
ORIGINAL RESEARCH

Chung-Horng Lung Æ Joseph E. Urban

Gerald T. Mackulak

Analogy-based domain analysis approach to software reuse

Received: 19 August 2005 / Accepted: 29 March 2006 / Published online: 5 May 2006
� Springer-Verlag London Limited 2006

Abstract Domain analysis is an expansion of conven-
tional requirements analysis. Domain analysis can sup-
port effective software reuse. However, domain analysis
is time consuming and is limited to a particular appli-
cation area. Analogical approaches to software reuse, on
the other hand, often occur across domains. Analogical
problem solving is a process of transferring knowledge
from a well-understood base domain to a new target
problem area. Analogy can facilitate software reuse for
poorly understood problems or new application areas.
Analogy shares similar concepts with reuse and some
analogy theories have been applied to software reuse.
However, current research on software analogy often
overlooks the importance of analysis for the base do-
main and does not consider some critical aspects of
analogy concepts. Reuse must be based on high quality
artifacts, especially reuse across domains. This paper
presents an approach to integrate domain analysis and
analogy methods. In our view, domain analysis and
software analogy have complementary roles. Domain
analysis is regarded as a process to identify and supply
necessary information for analogical transfer. Software
analogy can provide the analyst with similar problems
and solutions to reuse previous domain analysis
knowledge or artifacts for a new domain. This paper

presents case studies to demonstrate the increase of
efficiency in applying the approach. Evaluation of the
approach from various perspectives is also reported.

Keywords Requirements engineering Æ Domain
analysis Æ Software analogy Æ Software reuse

1 Introduction

Software reuse has been explored extensively since the
late 1980s because of the potential benefits that reuse
may bring to productivity, quality, time-to-market, and
cost. Reuse of high-quality components is the most
influential factor for increasing productivity (Jones
2000). Many actively pursued research areas today, such
as design patterns, generative programming, component
engineering, and software product lines, have evolved
from or are closely tied to reusability. As such, reuse can
happen in various forms. Table 1 presents a taxonomy
that views reuse from eight perspectives or facets.

Domain analysis is a systematic approach designed
for reuse, which can effectively support large scale, ver-
tical software reuse as depicted in Table 1. Domain
analysis is comparable to, but expands on the scope of
conventional requirements analysis by examining fea-
tures in a family of systems in order to identify com-
monalities and variabilities (Prieto-Diaz and Arango
1991). Domain analysis facilitates the construction of
flexible software products (typically, artifacts and com-
ponents) that can be reused (black-box) or tailored
(white-box) for similar applications either from top-
down or bottom-up in the same problem domain. In
other words, domain analysis can support higher levels
of reuse, e.g., design, architectures, and domain models
(Neighbors 1992).

Another area that has the potential to support reuse
is called analogy. Analogy involves transferring knowl-
edge (concepts, artifacts, or processes) from past base
problem solving experiences to a new problem that
shares significant aspects with the past problem and

C.-H. Lung (&)
Department of Systems and Computer Engineering,
Carleton University, K1S 5B6 Ottawa, ON, Canada
E-mail: chlung@sce.carleton.ca
Tel.: +1-613-5202600
Fax: +1-613-5205727

J. E. Urban
Department of Computer Science and Engineering,
Arizona State University, Tempe, AZ 85287-5406, USA
E-mail: joseph.urban@asu.edu
Tel.: +1-480-9653374

G. T. Mackulak
Department of Industrial Engineering,
Arizona State University, Tempe, AZ 85287-5906, USA
E-mail: mackulak@asu.edu
Tel.: +1-480-9656094

Requirements Eng (2007) 12: 1–22
DOI 10.1007/s00766-006-0035-8

subsequently constructing solutions (white-box) for the
new target problem with the transferred knowledge. In
other words, analogy supports design by reusing existing
solutions horizontally across domains. Analogy is useful
in problem solving and is fundamental to learning and
cognitive development, because analogy is a key factor
in hypothesis formation, explanation, and the definition
of abstract concepts (Hoffman 1995). In problem solv-
ing, we need a sense of the whole before analyzing the
parts. We can gain such a sense by examining similar or
analogous problems.

Analogy can support a higher-level of reuse than
domain analysis. However, analogy is based on an
assumption that the base problem is well-understood
and there are similarities between the base and the tar-
get, which often occur in an opportunistic manner
depending on the nature of the problems. Domain
analysis can help better understand a problem area and
hence support the assumption usually made in analogy.
Domain analysis also increases the opportunity to
identify good analogy. Domain analysis manages the
identification, capture, and evolution of application or
domain-specific knowledge and reusable information in
order to promote systematic reuse in an application
area. On the other hand, analogy often occurs across
domains. Many problems may be different syntactically,
and yet these problems share a similar knowledge
structure. Reuse of problem solving experience and
knowledge from one domain to another is the potential
of analogy, especially for a complex domain and a
sophisticated task like domain analysis.

Thus, domain analysis and analogy can have com-
plementary roles. Domain analysis, if properly con-
ducted, can supply quality information which is useful
for analogy identification and mapping to a target do-
main. Conversely, analogy can facilitate future domain
analysis, particularly for new application areas or poorly
understood problems by transferring knowledge and
experience from an existing area. However, to support
analogy transfer, we first need to know what constitutes
a solid analogy and what information needs to be cap-
tured to effectively help the reasoning process. Since
domain analysis is labor and knowledge intensive, it will
be more cost effective if the result or experience can be
applied to other domains as well. The information nee-
ded for analogical transfer can be identified as ‘‘by-
products’’ during the domain analysis process without

much overhead, provided that we know what informa-
tion needs to be captured and analyzed.

The first objective of this article is to bridge the gap
between domain analysis and analogy by presenting an
integrated approach to reuse. Domain analysis is labor
intensive and time consuming. The effort required for
domain analysis could be high. The approach will be
more cost effective if the results of domain analysis can
be further applied across domains. The paper presents
an approach called analogy-based domain analysis
(ABDA). Figure 1 illustrates the basic principle of the
approach, which is modified and expanded from Moore
and Bailin (1991), and Lung and Urban (1993). Moore
and Bailin demonstrate two roles of reuse, that is, system
development and domain analysis. Domain analysis,
which is the ‘‘supply side’’ of reuse, provides informa-
tion and assets for application systems development,
which in turn constitutes the ‘‘demand side’’ of reuse.
The emphasis of this article is domain analysis and the
other demand side, i.e., analogy analysis, with an aim to
support development across domains.

Analogy has been applied to software engineering
problems. However, some critical factors advocated in
analogy are not considered in software analogy. As a
result, analogy mapping is primarily or only based on
similarities which have different levels. In addition, two
entities that share similarities may have significant dif-
ferences in other aspects. If we only reason based on the
surface similarities for the target without recognizing the
higher-level differences between the base and the target,
the result could be costly in the later maintenance phase
or may be harmful. Software reuse must consider the
quality issue. Reusing poor quality software also has the
worst impact on productivity (Jones 2000). The ratio-
nale is to identify the information needed and build a
sound model for software analogy. We carefully exam-
ine the requirements, constraints, and models developed
in the analogy community to satisfy the objective.

Table 1 Facets of reuse (adapted from Prieto-Diaz 1993)

By role By substance By scope By mode By technique By intention By products By size

Design
for reuse
Design
by reuse

Knowledge,
ideas, and concepts
Artifacts
and Components
Processes
and procedures

Vertical
Horizontal

Unplanned:
ad-hoc,
opportunistic
Planned:
systematic

Bottom-up
compositional
Top-down
generative
Hybrid

Black-box,
as is
White-box,
modified

Source code
Design
Specifications
Objects
Text
Architectures
Domain models

Small scale
Large scale

Demand Side
(intra-domain)

Supply Side Demand Side
(inter-domain)

System
Development

Domain
Analysis

Analogy
Identification

Development
with Reuse

Analysis
for Reuse

Transfer by
Reuse

Fig. 1 Roles of reuse (adapted from Lung and Urban 1993)

2

The second objective of this article is to bring to the
attention of the software engineering community some
important concepts and methods presented in analogy
and knowledge management (KM). There have been
considerable research and empirical studies conducted in
these two areas. Furthermore, the basic concept of reuse
and analogy is similar. Although software is more
complicated than the examples demonstrated in anal-
ogy, there are lessons and experiences reported in the
analogy community that the software engineering com-
munity can benefit from. Based on the study in analogy
and experiences reported in domain analysis, a set of
modeling techniques are presented to meet the needs for
software analogy and domain analysis. The paper de-
scribes generic modeling techniques instead of focusing
on specific methods or notations. However, other
modeling techniques that are suitable for the applica-
tions or have already been adopted can also be applied
to complement the approach or provide different views.

The remainder of this article is organized as follows.
Section 2 demonstrates an overview of various aspects
discussed in analogy. Section 3 describes extensions of
analogical studies for the purpose of developing a model
to support software analogy. The ABDA approach and
examples are then illustrated in Sect. 4. Section 5 pre-
sents a case study using the modeling techniques. The
last section consists of a summary and a discussion of
future directions.

2 Overview of analogical problem solving

The overview includes the critical concept of analogy.
Analogy has relevance to case-based reasoning (CBR).
In fact, this term is sometimes used as a synonym to
CBR. However, analogy is also often used to charac-
terize methods that solve new target problems based on
past cases (base) from a different domain, while typical
case-based methods emphasize on indexing and match-
ing strategies for single-domain cases (Aamodt and
Plaza 1994). Similarly, analogy is also related to KM.
Knowledge management promotes the creation, sharing,
and learning of knowledge within an organization from
the business perspective. CBR and KM are closely re-
lated. CBR can be used to assist with KM processes and
KM techniques can assist the CBR process.

Analogy is a vital ingredient in scientific discovery.
Many scientific theories have been derived by discover-
ing or observing analogies between two problems.
Analogy also has been studied in the areas of psychol-
ogy, cognitive science, artificial intelligence, education,
and philosophy (Gentner et al. 2001; Sowa and
Majumdar 2003). Comprehensive surveys or collections
of research works on analogical reasoning can be found
in (Hoffman 1995).

The concept of analogy has been addressed or applied
to software engineering (Silverman 1985; Finkelstein
1988; Miriyala and Harandi 1989; Maclean et al. 1991;
Neal 1990; Maiden and Sutcliffe 1992, 1993; Harandi

1993; Gennari et al. 1995; Lung and Urban 1995a, b;
Spanoudakis and Constantopoulos 1996; Massonet and
van Lamsweerde 1997; Chiang and Neubart 1999; Pisan
2000; Idri et al. 2002; Lung et al. 2002; Lung 2002;
Grosser et al. 2003; Bjornestad 2003; Yimam-Seid and
Kobsa 2003; Hamza and Fayad 2005).

Most of the papers in software engineering emphasize
the identification of similarities between the base and the
target and draw the conclusion of analogy between the
two domains. Those approaches often are based on one
or limited analogy models. This type of approach may
be fine for general problem solving or knowledge
transfer. However, reuse of software needs to be built on
a solid foundation or high-quality product. Some factors
that are vital in analogy are not thoroughly considered
in those papers. For example, differences can be as
important as similarities in analogical reasoning. Simi-
larly, both high-level structure and low-level compo-
nents are important in analogy mapping.

The paper presents a model through various critical
concepts reported in the area of analogy. The remainder
of this section briefly presents influential analogy theo-
ries in cognitive science: structure-mapping, high-level
perception, pragmatic theory, and taxonomy of seman-
tic relations. These theories address various constraints
guiding the analogical mapping between problems and
provide a broad view of analogy in problem solving.

2.1 Structure-mapping

The structure-mapping engine (SME) (Falkenhainer and
Forbes 1989; Gentner 1989) is both theoretically and
empirically significant and the theory provides some
major breakthroughs in the current understanding of
analogical reasoning (Kedar-Cabelli 1988). The central
idea in structure-mapping theory is the principle of
systematicity. The systematicity principle states that
analogy is a mapping of ‘‘systems of relations governed
by higher-order relations with inferential import, rather
than isolated predicates’’ (Gentner 1989). In other
words, the principle emphasizes on a relation of rela-
tions (higher-order relation) rather than just a relation
of objects (low-order relation).

2.2 High-level perception (HLP)

Contrary to the SME approach, the HLP theory
(Chalmers et al. 1992; Morrison and Dietrich 1995)
views analogy as a bottom up process. In other words,
low-level perception will be used to build a representa-
tion. Those low-level perceptual processes interact with
high-level concepts which help the analogical processing.

2.3 Pragmatic approach

Holyoak and Thagard (1989) have pursued the goal-
related concept and proposed a pragmatic approach for

3

analogy. The approach incorporates three types of
constraints into the analogical procedure. These con-
straints are structural consistency, semantic similarity,
and pragmatic centrality.

2.4 Taxonomy of semantic relations

Studies in analogy show that analogy may be processed
differently based on the types of relations. Hoffman
(1995) also points out that analogy is not just the rec-
ognition of similarities, but distinctions and differences
are also important. Bejar et al. (1991) conducted a sur-
vey on the analysis of semantic relations and analogy,
and derived a taxonomy to group semantic relations.
With the taxonomy, the relations can be decomposed
into common aspects that the systems are sharing and
aspects that the systems differ. Thereby, relations can be
better understood at a higher level and analogical
mapping between different domains can be facilitated.

The taxonomy consists of two main types of semantic
relations: intensional and pragmatic relations. Inten-
sional relations are based solely on attributes of two
objects or items. These types of relations can be under-
stood by interpreting the meaning and characteristics
of the objects. Pragmatic relations require knowledge
about the problem area the objects involved. The
knowledge reflects how the objects are interrelated in the
system. Table 2 shows the types, classes, and examples
of semantic relations. Each class further consists of the
specific relations as members.

A thorough list of specific members for each family
relation is presented in Bejar et al. (1991). Not all of the
relations may be useful in software modeling. Never-

theless, the list can serve as a guideline for classifying
semantic relations. The classification of relations can be
used as criteria for understanding and comparing rela-
tions in different domains to reveal underlying similari-
ties and differences.

In summary, the structure-mapping theory looks at
analogy from a horizontal perspective. On the other
hand, the HLP views analogy from the vertical point of
view (Morrison and Dietrich 1995). The pragmatic ap-
proach and the semantic relations are used as constraints
in validating the analogy.

3 Development of a software analogy model

Software systems, however, are normally much more
complex than the examples presented in the current
analogy related literature, though analogy is aiming to-
ward large applications (Forbus 2000). Existing ana-
logical approaches to software reuse also fall short to
provide sufficient information to support the reasoning
and mapping process. To effectively promote software
reuse, current analogical models must be extended for
more complex and difficult analogies. In order to achieve
this goal, the extended model should provide multiple
viewpoints to describe the problem domain more com-
prehensively. The objectives of this section are to:

1. add additional constraints to an analogical model for
software reuse;

2. describe essential aspects for modeling software sys-
tems to support software analogy; and

3. develop a process of reusing existing software solu-
tions using analogy.

3.1 Constraints of analogy for software reuse

In order to satisfy some of the requirements, several
constraints are used as guidelines and enforcements to
lead to quality analogy mappings. In Sect. 2.3, three
different types of constraints have been introduced,
namely, syntactic, semantic, and pragmatic constraints.
In addition to these three constraints, the concept of
system dynamics, such as events, triggers, time aspects,
object behaviors, and business rules, must be examined
as another constraint in an analogical approach for
software reuse.

In modeling a system, we need to describe its dynamic
features, how it accomplishes tasks, not just its static
structure. The reason for dynamic features is due to
the increasing complexity and interconnected nature of
software. Moreover, in real world applications, user
requirements are constantly changing and business rules
keep evolving, even if most objects and the high-level
relations of the objects stay the same. In addition,
personnel shuffling often causes another problem in
software evolution. To support software reuse, the
‘‘embedded’’ dynamic information must be identified

Table 2 Semantic types of relations and examples (adapted from
Bejar et al. 1991)

Semantic type Semantic class Specific members or examples

Intensional Class inclusion Employee: person; shape: circle
Intensional Similarity Car: auto; buy: purchase
Intensional Attribute ID: person; price: product
Intensional Contrast Receive: send; buy: sell
Intensional Nonattribute CPU: storage; running state

(process): waiting for an event
Pragmatic Case

relations/event
Pilot: aircraft; doctor: patient

Pragmatic Cause–purpose Circular wait: deadlock;
Gasoline: car

Pragmatic Space–time Judge: courthouse;
Retirement: pension

Pragmatic Part–whole Object: component—car: engine
Collection: Member—company:
department
Mass: Portion—water: drop
Event: feature—aircraft: pilot
Activity: State—flying:landing
Item: Topological
Part—room:corner

Pragmatic Representation Building: blueprint;
red light: stop

4

and validated before reuse occurs. System dynamics
information can help better understand problems and
prevent using ‘‘look alike’’, but non-analogous solutions
for the target.

3.2 Components for analogy-based reuse

The components of reusing software assets are relatively
well known in software reuse (Biggerstaff 1992; Krueger
1992). The main phases involved in the process include
abstraction, identification, selection, adaptation, and
integration.

Based on the empirical observations conducted in
analogy and the process of reusing software assets re-
ported in the reuse community, an analogy-based reuse
process model is presented in this section, as shown in
Fig. 2. The process consists of several components, but
it does not have to be carried out in a strictly sequential
manner. On the contrary, the process may be highly
iterative and the steps may interact with one another in
various ways. However, the framework serves as a useful
conceptual model for the overall analogical process.
Those components share a lot of similarities with that of
reusing software assets (Biggerstaff 1992; Krueger 1992).
This paper emphasizes on representation, mapping, and
generalization/classification.

3.2.1 Representation

Analogical reasoning can be made efficiently and effec-
tively if there exist suitable underlying representations.
Rich representation schemes can support the identifica-
tion of objects and features of the problem domain and
thus facilitate the understanding of the domain. More-
over, good representation schemes can support all other
phases of analogy processing. Key representations that

are necessary for analogy will be discussed in the soft-
ware analogy modeling in Sect. 3.3.

3.2.2 Mapping

Given critical artifacts, mapping is the process to com-
pare the base and the target and select relevant base
properties over the target. Mapping is the core of ana-
logical transfer and must consider the syntactic,
semantic, and pragmatic aspects of a domain. This phase
has a crucial role in software reuse. Many papers in
software analogy consider only the similarities between
the base and the target problems. This paper argues that
differences are as important as similarities and must be
evaluated in the mapping process, especially for software
reuse. If the differences are not carefully identified and
evaluated, reuse of similarities alone could cause more
downstream problems and could exert negative impact
on software productivity.

3.2.3 Generalization and classification

Generalization or abstraction has a central role in any
reuse approach. With abstractions, software developers
can figure out more easily what the asset does, when the
asset can be reused, and how the asset can be reused. In
order to support software analogy across domains,
generalization also deals with the abstraction of com-
mon structures and concepts between the related
domains.

Classification is one of the most fundamental meth-
ods used in science and engineering to help people better
understand a particular system. Classification has a
great influence on problem identification and retrieval.
Numerous classification schemes and clustering tech-
niques have been reported in the literature. Prieto-Diaz

RepresentationRepresentation

Problem
Identification

Retrieval

Elaboration

Learning

Generalization

Classification

Mapping

Evaluation

Integration

Problem
Identification

Retrieval

Elaboration

Learning

Generalization

Classification

Mapping

Evaluation

Integration

input

output

Fig. 2 Components of software
analogy

5

(1991) applied the faceted classification scheme in the
library science to classify software components.
The approach has been adopted by many researchers in
the software engineering and KM communities. A recent
example is Vitharana et al. (2003). Section 4.3 presents a
layered faceted classification scheme for domain models
classification.

3.3 Software analogy models

This section addresses the ‘‘supply side’’ of reuse, i.e.,
domain analysis, as illustrated in Fig. 1. The models that
should be used to describe a system are the subject of
this section. Those models or similar models have been
extensively discussed in the software community. In fact,
many of them have been proposed or used in require-
ment or domain analysis. The most widely discussed
software modeling technique is UML (Unified Modeling
Language) (UML 2005) which is composed of a set of
models. This article does not attempt to create new
models; rather, we address what existing models can be
adopted and how to make use of them collectively. In
addition, this article puts emphasis on generic concepts
of modeling as opposed to specific representations and
from the analogy perspective. Selection of a specific
technique depends on the application and the environ-
ment.

To capture the important aspects of software systems,
a model is needed for each of the following items:

1. Objects. Object modeling describes the objects in the
problem area, their attributes, operations, and rela-
tionships with other objects.

2. Functions. Functional modeling specifies what the
system does, as well as the data transformations and
tasks performed by objects.

3. Relations. Relational modeling deals with two tasks:
(i) classification of semantic relations for the purpose
of understanding and comparing lower-order rela-
tions between components; (ii) generation of a high-
er-order causal relation.

4. System dynamics and goals. System dynamics mod-
eling describes the information that will potentially
change over time. Goals or purposes are constraints
for selecting only relevant analogical information.

The idea of object modeling is similar to object-ori-
ented analysis. In object modeling, objects and the
relationship between objects are identified, and static
structures of the objects are constructed. Functional
modeling reveals tasks that the objects and the system
perform. Functions are salient characteristics of a sys-
tem and most systems can be recognized by the functions
they realize. Relational modeling emphasizes semantic
and causal relations. For complex problems, static
structures of objects or functions do not provide suffi-
cient knowledge for analogical reasoning. Semantic
relation modeling identifies ways in which the relations

are the same and ways in which the relations are dif-
ferent.

Causal relations represent high-order relations be-
tween objects. Causal relation modeling supports the
application of Gentner’s structure-mapping principle.
The relational modeling can help compare relations and
evaluate analogies. A dynamic model should be able to
represent states, events, object behavior, and rules in an
application. Moreover, important goals or purposes are
included, because different goals may represent specific
context and diverse stakeholders concerns. Stakeholders
concerns reflect non-functional requirements as well as
functional requirements. Non-functional requirements
are important, but are often neglected in the modeling
phase. Together the system dynamics and goals serve as
useful pragmatic constants for analogy analysis.

All four of these different modeling techniques are
required for a sound analogical approach for software
reuse. As stated earlier, those techniques have been
widely discussed. In fact, three of the four models: ob-
ject, functional, and dynamic (excluding goals or pur-
poses) have also been adopted in requirements analysis
methods like recent UML and most domain analysis
approaches.

4 Analogy-based domain analysis (ABDA) approach

Having discussed the features of analogy and require-
ments from the software perspective, we will demon-
strate, in this section, the modeling technique, namely,
object, functional, relational, and dynamic. The article is
more concerned with the modeling concepts of each
technique than specific notations. Different users may
adopt different notations for specific environments. This
article also puts more emphasis on those aspects which
differ from or extend other modeling methods.

The ABDA approach rests upon existing domain
analysis concepts, particularly generic/specific modeling
technique (Lung et al. 1994) and FODA (Kang et al.
1990), and is expanded to satisfy the needs postulated in
the analogy research area. ABDA consists of three main
phases: definition and identification, domain modeling,
and domain architecture construction. The approach is
depicted as follows:

1. Domain definition and identification,

– • Identify domains and define domain boundaries,
– • analyze domain problems and define objectives,

and
– • conduct the context analysis.

2. Domain modeling

– • Develop product models, including object, func-
tional, relational, and dynamic models,

– • generalize and classify product models, and
– • Evaluate models with use cases and scenarios, and

classification.

6

3. Domain architecture construction

– • Define process interaction,
– • define reference architecture, and input and out-

put, and
– • refine and evaluate scenarios and the reference

architecture.

Figure 3 demonstrates the ABDA process by show-
ing activities, products, product flow, and information
flow based on the domain analysis classification and
comparison approach proposed by Wartik and Prieto-
Diaz (1992). ABDA integrates bottom-up and top-down
concepts. Bottom-up analysis supports the identification
of objects, operations, relationships, and featural simi-
larities in a class of systems, while top-down synthesis
facilitates the construction of knowledge structures and
domain models or architectures and promotes high-level
reuse instead of just code reuse. Knowledge structures or
architectures can be more abstractly represented than
objects and operations and can possess more informa-
tion than features. The high-level abstractions are

necessary due to the increasing complexity of software
systems and the demand to reduce maintenance costs for
system evolution. However, the construction of complex
architectures must be supported by an object driven,
bottom up process (Hanson 1983). The following sec-
tions illustrate the critical factors involved in each step
of the modeling process.

4.1 Definition and identification

During the definition and identification phase, purpose,
completion criteria, user’s needs and scope are defined.
These considerations can help the domain analyst rec-
ognize what areas of a domain to focus on. The point to
recognizing application domains is to identify patterns
in existing applications. Patterns may occur at various
levels: program code, design, architecture, or business
area. Defining domain boundaries can determine the
range of the domain to be analyzed and the model to be
generated. Features in a domain are also bounded by the
domain definition. For a domain interrelated with other

*

Define
domain

Analyze
problems,
define
objectives, &
alternatives

Model
problem
domain

Construct
domain
architecture

domain
definition

domain
objectives

context
model

alternative
approach

domain
models

generic
domain models

classification

reusable
models

process
interaction

reference
architecture

Existing
systems &
domain
selection
criteria

Existing
systems,
domain
knowledge &
organizational
needs

Existing systems,
domain
knowledge,
software
analogy, &
product models

Generalize &
classify product
models

Existing
systems, domain
knowledge,
analogical
reasoning

Domain
knowledge,
analogical
reasoning

System &
software
architecture,
domain
knowledge

Evaluate domain
models &
classification

Top-down /
bottom-up

Top-down Bottom-up Top-down /
bottom-up

Key:

*

Activity

Product

Product flow

Information flow

optional

Fig. 3 Analogy-based domain analysis (ABDA) process

7

domains, the boundaries are best defined in an opera-
tional way (Simos 1991).

Several researchers (Simos 1991; Biggerstaff 1992;
Arango et al. 1993) have advocated some key factors to
consider in selecting and scoping an application domain.
Those factors include narrow breadth, stability, matu-
rity, longevity (the domain should be useful for a long
period of time), and economy (the domain should have
potential for payback through reuse).

The next step is to analyze domain problems and
define objectives. The main purpose of this step is to find
out what needs to be accomplished. The user role and
system characteristics are essential in identifying the
objectives and analyzing a problem. For mature and
well-understood domains, this step may be relatively
easy. For large, complex, or newer domains, an incre-
mental approach is advocated to gradually acquire
knowledge.

Based on the defined scope and identified objectives
and stakeholder’s needs on the problem domain, a
paradigm shift may need to be adopted if the objec-
tives and needs cannot be satisfied by using the con-
ventional method. The concept is optional depending
on the specific problem space. Lung et al. (1994) pre-
sented an empirical study on simulation domain
modeling in manufacturing, which addressed the con-
cept. Traditionally, the modeling of manufacturing
systems through simulation is complicated and time-
consuming because of the intensive knowledge and
labor required. The primary problem with traditional
simulation modeling is the lack of reusability of the
simulation models, despite the fact that there are
similarities among simulation models (Lung et al.
1994). The modeler views each simulation project as
unique and constructs a specific model to meet the
objectives. As a result, cost overruns and poor per-
formance are usually associated with the simulation
building process. In addition, simulation models often
need to be written by outside experts instead of man-
ufacturing engineers who know best what they want to
simulate.

The new design, based on intensive domain analysis
of 150 discrete manufacturing models, was a generative
framework for the user to select appropriate generic
simulation models from which a specific model can be
instantiated. The above article also described the sub-
sequent development of the domain architecture as a
result of the new paradigm. The concept has also been
adopted more frequently as generative programming
techniques become more accepted.

After the domain and its boundaries have been
identified and high-level problems and objectives have
been recognized, the last step in this phase is to develop
a context diagram. The context diagram reveals the
interactions between the domain and its external envi-
ronments, and the information that flows between the
domain and the environment. The context diagram is
also a channel to introduce objects in the modeling
stage.

4.2 Domain modeling

This article concentrates on the domain modeling phase.
To model a problem domain, we follow the line of
thought postulated in the analogy discipline. This phase
consists of four modeling techniques: object, functional,
relational, and dynamic. These four modeling techniques
are executed iteratively rather than in a strict sequential
order. For example, when a new object is uncovered
later in the process or if the relation between two objects
gets evolved, the previous models generated may need to
be revised. Those four modeling techniques are demon-
strated in the remainder of this section. Two sets of
examples are used for illustration; one includes the car
rental problem and the library problem; the other con-
tains problems in both discrete and continuous manu-
facturing.

4.2.1 Object modeling

In object modeling, main domain components and their
relationships are identified. This concept is also the focal
point of object-oriented methods and various domain
analysis approaches. We are not discussing the object-
oriented analysis methods in detail, since they are widely
used. The main difference between domain analysis and
system analysis or object-oriented analysis is that do-
main analysis deals with multiple systems instead of a
single system. Czarnecki and Eisenecker (2000) com-
pared and contrasted domain analysis and object-
oriented analysis in details.

However, there may be significant differences be-
tween domains and hence domain analysis and engi-
neering methods. Some methods are more useful for
specific domains. ABDA does not impose a particular
object modeling method. In fact, multiple methods are
often used to capture various domain aspects, e.g., data
structures and user interaction. Figure 4 demonstrates
an example using the entity-relationship (ER) diagram
for object modeling for discrete manufacturing systems.
The ER diagram neglects attributes and some detailed
parts for simplicity. The ER technique was adopted
mainly because the system (the base) was primarily
modeled with ER method and yet the method is simple
and expressive.

The objects and features identified serve as a baseline
for modeling the problem domain. Features can also be
classified into different groups: mandatory, optional,
and alternative (Kang 1990). Identification of various
features is important, because a feature recognized up
front in analysis and presented to the designer may help
the designer justify and make better decisions. The
identification may also yield significant differences in
terms of processing or implementation. In cases where
features are not easily defined or identified, variability
analysis and management among systems is also useful
and serves similar purpose.

Figure 5 is an example showing the main components/
features in discrete manufacturing. Each component can

8

be further decomposed into sub-components. Lung et al.
(1994) presented a detailed description of modeling
various features for the discrete-event simulation in
manufacturing problem. The components may look
similar to those used in the continuous manufacturing
(the target) which is a different domain. This process will
not only identify various features, but also facilitate the
identification and comparison of the features in another
domain. As discussed earlier, differences are also vital in
analogical reasoning.

Table 3 presents comparisons among components in
discrete and continuous manufacturing. As shown in the
table, both domains have similar material handling
systems (MHS), whose primary operation is to move
and store materials, parts, and products. In a discrete
problem, there are usually a group of machine stations,
each performing some simple operations such as
machining, assembling, or inspecting materials or
products. While in the continuous area, the number of
machines is fewer, but generally each machine is costly
and performs more complex operations. Disassembling
and chemical processing are two typical examples in the
continuous domain. Because the stations are more
sophisticated in the continuous domain, planning for
maintenance and equipment failure is more important
than that in the discrete domain.

Another significant difference is the scheduling pro-
cess due to the difference in product type and machine
stations. As a result, simulation models needed for these
two domains are also different. In the discrete domain,
finite state machines and discrete event models are
commonly used. In the continuous domain, difference
equations or differential equations are needed (Lung
et al. 2002). The comparison will facilitate the reasoning
and mapping process, and the development of an object
model for the target problem as shown in Fig. 6.

4.2.2 Functional modeling

Functional modeling deals with the data transforma-
tions and tasks performed by objects and systems.
Functional modeling captures what a system does and
represents the data flow aspects of a system. Functions
are related to operations on objects. Thus, the object
model developed can be used as a starting point to
identify and analyze object operations and system
functions. Key system functions are also salient features
that can be used to compare different applications or
domains. In addition, functional modeling is a well-
exploited area in software development and domain
analysis.

products

stations MHS connects

manufacture moves

plan

controls

monitors

contains

scheduling maintenance equipment
failure

MHS: material handling system

signal

processes contains

trigger

queues

sensors

Fig. 4 Entity-relationship (ER) diagram for discrete manufactur-
ing Systems

physical system

resources jobs queues equipment breakdowns
and scheduled
maintenance

stations material handling Note: A horizontal line joining the branches
means that one or more of the following nodes
may be included in the model

Fig. 5 Example showing main features of a manufacturing system
(Lung et al. 1994)

Table 3 Comparisons of main components between discrete and continuous manufacturing

Discrete Continuous

Material handling Transport and store material Very similar to discrete domain
Stations Many, one operation/station,

queue before
Few, many operations/station, no queue

Product type Usually mixed, many could
also be 1 product

Product type disassembly
(one main product, several sub-products)

Queue Have queues Normally no queues
Equipment failure Same process, minor disturbance,

fast recovery, possible alternative
Scarp in process, major disturbance,
high reliability required

Planned maintenance Should do, but often skipped Very important, hard to stop, more regular
Scheduling Math difficult, little optimization,

predicable, a priori, finite state machines
Sequencing, continuous monitoring (real time),
response time, high variance, differential equations

Sensors Fixed position sensors,
flag when an object moves
into a range

Normally no sensors

9

Based on the various types of features recognized,
commonalities and differences of the applications in a
domain are identified. The functional model can be
specified using data flow diagrams (DFDs). DFDs show
the input, process, and output without detailing how
and when the functions are executed. DFDs have been
well accepted in the software engineering community for
ease of understanding and simplicity. The existing DFDs
can be also reused to help analyze a domain.

A high-level DFD for the discrete manufacturing is
illustrated in Fig. 7. Based on the artifacts from the base
problem and reasoning of the problem domain, a DFD
for the target problem is derived, as illustrated in Fig. 8.
The seven processes in the target domain shown in
Fig. 8 were derived from the base. Processes 1, 4, 5, 6,
and 7 are repeated use without modifications. Process 2
is a modification from ‘‘monitor the position of all
products and identify collisions’’. Process 3 is changed
from monitoring the product position to modifying the
product quality. A queue related process (process 8 in
Fig. 7) and sensors entity, and all related entities, data
stores, and data flows were removed, since normally
there are no queues or sensors in the continuous prob-
lem.

Each function or process can be even decomposed
into sub-processes. These processes in the DFD corre-
spond to operations for objects. In functional modeling,
processes related to the alternative or optional features
identified in the object modeling phase are carefully
examined. Because these features represent differences
between applications, separation of these processes can
support distinction between possible ‘‘black-box’’ and
‘‘white-box’’ reuse.

For example, the verify_borrower_status process in
the library problem can be decomposed into three sub-
processes: verify_valid_ID, verify_valid_privileges, and
verify_overdue. Verify_borrower_ID can be reused
almost without change for any other library system,
whereas verify_privileges (e.g., same privileges vs. dif-
ferent privileges for different types of users) and ver-
ify_overdue (e.g., one overdue policy vs. incremental
policy) are more application dependent, and hence are
more likely to be ‘‘white-box reused.’’ The analysis and
distinction will support downstream quality reuse.

4.2.3 Relational modeling

Relational modeling, in this context, is mainly concerned
with two tasks: reasoning and classification of low-level
semantic relations and identification of higher order
causal relations.

4.2.3.1 Classification of semantic relations Bejar (1991)
presents the taxonomy of semantic relations. The clas-
sification is a useful guideline to start the comparison of
‘‘look-similar’’ relations. Again, the comparison serves
as a constraint in order to obtain a more accurate
understanding of different or specific situations.

To classify the relations, the emphasis is on the crit-
ical objects. Critical objects are those objects identified
in the object modeling stage or can be narrowed down to
those objects whose removal will cause change in the
causal relation. The relations between the critical objects
are then analyzed and classified based on the taxonomy.
Based on the taxonomy, the following shows the clas-
sification of semantic classes followed by specific rela-
tions for the discrete manufacturing problem.

The classification of relations will later be used in the
analogical mapping process to compare with that of a
target domain. If a different classification occurs in the
mapping process, it indicates that careful examination
must be taken on the behaviors of objects in the base
and target, which will be discussed in the causal mod-
eling and dynamic modeling process. Identical classifi-
cation of the critical objects may confirm similarity for
the target system.

Take a typical manufacturing factory as another
example, a machine station and products may have a
similar high-order relation as manufacture (station,
product). However, a lower level relation between the
product and its components may be different for dif-
ferent types of factories. In discrete manufacturing, the
relation between a part (engine) and a product (car)
belongs to the Part–Whole family with the specific fea-
ture (Object: Component) (see Table 2), i.e., the second
entity is part of the first entity. In continuous manu-
facturing, a different specific feature is held for Part–
Whole relation. Consider a milk factory: 2% milk is one
of the by-products of raw milk. The specific secondary
relation for this case is (Mass:Portion). The distinction,
as outlined in Table 4, indicates that different types of
machine stations and control processes are needed for

products

stations MHS connects

manufacturemoves

plan

controls

monitors

contains

scheduling maintenance equipment
failure MHS: material handling system

Fig. 6 Entity-relationship diagram for continuous manufacturing
systems

Queue: product—Part–whole; Collection: Member
MHS: product—Cause–purpose; Instrument: Intended Action
MHS: queue—Cause–purpose; Instrument: Intended Action
Station: product—Cause–purpose; Instrument: Intended Action
Station: queue—Part–Whole; Object: Component
MHS: station—Cause–purpose; Instrument: Intended Action
Sensor: MHS—Cause–purpose; Enabling Agent: Object
Sensor: station—Cause–purpose; enabling Agent: object
Plan: MHS—Reference; Plan
Plan: station—Reference; Plan

10

these two domains, albeit these two domains share a
similar higher order relation.

Even for the same problem domain, a relation be-
tween two objects may be changed as a system evolves.
For example, the user role may need to be extended
from static to dynamic as a new requirement. During the
office hours, a user has a business role, whereas the same
user may have a personal role away from work as well.
The new relation is also explicitly specified and classified
as space-time as shown in Table 2. Nevertheless, the
object model for the legacy system and the evolving
system usually do not represent the dynamic relation.
The classification of semantic relations will help com-
pare and discover new requirements for the same
problem and explicitly specify the differences.

4.2.3.2 Generation of causal structure of relations The
structure-mapping principle, introduced in Sect. 2, pos-
tulates that an analogy is a mapping of connected sys-
tems of higher-order relations rather than isolated
predicates. However, Gentner did not address ‘‘how’’ to
draw a network of causal relations. The derivation of a
causal model is knowledge-intensive and, unfortunately,
there is no explicit guideline to follow.

Roberts et al. (1983) discussed cause-and-effect rela-
tionships and presented examples in various problem
areas. This research effort adopted some of the notations
described by the authors to model causal relations
mainly due to its simplicity and genericity. Moreover,
the following heuristics were developed for deriving a
causal structure of relations:

product’s
position

product’s
position

product being
manufactured

expected
position of
product

job
completed

Job
completed

existing product
positions & halted

and restarted
products

data about
the product

Production
floor layout

warnings
& reports

changes made by
the production
 controller

scheduled
maintenance

plan

valid
machine
status

3. Monitor the
position of all

Products to check
them against the
production plan

7. Verify
machine
status

6. Produce
reports &
warnings

maintenance
plan

production
floor layout

job

production
scheduling plan

changes for
production plan

reqt’s so that
misrouted or
delayed products
still meet the
product plan

product
data

product being
manufactured

changes for
product details 5. Change

& identify
production

details

completed job
in product plan

new
schedule
details

Production
controller

product’s
position

product’s
position

product’s
position

machine
status

sensors

machine
status

1. Receive &
record both
product &
m/c status

machine
stations

8. move
products

from queue

queue

products

product history

production track

halt or
restart
roduct

2. Monitor the
position of all
products to

identify
collisions

details of
all track
sections

current product position

product’s
position

4. Update
production

plan

product’s
position

product’s
position

Fig. 7 Data flow diagram for discrete manufacturing systems (adapted from Maiden 1991)

11

1. identify key objects and their relationships in the
domain (object model);

2. identify primary functions in the domain (functional
model); and

3. connect two objects/relationships, or functions that
one (object, relationship, or function) is directly
influenced or affected by the other (object, relation-
ship, or function).

Step 3 is repeated until all relevant objects, relation-
ships, and functions are examined. A causal structure for
the discrete manufacturing problem is demonstrated in
Fig. 9. Lower order relations between objects can be
explicitly specified, e.g., sensors report product posi-
tions. The causal structure represents higher-order
relations (relation of relations). The causal structure,
which shows the path-centric dependency perspective of
the problem area, is complementary to the component-
centric aspect illustrated in object model. The causal

view describes how the components or tasks are con-
nected. This view can be represented at various levels of
abstraction and is useful for communications among
diverse stakeholders and for system maintainability,
because systems behaviors may evolve as requirements
change. However, the static view may stay the same even
if system behaviors have been modified.

The causal structure for the discrete manufacturing
systems can be reused to identify and transfer to the
continuous manufacturing systems with modifications
due to the differences between these two domains.

expected
product
quality

job
completed

Job
completed

materials & halted
& restarted
products

data about
the product

Production
floor layout

warnings
& reports

changes made by
the production

controller

scheduled
maintenance

plan

valid
machine
status

machine
status

3. Monitor
quality of

products & check
against prod.

plan

Machine
station

7. Verify
machine
status

6. Produce
reports &
warnings

machine
status

maintenance
plan

production
floor layout

job

product being
manufactured

production
scheduling plan

changes for
production plan

reqt’s so that
disqualified
products still meet
the product plan 2. Deliver/

remove
material

product
data

product being
manufactured

changes for
product details 5. Change

& identify
production

details

completed job
in product plan

4. Update
production

plan

new
schedule
details

Production
controller

1. Receive &
record both
product &
m/c status

Fig. 8 Data flow diagram for
continuous manufacturing
systems

Table 4 Distinction of semantic relations: an example

Generic
semantic
class

Specific relation Example

Discrete
manufacturing

Part–whole Object:component Car:engine

Continuous
manufacturing

Part–whole Mass:portion Crude oil:diesel

update
production

plan

MHS move parts /
materials from

queues in a track

report
stations

machine stations
manufacture

products

sensors report
product positions dispatch

product
queues MHS moves

products in a
track to
queues

production
plan

maintenance
plan

products

scheduling
plan

Fig. 9 Causal structure for discrete manufacturing systems

12

In discrete manufacturing, the time needed to manu-
facture a certain part of product is predictable and time
variation is small. However, in continuous manufac-
turing, the time needed produce a particular product is
dependent on the substance of the raw materials and the
target quality. Raw materials coming from different
places or the same place but different times may take a
slightly different step in order to get the desired prod-
ucts. Time variation in continuous manufacturing may
also be high. Based on the causal structure of discrete
manufacturing and the differences between the two do-
mains, Fig. 10 presents the causal structure for the
continuous manufacturing systems.

The classification of semantic relations of critical ob-
jects and the causal structure of high-order relations are
primarily used as ‘‘pressures’’ to lead the analogical rea-
soning process. Higher order causal relations constrain
mappings of lower-order relations, which in turn con-
strain mapping of objects. Semantic relations, on the
other hand, can be used to constrain or tomake a scrutiny
into relation mappings based on different objects.

4.2.4 Dynamic modeling

While causal modeling demonstrates the causes (what),
dynamic modeling examines the causes (how). Dynamic
modeling, for the ‘‘supply-for-reuse’’ side, rests upon the
causal structure of relations developed in the previous
step. In fact, causal structure already represents some
dynamic behaviors of a problem. Dynamic modeling
examines causes that trigger the transition, which in-
cludes events, state changes, and conditions. In dynamic
modeling, however, the conditions or rules under which
a transition is triggered are examined and specified, and
the transformations as a result of a transition are also
elaborated. Those triggering events can be specified with
rules. Rule-based systems are useful to capture and
maintain expert’s knowledge. Rule-based systems have
been extensively studied in the AI and KM disciplines.
The simplest form of a rule-based system is a set of IF-
THEN rules.

For the discrete manufacturing problem, examples of
the external triggering events for the MHS include
‘‘material available’’ and ‘‘trigger MHS’’. The following
shows some example rules for the entities MHS and
Machine Station.

For each object or entity class, new rules can be ad-
ded and existing rules can be modified. The rule-based
model can not only reflect the changes in user require-
ments easily, but also can be used to further distinguish
the dynamic aspects of an application domain from
similar ones. The rule-based approach can also show
different levels of abstractions, which is an important
characteristic in analysis and development of software.
For example, some operations in the above example can
be further expanded.

4.2.4.1 Purpose The purpose or goal is another con-
straint that is used to examine the causal relations.
Purpose is primarily reasoned in the analogical mapping
process to choose only relevant causal relations. During
the domain analysis process, purposes are also identified
in order to support the mapping process. Purposes can
be derived from the design objectives outlined in the
definition phase and can also be further decomposed to
reveal a clearer distinction.

maintenance
plan

update
production

plan

MHS delivers
/ removes
materials

report
stations

machine
stations

manufacture
toward target

target
derivation

production
plan

products

scheduling
plan

Fig. 10 Causal structure for continuous manufacturing systems

Rules for entity class MHS in discrete manufacturing:
R1: IF material_available

THEN enable MHS
R2: IF trigger_MHS
 THEN check MHS
R3: check_MHS:

IF MHS is ready
 THEN enable_MHS
R4: enable_MHS:

If from_position and to_position are available and ready
THEN process_material (from_position, to_position)

Rules for entity class Machine Station in discrete manufacturing:
R5: operate_machine:

IF machine is set up
THEN check_material

 ELSE set_up_machine
R6: check_material:

IF material is available
 THEN load_material
 ELSE wait_until_material_available

IF loading is done
 THEN start_machine_processing
R7: start_machine_processing:

IF machine is ready and material is in position
 THEN process_materail

IF process_material is done
 THEN unload_material
R8: unload_material:

IF product is available
 THEN unload_product

IF unload_product is done
 THEN trigger MHS

13

For instance, Maiden (1991) showed analogy between
two non-trivial problems: an air traffic controller (ATC)
and a flexible manufacturing system (FMS). Both ATC
and FMS share common static structures and similar
dynamic characteristics (object monitoring). But they
have different goals. For ATC, the main goal is to
‘‘maintain safe, orderly, and expeditious flow of traffic’’
(Garot et al. 1987). In FMS, the main concern is how to
schedule and coordinate machine stations to gain a high
productivity rate and machine utilization, and at the
same time reduce throughput time (Talavage and Han-
nam 1988). The significant difference will lead to dif-
ferent emphasis in reasoning and problem solving.

For our example, the main purposes for the both
discrete and continuous manufacturing problems are
similar: increase productivity and reduce cost. However,
a secondary goal for discrete manufacturing is to avoid
collision while moving the parts or products, which is a
non-problem in continuous manufacturing. The differ-
ence was also illustrated in the data flow diagram.

To map the artifact to the continuous manufacturing,
the object model can be used to compare the base with
the target. The MHS are similar between these two do-
mains. Hence, the rules can generally be mapped to the
target domain. For machine stations, however, modifi-
cations need to be made for the target. In continuous
manufacturing, loading and unloading parts are not
necessary for the stations. Therefore, the rules for ma-
chine stations are adapted to suit the new needs, which
are depicted below.

In addition, purposes or goals can represent non-
functional software attributes, which are critical factors
for software quality. These attributes can constrain the
analogical mapping by selecting appropriate domains or
sub-domains for further reasoning. The abstract pur-
poses can be used to derive concrete and explicit sce-
narios or use cases to validate the domain models.

4.3 Generalize and classify product models

Generalization and classification are vital in analogical
reasoning. Generalization is a useful product because a
human learns by comparing and generalizing (Mineau
1990). Generalization is also a basis for classification.
Meaningful classifications are central to human rea-
soning and problem solving capabilities (Hanson 1983).

This section presents a layered faceted classification
approach for domain models, which is adapted from

Lung and Urban (1995a). In other words, the hierarchy
consists of multiple layers; each layer in turn consists of
a number of facets. The number of layers and facets are
expandable and modifiable. Table 5 illustrates the con-
cept of the layered faceted classification with three lay-
ers. Layer 1 deals with domain independent facets at the
abstraction level. Examples include the application do-
main, domain abstraction or pattern (higher order
analysis patterns or description of primary domain
characteristics) (Maiden et al. 1993), domain context
architecture, and the key features of the critical objects
involved in the problem. The idea of domain abstraction
is similar to the problem-class model proposed by
Bhansali (1993) and generic data models proposed by
Mineau et al. (1993).

Layer 2 encompasses key system functions, object
semantic relations, system dynamic, and design goals.
Layer 2 is concerned with domain dependent but
application independent features. Facets in layer 2 serve
to bridge the gap between the generic domain abstrac-
tions and specific application domains. These facets are
actually abstractions of domain models developed in the
modeling phase. The next layer consists of facets that
have more detailed information about lower level com-
ponents and their features. Those features are applica-
tion dependent.

Each domain analysis pattern can consist of domain
specific areas which further consist of multiple applica-
tion specific facets or even layers. Examples include
object allocation, object coordination, and object
scheduling. (Maiden and Sutcliffe 1993; Lung and
Urban 1995a). Each domain analysis pattern can consist
of domain specific areas which further consist of multi-
ple application specific facets or even layers. The concept
is demonstrated in Fig. 11 and an example is presented
in Fig. 12.

4.4 Evaluation of domain models and classification

The aim of this approach is to support software reuse
through analogy for different but analogous domains as
well as to promote software reuse in the same applica-
tion area. Evaluation of the domain models and classi-
fication is necessary in order to achieve this goal.

To support reuse, one aspect is to use the artifacts
before actual reuse. ABDA and analogy in general as-
sume the existence of the base. In other words, domain
models of the base domain are constructed by analyzing
existing systems which should have been used before. In
one case study on discrete event simulation in manu-
facturing, a new generic/specific framework was built
and actually used in that domain (Lung et al. 1994).
Some of the lessons learned from the domain analysis
were transferred to the continuous manufacturing
problem domain, as illustrated in Sect. 4.2.

The main differences between our approach and other
domain analysis methods are the level of abstraction and
classification, and the concept of relationalmodeling. The

Rules for entity class Machine Station in continuous manufacturing:
R10: operate_machine:

IF machine is set up
THEN start_machine_processing

 ELSE set_up_machine
R7: start_machine_processing:

IF machine is ready and material is in position
 THEN process_materail

IF process_material is done
 THEN trigger MHS

14

additional artifacts may not be needed for an application
within the same domain, but the information captured is
still useful by presenting various viewpoints.

Transferring of knowledge from the base to the target
is the first step. The transferred domain models need to

be applied to a target system for evaluation before future
reuse. The evaluation is conducted by experts in the
target domain. In our case study presented in Sect. 4.2,
the artifacts for the continuous manufacturing problem
were iteratively evaluated by a domain expert.

Table 5 Layered faceted classification scheme: an illustration

Facet Description Example

Layer 1
(domain independent)

Application domain The problem application area Car rental problem
Domain abstraction
or pattern

The high-level analysis patterns
or primary domain
characteristics/functions

Object allocation and release
The pattern supports an analogy
for domains that allocate an
object to another object
(usually agent). The allocated
objects are returned after
a period of time.

Analogous domain Other possible domains that
share significant domain similarities

Library systems, reservation
systems (hotel, airline)

Object Type The resource type of primary objects Vehicle: reusable, repairable User:
customer, agent Staff: agent

Layer 2 (domain dependent,
application independent)

Architecture pattern
or style

Typical high-level software architecture Client server model

Function What the system does primarily User can search/reserve vehicles.
Staff can search/check
out/return/manage/update/verify
vehicle fleet

Relation class Classes of semantic relations
for key objects

User: Vehicle—Agent:
Instrument Staff:
Vehicle—Agent: Object Staff:
User—Agent: Recipient

Purpose What the main system goals are.
Those goals could be prioritized.

The system provides services
to allow users to search and
reserve vehicles. The system
allows the staff to keep track
of the vehicle fleet. The system
calculates the rental cost for users

Trigger The main cause or event of
system dynamics

Manual vehicle reservation
Periodical vehicle maintenance

Layer 3
(application dependent)

Rule Important high-level rules applicable
in the application

The user can access the system
via the web. The staff has to
access the system via designated
machines. Only the staff has
the authority to update
(check out, return, manage)
the status of a vehicle

Non-functional
requirement

Special non-functional requirements,
e.g., performance

No special performance
requirement

Facility Underlying important
enabling techniques

Web technique, data base
management system

Complexity level The degree of software complexity
or size of the application domain

Small to medium

Domain
pattern

feature 1 feature n….

feature 1_1 feature 1_i… feature n_1 feature n_ j…

domain
independent

domain dependent,
application independent

application
dependent

Fig. 11 Layered view of
analogous domains and
applications

15

4.5 Modeling of domain architecture

Domain modeling focuses on problem space analysis.
Based on the analysis, architecture modeling aims at a
solution space in the problem domain. This phase is not
the primary concern in this research, since this area is
closely related to software architecture and tremendous
efforts have been put into software architecture. The
main difference is that the scope of domain architecture
modeling is wider, because multiple systems are con-
sidered during the process. Consequently, common
structures may need to be identified, which in turn could
be used to support construction of a specific architec-
ture.

5 Evaluation and classification of ABDA

This section presents the evaluation and classification of
the ABDA approach. Domain analysis is a complex
task; hence, evaluation and classification of domain
analysis approaches are also complicated. An evaluation
was conducted based on criteria in analogy, and domain
analysis, since ABDA is closely related to these three
areas.

5.1 Evaluation based on requirements modeling

Liskov and Zilles (1975) developed a set of criteria for
evaluating specification techniques. This set of criteria is
a good starting point for domain analysis approaches,
such as ABDA, as a preliminary assessment, since do-
main analysis centers around requirements engineering.
A brief description of the criteria and as assessment of
the ABDA approach is as follows:

• Formality partially satisfied. A model should be writ-
ten in a notation which is mathematically sound.
ABDA is based on two primary disciplines. One
supports design-with-reuse derived from empirically
and statistically validated theories in analogy. The
other one focuses on design-for-reuse based on soft-

ware modeling techniques, which may based on for-
mal or informal notations. ABDA does not impose
any specific notation.

• Constructability partially satisfied. It must be possible
to construct models without undue difficulty provided
one knows the concepts and techniques involved.
ABDA is primarily built upon existing software
techniques with an extension of analogy. However,
the theme of domain analysis is to study as many
applications as possible and derive generic models and
architectures. The process and analogical mapping
may be timing consuming and knowledge intensive.

• Comprehensibility satisfied. A person trained in the
technique should be able to study the model and easily
understand the concepts captured in the model.
ABDA draws as much as possible from areas of
existing techniques, such as OO modeling, ERDs,
DFDs, or system dynamics, which have been well
accepted and widely used.

• Minimality satisfied. It should be possible using the
model to capture the interesting parts of a concept and
nothing more. ABDA is derived to meet the require-
ments of analogy and software characteristics. Re-
moval of any one of the modeling techniques will
make ABDA deficient in satisfying the demands of
analogy and software characteristics.

• Range of applicability satisfied. ABDA offers the
ability to capture both static properties and system
dynamics. The features allow ABDA to represent a
wide range of applications in general business areas
and real-time applications.

• Extensibility satisfied. It is desirable that a minimal
change in a concept result in a similar change in its
model. ABDA is built on object-oriented methods
which support separation of concerns and is extensible.

Bordiga et al. (1985) identified some criteria for
requirements modeling language. The criteria and the
evaluation are highlighted below.

• A good modeling approach should allow the analyst
to describe the entities in the domain and changes
(events) in the world, and also constraints: satisfied.

Object Allocation
user searches / reserves resources

staff manages/searches/updates/verifies resources

user reserves
an object

….

user checks out or
renews an object

fixed
duration

variable
duration

fine
policy

fixed
fines

incremental
fines

block
account

timing
restrictions

generic
domain
patterns

domain-
specific
features

application-
specific
features

Fig. 12 An illustration of
layered classification

16

• Domain modeling must be able to describe the dy-
namic aspects of the world and the evolution of the
world via time: satisfied. ABDA captures the dynamic
aspects of a domain, which can be specified as rules
and represented in formal or informal methods. The
modeling methods support evolution if domain com-
ponents, relations, or rules change. Additionally, the
generic architecture is a technique that provides
adaptability in the abstraction. The feature also sup-
ports evolution of an application (Basili 1992).

• The modeling approach should support abstraction:
satisfied.

• Domain modeling should include multiple viewpoints:
satisfied.

• The modeling approach should be easy to learn, read,
and use: satisfied. The criterion is similar to the
comprehensibility criterion discussed in the previous
assessment. Although ABDA broadens domain anal-
ysis concepts and extends analogy approaches for
software reuse, it rests upon currently available and
commonly used techniques. These techniques are well
understood and widely used.

5.2 Evaluation from the analogy perspective

ABDA is mainly derived from the research in analogy.
Therefore, it is necessary to evaluate the approach
against the criteria advocated in analogy. Three different
sets of evaluation criteria were selected and presented as
follows.

Sternberg (1977) proposed five criteria for evaluating
analogical reasoning methods. Each criterion and a brief
evaluation of ABDA are elaborated as follows.

• Completeness satisfied. Completeness deals with the
coverage of all phases involved in the analogical rea-
soning process. ABDA extends the process depicted in
the paper, which consists of the following phases:
encoding, inference, mapping, application, justifica-
tions, and preparation and response.

• Specificity partially satisfied. An analogy theory is
specific if the theory describes in detail each phase
involved in the process. ABDA specifically emphasizes
representation, elaboration, mapping, generalization
and classification. Some steps, such as problem iden-
tification and retrieval, may be opportunistic. Usually,
a similar analog is either explicitly provided or
‘‘somehow discovered’’ by the analyst. Other steps,
like inference and evaluation, integration and modi-
fication, and learning, are more subjective and often
‘‘embedded’’ in the process. Learning is a topic that
has been discussed intensively in KM. Lessons learned
from that area can be applied to ABDA.

• Generality partially satisfied. This principle is similar
to the criterion of wide range of applicability de-
scribed above.

• Parsimony satisfied. The principle is similar to the
minimality criterion presented above.

• Plausibility partially satisfied. Plausibility concerns the
reasonableness of the approach. ABDA integrates
domain analysis and analogy. Domain analysis sup-
ports potential software analogy, while analogy
facilitates domain analysis activities by providing
existing solutions in analogous domains. However,
more empirical experiments are needed.

Gentner (1983) presented a group of five dimensions
along which measurements can be made on specific
analogy mappings. These criteria are discussed as fol-
lows with slight modifications to evaluate an analogy
approach instead of a specific mapping.

• Specificity partially satisfied. The criterion concerns
the extent to which the base and the target are
understood. ABDA requires that the base be thor-
oughly understood. The mapping is carried out by
comparing and contrasting both domains with various
modeling techniques. Generally, the criterion is satis-
fied. However, if the target is a totally new domain,
the degree of specificity for the target may be limited
by the specificity of the base.

• Clarity satisfied. The criterion deals with the precision
of the mapping that the approach can provide. Clarity
is violated if the mapping cannot be determined;
otherwise, precision of mapping is high. ABDA
advocates multiple-level mappings. In addition, the
approach addresses both similarities and differences
for the mapping phase.

• Richness satisfied. Richness refers to, roughly, the
potential ‘‘quantity’’ of predicates that can be map-
ped. However, there is no exact definition for quan-
tity. The main point is that the mapping should
encompass multiple viewpoints, which has been
emphasized in ABDA.

• Abstractness satisfied. ABDA can support mapping of
high-order relations as well as low-order relations.

• Systematicity satisfied. Systematicity is the mapping of
connected knowledge rather than isolated facts. ABDA
is an approach of both top-down and bottom-up. The
top-down analogical approach proposes mapping of
high-order relations which enforces the mapping of
low-order relations. The bottom-up approach, on the
contrary, constrains high-order relations with lower-
order predicates or even attributes.

Silverman (1983) depicted five measures for evaluation
of practical analogies. The measures are slightly adapted
and are discussed as follows:

• Procedurality satisfied. The criterion states that anal-
ogy should be formed by following a predefined pro-
cedure. ABDA meets the requirement as described in
Sect. 3.

• Contextuality satisfied. Contextuality is concerned
with whether the base is specified in generalized rep-
resentations rather than in a specific language.

• Diagnosticity partially satisfied. The measure refers to
the capability to diagnose the analogical mapping

17

when uncertainties are identified. Silverman suggested
the usage of diagnostic parameters which quantita-
tively indicate a confidence level of the software arti-
fact. In ABDA, diagnosticity is in the mapping phase,
i.e., when an uncertainty occurs, the diagnosis is up to
the analyst.

• Temporality not satisfied. Temporality refers to the
evolution of either the schema or the mapping over
time. The criterion deals with tracing the history of an
analogy as it evolves. ABDA does not address this
issue explicitly. However, ABDA supports the evolu-
tion of individual domains. This criterion could be
tied to the learning phase.

• Validity satisfied. If an analogy is drawn based on a
well-understood domain and the process, the analogy
can be said to a valid one.

The research is primarily concerned with software
analogy. Software analogy differs from most other
analogy studies in that the potential size may be large
and complexity may be high. To address those issues, we
consider two more criteria from the software engineering
perspective.

• Group development not satisfied. Large systems are
generally developed by a group of people. Multiple
analysts may be working on the same project, but each
is responsible for only small portions of the entire
project. Problems may arise in several ways. Firstly,
different analysts may have different interpretations
for the same or similar problem, which in turn may
affect the mapping process. ABDA or current analogy
approaches provide little or no support for coordi-
nation among analysts. Secondly, analysts may not
have a clear view of the whole system.

• Tool support partially satisfied. Tool support is
essential in order to make the knowledge intensive
activities efficient and effective. ABDA does not pro-
vide any specific tools. However, it is built on existing
techniques, tools used in those techniques can also be
used. Web and the internet technologies can also
facilitate some phases, e.g., problem identification and
retrieval, discussed in this approach.

5.3 Classification based on domain analysis criteria

Prieto-Diaz and Arango (1991) illustrated the concept of
domain analysis in details and presented a collection of
approaches. Czarnecki and Eisenecker (2000) also con-
ducted a survey on various domain analysis approaches
and described some updated domain analysis approaches
primarily due to the object orientation extension. Readers
are referred to these two articles for an overview.

Domain analysis is complicated due to the diverse
goals, products, and processes involved. There are many
domain analysis approaches; each is targeted to different
objectives. Wartik and Prieto-Diaz (1992) presented a
list of criteria for classification purpose. The criteria

were developed to serve as a common conceptual ground
for comparing and contrasting different domain analysis
approaches, so that practitioners can determine how to
select among these approaches. The section adopts the
idea to the classification of domain analysis approaches
and presents as follows.

• Definition of domain application and business areas.
There are two options defined in (Watik and Prieto-
Diaz 1992): application area and business area.
Application areas views that any set of related pro-
grams is a domain, e.g., a stack family or software
packages in a specific application, such as numerical
array packages and matrix packages (Czarnecki and
Eisenecker 2000). Business area focuses on larger
systems with the aim of profitability. ABDA can be
used in both cases, even if the examples presented in
this paper emphasizes more on inter-domain reuse
from the business perspective.

• Determination of problems in the domain problem and
solution-oriented. