
 Page 1

Variability Analysis for

Communications Software

Chung-Horng Lung
Department of Systems and Computer Engineering

Carleton University
Ottawa, Ontario, Canada
chlung@sce.carelton.ca

Introduction

Most software systems contain areas where
behavior can be configured or tailored based on
user objectives. These areas are referred to as
variation points. Management of variability
becomes mo re and more important, because it is
closely related to software reuse, object-oriented
design frameworks, domain analysis, and software
product lines. Software variability is the ability of
a software system that can be changed, tailored, or
configured for specific use in a particular
environment. Variability management is
recognized as a critical concept in software
engineering. Successful management of variability
can shorten development time and lead to more
flexible and better customizable software products.

Generally, the main reason for software variability
management is to support reuse in a product
families. Variability management could range
from more formal approach based on mathematical
models [Lung94], systematic methods like domain
analysis, to simple programming support, e.g.,
inheritance in object-oriented programming
languages or the #ifdef compiler directive. This
paper, however, studies variation points and
software variability from the performance point of
view. Specifically, this paper deals with analyzing
and building a framework for communications
software for routing applications with an aim to
support detailed software performance evaluations.

There are many possible alternatives for
concurrent and networked software. Schmidt et. al,
[Schmidt00] captured and documented a set of
design patterns for this area. The book discussed
alternatives in details. However, it is often still
difficult to make concrete evaluation or objective
tradeoff analysis based on patterns from the
performance point of view due to the details we
need in performance evaluation.

This paper studies various variation points for
communications area. The study will be used to
build a generative framework. The framework will
be studied together with software performance
engineering techniques , layered queuing networks
(LQNs) [Woodside95], to characterize
performance aspects for various approaches . The
approach will provide useful guidelines for the
users to choose an appropriate model or design to
meet their performance requirements.

Problem Description and Approach

In distributed applications, there exist many
variations. For example , there are client-server
model and peer-to-peer model. For each model,
there are further variations depending on specific
applications and requirements, typically
scalability, performance, and portability. For
instance, for a server design, we may adopt a
straightforward Reactive design pattern. However,
the approach often leads to scalability concern.
This can be improved using either Half-Sync/Half-
Async or Leader/Follwers pattern. For a design
pattern like Half-Sync/Half-Async, there still exist
further variants, as discussed in [Schmidt00].

The design patterns document general guidelines
and principles for building software systems.
However, for some applications, we need deeper
understanding and more detailed analysis. A
simple example is demonstrated here. Figure 1
illustrates the structure of the Half-Sync/Half-
Async pattern. It is easy to identify a simple
variation point, which is number of worker threads
in the thread pool. The number can be easily
configurable. Yet, from the performance
perspective, it is difficult to determine the number
of threads that will provide the best result. The
most commonly adopted approach in industry is
measurement, because there are many
implementation and platform specific details
involved.

 Page 2

Another variation point that is more difficult to
deal with is the number of request queues .
Multiple queues provide more flexibility to
support QoS (Quality of Service), but we need a
scheduling policy to retrieve data from those
queues . Moreover, we need to consider if it is
better to have a dedicated thread for each request
queue than a tread pool.

An even more difficult tradeoff analysis is to
determine an appropriate design pattern or
structure. The Leader/Followers pattern can als o
be used as an alternative for concurrent and
networked software. There are advantages and
disadvantages for each approach. Schmidt et al,
[Schmidt00] discussed those issues. However,
there are many questions need to be answered in
order to derive an objective tradeoff analysis. On
the other hand, it is almost impossible in practice
to develop several alternative designs and perform
thorough evaluations for each of the alternative
due to resource constraints and competitions.

The main idea of this paper is to actually develop
some typical alternative designs and conduct
thorough performance analysis and
characterization for each design. Hands-on
experience is critical in building a useful
framework. The process will help identify concrete
variation points and the results will be useful in
predicting performance and building a generative
framework to support future system development.

