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Abstract 
We investigate both the objective and the subjective defect content estimation techniques (DCETs) for controlling 
software inspections.  We performed extensive Monte Carlo simulations for the evaluation of these techniques under 
realistic software conditions.  Capture-recapture (CR) models, the most popular objective DCETs, used in biology to 
estimate the size of animal population, have been proposed for the estimation of defects in the software artefact.  The 
objective of the simulations was to find the best CR model.  The results  indicate that the CR models break down with 
sparse data.  Due to the general failure of CR models under realistic conditions, we investigated an alternative 
approach: the use of subjective estimates of effectiveness by the inspectors for making the reinspection decision.  In 
this study, we evaluated one of the Bayesian CR models, subjective DCETs, to estimate the defect content. Our 
results suggest that introducing the subjective estimate significantly improves the decision accuracy over the 
previously used CR models.   

 
1 Introduction 

 
Inspection of software products is a cost-effective way to find defects for timely removal and to determine the quality level of 
working products immediately after their development (Gilb, 1993). Throughout the development phases of a software project, 
project managers need feedback on product quality to decide on appropriate further development and quality assurance 
activities. Michael Fagan first described software inspections in 1976 (Fagan, 1976).  Since then there have been many 
variations and experiences described (Peterson et al. 2002).   A typical inspection involves a team of three to five people 
examining and understanding a document to find defects.  It has been shown that software inspection can lead to the detection 
and correction of anywhere between 50 and 90 percent of the defects in a software artefact (Fagan 1986, Briand et al. 1998).   
The industrial experience indicating a 30 times return on investment for every hour devoted to inspection of software 
require ment specifications has been reported by Doolan (Doolan 1992).  Russell reports a similar return of 33 hours of 
maintenance saved for every hour of inspection invested (Russell 1991). The magnitude of this benefit depends primarily on 
the quality of the inspection.   

 
Contemporary research has focused on improved reading techniques and on reinspections for increasing the effectiveness of 
inspections (Emam and Laitenberger, 2001).  Our focus in this paper is on the later. Reinspections can be considered a part of 
the general problem of when to stop inspections. The decision of whether to reinspect, further depends on a good estimation of 
the number of defects in the software artefact.   
 
In the recent past, there has been an increase of research activity in developing and improving defect content estimation 
techniques (DCETs) for software inspections.  All of these techniques use quantitative models for estimating the number of 
defects in a software document from data collected after a software inspection has been carried out.  The logic behind applying 
DCETs is that by estimating the number of defects in a document, the remaining defects can be calculated, and subsequently 
an objective decision can be made on whether to reinspect the software document or let it pass to the next phase.  In this 
manner, the document quality (defined in terms of defect density) and the inspection process quality (defined in terms of its 
effectiveness) can be controlled.   
 



Six commonly used CR models were evaluated to estimate the population size (Briand et al. 2000, Emam and Laitenberger, 
2001).  These authors used mixed set of defects.  Using 6 inspectors and actual inspection data Briand et al. concluded that a 
minimum of 4 inspectors to be used in CR models.  They also reported that the models Mh and Jackknife perform better than 
the other models.  Emam and Laitenberger on the other hand used Monte Carlo simulations and two inspectors and a set of 
mixed type of defects.  These authors find that though none of the six models performed satisfactorily, the model MtCh 
performed the best with respect to failures and decision accuracy.  Gupta et al. (2003) extended the work of Emam and 
Laitenberger (2001) under realistic conditions.  A realistic scenario includes few hard (major) defects and few inspectors.  
While it is relatively simpler to find and correct minor defects, the major defects, though their number is small, remain largely 
undetected and cause potentially the most serious damage. Their aim was to estimate the population of difficult defects.  This 
paper concludes that the model MtCh performs better than the rest of the models.  However, the models tend to perform poorly 
when the data are sparse. The accuracy of the models can be improved by adding more information. Specifically, three 
promising avenues can be considered. 
 
The first avenue is to improve on the objective data, e.g., by adding metrics such as the size of the module under inspection 
and effort to the models.  The limitations associated with these two parameters are: firstly, it is hard to get people to accurately 
collect objective data consistently and secondly, the size depends on the type of artefact.  We would need a different model for 
each artefact. 
 
