide the basis for defining performance characteristics.  
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The CSM metamodel is similar to the SPT Performance Profile, describing three 
main types of concepts: resources, scenarios, and workloads. A scenario is a graph 
of steps with precedence relationships. A step may represent a basic operation or be 
refined as a sub-scenario. There are the following kinds of resources in CSM: a) 
ProcessingResource - a node in a deployment diagram; b) ComponentResource – a 
process or active instance related to a lifeline role in a sequence diagram or a 
swimlane in an activity diagram; c) LogicalResource; and d) external resource – a 
resource not explicitly represented in the UML model required for executing 
external operations that have a performance impact (for example, a disk operation). 

6. Case study performance model  

The performance experiments conducted with the LQN model of the TPC-W 
scenario from Figure 3 compares two design alternatives: one for the source model 
as presented in section 3.2 and the other after adding SSL secure communication 
between the user browser and the webserver. Both performance models include the 
LQN model elements generated from the Checkout fragment (not given in this 
chapter). Details on how to add security enhancements to a system model in general 
and to the TPC-W in special can be found in (Woodside et al., 2009) and (Houmb et 
al., 2010). Figure 7 shows the simplified LQN models (only the tasks and devices) 
for the two alternatives without and with SSL. The shaded tasks from Figure 7.b 
have been added to perform the SSL functionality (encryption and decryption being 
the most important functions) on the user and webserver side. The dotted arrows 
represent forwarding requests. 
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Figure 7. LQN model for the example system: (a) without SSL; (b) with SSL. 
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The results of the LQN experiments for the GetBuyConfirmPage scenario are 
shown in Figures 8. The three curves represent the response time versus the number 
of users for the following design/configuration alternatives:  

a) The lowest curve corresponds to the initial model of the scenario without SSL. 
The concurrency level of the software tasks has been chosen such that the system 
gives the maximum performance for the given hardware configuration. 

b) The highest curve corresponds to the model with SSL, for the concurrency 
level obtained immediately after adding SSL, without any attempt to optimize for 
performance. The response time has a typical non-linear shape with a “knee” around 
60, after which it grows very fast due to the saturation of the system.  

c) The middle curve corresponds to the SSL enhanced system with an improved 
software configuration. The problem before this improvement was that one of the 
software tasks charged with security functions on the server side becomes saturated, 
even though the hardware resources are not used at maximum capacity. Such a 
situation is known as "software bottleneck”. The solution is to increase the 
concurrency level, in this case to introduce more threads for the bottleneck task, in 
order to use the available capacity of the hardware resources. The response time 
improves and the new bottleneck moves to the processor running the webserver. The 
next performance solution would need to add new processing capacity at the 
hardware resource level. 
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7 Conclusions 

Experience in conducting model-driven NFP analysis in the context of MDE 
shows that the domain is still facing a number of challenges. 

Human qualifications. Software developers are not trained in all the formalisms 
used for the analysis of different non-functional properties (NFPs), which leads to 
the idea that we need to hide the analysis details from developers. However, the 
software models have to be annotated with extra information for each NFP and the 
analysis results have to be interpreted in order to improve the designs. A better 
balance needs to be made between what to be hidden and what to de exposed. 

Abstraction level. The analysis of different NFPs may require source models at 
different levels of abstraction/detail. The challenge is to keep all the models 
consistent.  

Tool interoperability. Experience shows that it is difficult to interface and to 
integrate seamlessly different tools, which were created at different times with 
different purposes and maybe running on different platforms.  

Software process. Integrating the analysis of different NFP raises process issues. 
For each NFP it is necessary to explore the state space for different design 
alternatives, configurations, workload parameters in order to diagnose problems and 
decide on improvement solutions. The challenge is how to compare different 
solution alternatives that may improve some NFPs and deteriorate others, and how 
to decide on trade-offs. 

Change propagation through the model chain. Currently, every time the 
software design changes, a new analysis model is derived in order to redo the 
analysis. The challenge is to develop incremental transformation methods for 
keeping different model consistent instead of starting from scratch after every model 
improvement.  
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