The focus of this project is on network router
software. One of the main functions of a router is
to route and forward data packets. However, many

features or requirements are related to data routing
and forwarding. For example, there may be
different levels of QoS requirements. Each level
may need a separate queue associated with a
queuing mechanism. Each level of traffic may also
need to be policed differently based on pre-defined
policy. Even for the same level of QoS, there exist
different approaches.

We did not build a system from scratch; instead,
we obtained a router software system from
industry. The original design of the software was
similar to the Reactive pattern as shown in Figure
2. The software process contains a main thread.
When a router receives a packet from the network,
the packet is stored in a kernel buffer. The main
thread will then read packets from the buffer and
process them and put them in a destination queue.
There is a dedicated thread for each destination
queue to forward the packet to an adjacent router.
The select () function is used to demultiplex a set
of socket handles.

Figure 3 illustrates our initially modified design
based on the Half-Sync/Half-Async pattern. The
software process now contains several threads.
Multiple threads cannot use the select function
concurrently to demultiplex a set of socket handles
because the operating system will erroneously
notify more than one thread calling the select
function when I/O events are pending on the same
set of socket handles [Steven98]. Therefore, there
is only one thread for this layer to properly read
data from the network. The asynchronous layer
reads data packets from the network and stores
them into an appropriate queue, depending on the
data type. There are several worker threads in the
synchronous layer. The number of worker thread is
configurable. Currently, the number of input queue
is static, because there are two types of data packet.
The number of input queues , however, can be
changed. Moreover, a scheduling algorithm is

Figure 1. Structure of the Half-Sync/Half-
Async Pattern

network

worker
thread pool …Synchronous

Service Layer

Asynchronous
Service Layer

Queuing Layer request
queue

select()

… destination
queue & thread
to network

input from
network

Figure 2. The Structure of a
Router Software Process

 Page 3

needed among multiple queues. The scheduling
policy is another point of variation.

Work in Progress

Currently, we are in the process of building
another alternative design based on the Leader/
Followers pattern as diagrammed in Figure 4.

Figure 4. An Alternative Design Based on the
Leader/Followers Pattern

In this design, multiple threads coordinate
themselves. Only one thread at a time – the
leader – waits for an event to occur. Other
threads – the followers – can queue up waiting for
their turn to become the leader. After the leader
detects an event, it promotes one follower to be the
leader. It then becomes a processing thread
[Schmidt00].

The main reason that we choose to convert the
original router system to the Leader/Followers
pattern is that the model adopts a different design
principle that is closely related to performance. By
doing it, we will identify more variation points,
which will provide valuable lessons in building the
framework. Moreover, this design will help us
better understand related performance issues.

We are also considering other alternatives. Figure
5 illustrate some examples.

We are also investigating issues associated with
notation and evolution. Evolution is more complex
and may be problematic for a generic system that
is not well represented and designed.

Figure 5. Other Alternatives: an Example

References:

[Lung95] C.-H. Lung, J. Cochran, G. Mackulak, and J.

Urban, "Computer Simulation Software Reuse by the
Generic/Specific Domain Modeling Approach," Int’l
J. of Software Eng. and Knowledge Eng., vol. 4, no. 1,
pp. 81-102, 1994.

[Schmidt00] D. Schmidt, M. Stal, H. Rohnet, and F.
Buschmann, Pattern-Oriented Software Architecture,
vol. 2, John Wiley & Sons, 2000.

[Stevens98] W.R.Stevens, Unix Network Programming,
Volume I: Networking APIs: Sockets and XTI, 2nd
Edition, Prentice Hall, 1998.

[Woodside95] C.M. Woodside, "A Three-View Model
for Performance Engineering of Concurrent
Software", IEEE Trans. On Software Eng., vol. 21,
no. 9, pp. 754-767, Sept. 1995.

 …

Figure 3. An Alternative Design based on
the Half-Sync/Half-Async Pattern

…

select() input from
network

destination
queue & thread
to network

scheduling

… select()

…

input form
network

destination
queue & thread
to network

…

…

select()

… …
select()

…

… select()

…