The second avenue is to look into subjective data.   Subjective estimates depend on the knowledge and capability of the 
individual inspector, who inspects the object carefully and reports the defects. The basic concept behind the subjective 
estimates is to ask inspectors after an inspection to estimate the percentage of defects in a document they believe they have 
actually found (Emam et al. 1999).  Combining this information with a control data in a Bayesian DCET, one can estimate the 
total number of defects in a document. There is evidence that subjective estimates by professional inspectors of their personal 
effectiveness can be very accurate.  This approach is appealing because it requires the estimate from the most experienced 
inspector, therefore is applicable irrespective of the total number of inspectors in the team.  Also, it does not require significant 
changes to an existing inspection implementation such as collecting more detailed data on defects, nor any extra effort for 
inspection participants.  Therefore, we decided to take this approach. 
 
The third avenue is to use models that use estimation techniques particularly suited to small data sets, for e.g., used to estimate 
the size of endangered species.  We strongly recommend this approach for future work.   
 

            The motivation for investigating the subjective estimates of effectiveness comes from the earlier work of Emam et al. (1999). 
In a study comparing code reading, functional testing, and structural testing, it was noted that readers could estimate quite 
accurately their own effectiveness. In the CR models, we only considered the capability of the inspectors in an objective 
manner and not their experience, which is a subjective quantity. In software inspection, often the inspectors can, to some 
degree of certainty based on their experience, predict the percentage of defects found by them after the inspection process.  
This prior information can be used in capture-recapture to formulate Bayesian models.  In fact, Bayesian techniques are 
applied in wildlife studies.  However, so far, such techniques have not been applied to software engineering studies.  We 
decided to apply the Bayesian techniques for the first time, to estimate the defect population from the inspected data.  In this 
paper, we show how subjective estimates of effectiveness can be applied to making the reinspection decision for code 
documents. 

 
In section 2, we discuss the Bayesian technique used in the software engineering context.  Section 3 gives the overview of the 
research method and the evaluation criteria.  In section 4, we present the results and section 5 discusses the results in detail. 
Finally, the conclusion of the research and the scope for future work are given in section 6. 
 
2 Background 
We consider the problem of estimating the size of the closed population based on the results of certain type mark-resighting 
sampling design. In many cases of population studies, prior information is available about the population size. We have 
incorporated the prior information using a beta distribution and derived Bayesian estimators for the population size.  
 
2.1 Multiple mark resighting model  in software engineering context and Bayesian inference 
We follow the Bayesian model as described by Ananda (1997) used to estimate the population of mountain sheep. In software 
engineering context, the defects correspond to the animals and each trapping corresponds to an independent inspection done 
by an inspector. 



 
Let N be the total number of defects in the software, n0 be the number of defects found by the most experienced inspector from 

the inspection team, s be the number of inspectors, ni ( i=1,…,s-1) be the number of defects found by each inspector and im  

(I=1,…,s-1) are the number of defects found by each inspector that overlapped with the most experienced inspector (these are 
the subset of n0 defects).  These sample sizes in  are assumed to be coming from a density )(nλφ , where λ  is an unknown 

parameter.  The distribution of im  given in  follows the hypergeometric distribution.  When ni  values are small and n0 is 

large, this distribution can be approximated by the binomial distribution with parameters n0  and p = n0 / N ,  
 
As the second stage samples are independent, the likelihood function ),( λpL can be written as 
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and the maximum likelihood estimate of population size N is given by 
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which is called the Lincoln-Peterson estimator.   
 
In the Bayesian method, the maximum likelihood function is modified by the prior distribution to give the posterior density.  
The prior distribution is described by a beta density with parameters a and b. 
 
Using this modified function the Bayesian estimate of the population size N is given by 
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In case of no prior information for the estimation, then a uniform prior on p corresponding to the choice (a=1, b=1) or a 
generalized prior density on p with a choice such as (a=1, b=0) can be taken.  With the second choice, the generalized 
Bayesian estimate of the population size will be the same as the maximum liklelihood estimate. 
 
The approach we have taken for our research involves the estimation of the prior parameters a and b using the available prior 
data.  With the prior data, given mean E(p) and standard deviation pσ , the prior parameters a and b were evaluated by using 

the formula 
 

                                           E(p) = a / (a + b),  and  2
pσ = ab(a + b + 1) -1(a+b) –2                                      Eq 4 

 
2.2 The use of subjective estimates in software engineering context 
The subjective DCET, as used in this paper, uses the prior knowledge of the most experienced inspector involved in the 
inspection process. The prior information or the subjective estimate is based on an individual inspector’s perception of the 
percentage of defects in a document that s/he has found. This estimate is produced after reading the document and logging the 
defects. The subjective estimate is affected by many different factors such as the particular reading technique used by the 
inspectors (Laitenberger et al. 1999), the degree of difficulty of the defects as well as the experience of the inspectors (Gupta 
et al. 2003).   
 
3 Research Method 
In this section we specify the study points for our simulation, and describe the methodology used for the evaluation of the 
subjective DCET.  



 
 
3.1 Study Points 
Three sets of variables were considered for the simulations: the number of hard type of defects, the probability of a defect 
being found, and the inspector capability.  We performed Monte Carlo simulations with the population size of 10, 20 and 30 
defects with detection probabilities of 0.1 (very difficult to detect) and 0.4 (moderately difficult). We used 2, 3 and 4 
inspectors for the simulations.  These parameters resemble what one would expect to see in a real inspection. 
 

 
 
 
 
 
 
 
 
 

Table 1 Numbers within the brackets indicate the ability of an inspector to detect a defect for each inspection.  For 
example, (0.9,0.9,0.9,0.9) is a team of four experts, while (0.1,0.1,0.1,0.1) is a team of four novices. 
 
For each study point, defined as a combination of inspector ability, defect population size and defect difficulty, 1000 
inspections were simulated. 
 
3.2 Capture-recapture data matrix 
The basic capture data we obtain after an inspection can be conveniently expressed in the form of a data matrix 
where, for each defect one must note all the inspectors who detected this defect.  Assuming that we denote the total 
(and unknown) number of defects as N and the number of inspectors involved in the estimation procedure as k we 
can obtain the capture-recapture data matrix in the following manner: 
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                                       ijX  = 1 if inspector i detected defect j   

                                                          =  0 if undetected       
 

3.3 Selection of Bayesian parameters 
The prior distribution is critical to the Bayesian method.  This distribution is described by a and b parameters which 
are determined by the prior mean E(p) and the standard deviation pσ .  In our simulations we select pσ and E(p) in 

the following manner.  Since we do not have any knowledge of the prior, we try to determine these parameters from 
the data matrix described above. We define the mean as 0n / N .  We allow for the fact that our estimated number 

can deviate as much as upto 30± %.  Thus the prior mean can now be written as 
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where Er = 0,  ± 0.1, ± 0.2, ± 0.3. 
 

Inspectors Ability to detect defects 

2 (0.1, 0.9), (0.25, 0.75), (0.4,0.6), (0.3, 0.3), (0.8, 0.8), (0.5, 0.5) 

3 
(0.1, 0.5, 0.9), (0.25, 0.5, 0.75), (0.4, 0.5, 0.6), (0.3, 0.5, 0.3), (0.8,0.5,0.8),  
(0.5, 0.5, 0.5) 

         4 

(0.1,0.4,0.6,0.9), (0.1,0.1,0.9,0.9), (0.5,0.5,0.9,0.9), (0.9,0.9,0.9,0.9), (0.1,0.1,0.1,0.1), 
(0.5,0.5,0.5,0.5), (0.5,0.5,0.5,0.9), (0.1,0.5,0.5,0.5), (0.1,0.1,0.1,0.9),        (0.1,0.9,0.9,0.9) 



We chose values of 0.025, 0.05, 0.075, 0.1 and 0.2 for standard deviation.  For each value of standard deviation, we 
had seven values of E(p) as given above.   
 
3.4 Evaluation Criteria 
We evaluated the performance of the model under the following three criteria. 
 

1. The central tendency of the accuracy of the estimator.  This was used to describe the average performance of the 
estimator. 

2. The failure rate of the model. 
3. The decision accuracy of the model.  For controlling inspections, this decision was based on whether the 

effectiveness of the inspection is above a specified threshold.  
The above mentioned criteria are explained in detail below. 
 
3.4.1 Decision Accuracy  
We are using DCETs for making a binary reinspection decision.  For controlling inspections, this decision would be based on 
whether the effectiveness of the inspection is above a specified threshold.  The effectiveness threshold is set to achieve a high 
quality inspection that ensures that the most detectable defects have been detected in the software artefact.  Since we do not 
know the actual effectiveness, we use the model’s estimate to calculate the estimated effectiveness. 
 
Let Qp denote the threshold effectiveness set by the organization, then the decision can be stated in terms of the following 
inequality: 
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where D  denotes the total number of unique defects found by the inspection team and 
abN

D
ˆ

 is the estimated inspection 

effectiveness.  The artefact is passed on to the next phase if this inequality is satisfied.  If it is not satisfied, then the artefact 
should be reinspected.  We used the same two values of thresholds, 0.57 and 0.7 for our simulations as was used by Emam and 
Laitenberger (2001).  The lower threshold is intended to ensure “above average” defect detection effectiveness, and the higher 
threshold is intended to ensure “best in class” effectiveness. 

 
4 Results 
The primary aim of this research was to evaluate the Bayesian method of estimating the population of defects in a piece of 
software.  In this method we use the subjective estimate (i.e. prior) of the most experienced inspector.  As mentioned earlier, 
we have four main variables for our simulations: number of inspectors and their abilities, number of defects and their degree 
of difficulty. 
 
We observe that the decision accuracy (DA) decreases as the standard deviation of the prior increases.  We also note that 
within a given standard deviation, the DA does not seem to change significantly.  It was also observed that the failure rate in 
each simulation increases when the abilities of the inspectors decrease and also when the defects become more difficult to 
find.  These three general trends are observed for the entire simulations. 
 

1. We first considered changing the number of inspectors while keeping all the other parameters fixed.  The results 
for 10, 20 and 30 defects and the degree of difficulty of 0.1 and standard deviation of 0.025 are shown in Tables 
2a, b and c.  The DA for both the thresholds (0.57 and 0.7) increases as the number of inspector increases.  Here 
we chose the inspector abilities as 0.5 for all the inspectors, which is a moderate ability.  The DA of 10 defects 
increases from 0.62 to 0.87 for a threshold of 0.7 as the number of inspectors increase from 2 to 4.  There is a 
similar increase in DA for a threshold of 0.57.  This trend is observed for 20 and 30 defects as well. 

 
2. We obtain the second set of results by varying the ability of the inspectors.  In Table 3, we show the DA for a case 

of 4 inspectors and 20 defects.  The two groups of inspectors have been chosen to illustrate the extreme variations 



i.e. a team of 4 experts and a team of 4 novices.  The DA for the team of experts is significantly more than the DA 
of a team of novices, for both the thresholds used in our simulations. 

 
3. Next, we vary the number of defects while not changing the number and the ability of the inspectors.  Table 4a, b 

and c show the results of DA for 2, 3 and 4 inspectors respectively.  The DA increases with increasing number of 
defects for a given number of inspectors.  For example, the DA increases from 0.63 to 0.96 for a threshold of 0.7.  
Similar increase in DA is observed for 0.57 threshold as well.  The same trend is observed for all the inspection 
teams. 

 
 
 

 
 

 
 
 
 
 
 
 

                                       Table 2a: 10 Defects of .1 degree of difficulty and standard deviation of 0.025 
 
 
 
 
 
 
 
 
 

 
                                    
 
 
                                        Table 2b: 20 Defects of .1 degree of difficulty and standard deviation of 0.025 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
Table 2c: 30 Defects of .1 degree of difficulty and standard deviation of 0.025 

 
 
 
 
 

2 Inspectors 3 Inspectors 4 Inspectors Er 
DA(.7) DA(.57) DA(.7) DA(.57) DA(.7) DA(.57) 

0.3 0.62 0.62 0.76 0.73 0.87 0.78 
0.2 0.66 0.66 0.79 0.78 0.86 0.84 
0.1 0.64 0.64 0.79 0.79 0.86 0.86 
0 0.65 0.65 0.78 0.78 0.87 0.87 
-0.1 0.60 0.60 0.79 0.79 0.87 0.87 
-0.2 0.64 0.64 0.81 0.81 0.88 0.87 
-0.3 0.66 0.66 0.79 0.79 0.86 0.86 

2 Inspectors 3 Inspectors 4 Inspectors Er 
DA(.7) DA(.57) DA(.7) DA(.57) DA(.7) DA(.57) 

0.3 0.88 0.88 0.94 0.94 0.98 0.96 
0.2 0.86 0.86 0.95 0.95 0.98 0.98 
0.1 0.89 0.89 0.96 0.96 0.99 0.99 
0 0.88 0.88 0.95 0.95 0.99 0.99 
-0.1 0.87 0.87 0.95 0.95 0.99 0.99 
-0.2 0.86 0.86 0.96 0.96 0.99 0.99 
-0.3 0.87 0.87 0.95 0.95 0.98 0.98 

2 Inspectors 3 Inspectors 4 Inspectors Er 
DA(.7) DA(.57) DA(.7) DA(.57) DA(.7) DA(.57) 

0.3 0.95 0.95 0.99 0.99 0.99 0.99 
0.2 0.94 0.94 0.99 0.99 0.99 0.99 
0.1 0.94 0.94 0.99 0.99 0.99 0.99 
0 0.94 0.94 0.99 0.99 1.0 1.0 
-0.1 0.96 0.96 1.0 1.0 0.99 0.99 
-0.2 0.96 0.96 0.99 0.99 0.99 0.99 

-0.3 0.96 0.96 0.99 0.99 0.99 0.99 



 
 
 
 
 
 
                                    
                                  
 
 
 
 
 
 
 

 
Table 3: 20 Defects of .1 degree of difficulty and standard deviation of 0.025 

 
 
 
 
 
 
 
 
 
 
 

                        
 
 
 

 
Table 4a: 2 Inspectors with .1 degree of difficulty and standard deviation of 0.025 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

                     
Table 4b: 3 Inspectors with .1 degree of difficulty and standard deviation of 0.025 

 
 
 
 
 
 

4 Inspectors 
abilities (experts) 
(0.9,0.9,0.9,0.9) 

4 Inspectors abilities 
(novices) 

(0.1, 0.1, 0.1, 0.1) 

Er 

DA(.7) DA(.57) DA(.7) DA(.57) 
0.3 .93 .74 0.55 0.55 
0.2 .99 .94 0.55 0.55 
0.1 1.0 0.98 0.53 0.53 
0 1.0 1.0 0.56 0.56 
-0.1 1.0 0.99 0.57 0.57 
-0.2 1.0 0.99 0.58 0.58 
-0.3 1.0 0.99 0.53 0.53 

10 defects 20 defects 30 defects Er 
DA(.7) DA(.57) DA(.7) DA(.57) DA(.7) DA(.57) 

0.3 0.63 0.62 0.86 0.86 0.96 0.96 
0.2 0.64 0.63 0.88 0.88 0.96 0.96 
0.1 0.65 0.65 0.86 0.86 0.96 0.96 
0 0.64 0.64 0.85 0.85 0.96 0.96 
-0.1 0.64 0.64 0.87 0.87 0.95 0.95 
-0.2 0.62 0.62 0.88 0.88 0.96 0.96 
-0.3 0.63 0.63 0.86 0.86 0.95 0.95 

10 defects 20 defects 30 defects Er 
DA(.7) DA(.57) DA(.7) DA(.57) DA(.7) DA(.57) 

0.3 0.78 0.76 0.96 0.95 0.99 0.99 
0.2 0.78 0.78 0.96 0.96 0.99 0.99 
0.1 0.79 0.79 0.96 0.96 0.99 0.99 
0 0.79 0.79 0.96 0.96 0.99 0.99 
-0.1 0.80 0.80 0.96 0.96 1.0 1.0 
-0.2 0.78 0.78 0.96 0.96 0.99 0.99 
-0.3 0.77 0.77 0.95 0.95 0.99 0.99 



 
 
 
 
 

  
                   
 
 
 
 
 
 
 
                                    Table 4c: 4 Inspectors with .1 degree of difficulty and standard deviation of 0.025 

 
5 Discussion  
We can understand the results and the behaviour of the Bayesian model in terms of the data matrix and the prior.  The 
product of the ability of the inspectors and the number of defects and their degree of difficulty determine the sparseness of 
the data matrix.  The estimated population depends on the values of ,0n m1, n1 and a and b parameters of the beta 

distribution (see Eq 3).  The parameter m1 determines the overlap of defects found by more than one inspector.  It is clear 
from Eq 3 that if m1=0 (happens when data matrix is sparse), the estimated population depends more on a and b values, and 
hence the prior mean E(p) and standard deviation pσ .  On the other hand when the data matrix is filled (happens when the 

ability of the inspectors is high and the defects are easier to find, as well as the defects being more in number) the estimated 
population depends more on overlap parameter m1 and n1.  Therefore, in the case of a sparse data matrix, the estimated 
population depends entirely on the prior mean and standard deviation, hence it is very important to have an accurate value 
of the prior.  This can be achieved with a team of experts as was shown earlier.  However, if the prior happens to be 
significantly off the actual value, then it is likely that the estimated population would be equally inaccurate as well. The 
failure to estimate the population occurs when the data matrix is completely empty.  This happens when the team consists 
of novices and the degree of difficulty of the defects is high. 
 
Given the above explanation of the data matrix we can easily understand all the results of the Bayesian model.  The data 
matrix  is sparse for low number of defects and gets filled with large number of defects as well as larger number of 
inspectors, thereby increasing the DA.  
 
Prior research has identified a specific CR model, model MtCh, as the most appropriate for inspections (Briand et al. 2000, 
Emam and Laitenberger 2001, Gupta et al. 2003).  Next we compare the Bayesian results with the model MtCh obtained 
earlier.  Figures 1 and 2 show the DA (0.7 and 0.57 respectively) as a function of Er for 2,3 and 4 inspectors for both 
Bayesian and MtCh models for 10 defects and 0.1 degree of difficulty.  In each case the Bayesian results are much better 
than MtCh.  Under all the circumstances the DA values of Bayesian are remarkably high than that of MtCh.  Since Er 
parameter was fixed for MtCh, we have the same value of DA plotted for all values of Er.  Though we have shown the 
graphs for  pσ =0.025, the result is same for other values of pσ . Even 4-inspector MtCh is much less than 2, 3-inspector 

Bayesian.  
 
6 Conclusion and Future Prospects 
In this paper we have applied a Bayesian technique to estimate the population of defects in the software engineering 
context.  The results are extremely encouraging, particularly with respect to sparse data.  Addition of subjective estimate 
improves the DA over the objective DCETs.  The most critical parameter in Bayesian technique is the prior mean.  In this 
respect it is extremely important to obtain the prior as accurately as possible.  Having one expert in the team of inspectors 
helps more than having a large number of novices.  There are other Bayesian estimation techniques but they differ in 
sampling methods (Basu and Ebrahimi 1998). 
 
 

10 defects 20 defects 30 defects Er 
DA(.7) DA(.57) DA(.

7) 
DA(.57) DA(.7) DA(.57) 

0.3 0.87 0.80 0.99 0.96 1.0 1.0 
0.2 0.89 0.87 0.98 0.98 1.0 1.0 
0.1 0.87 0.87 0.98 0.98 1.0 1.0 
0 0.87 0.87 0.98 0.98 1.0 1.0 
-0.1 0.86 0.85 0.99 0.99 1.0 1.0 
-0.2 0.86 0.86 0.99 0.99 1.0 1.0 
-0.3 0.86 0.86 0.99 0.99 1.0 1.0 



 
Fig 1: Comparison of DA of 0.7 for Bayesian and MtCh for 10 defects 

 

Fig 2: Comparison of DA of 0.57 for Bayesian and MtCh for 10 defects 
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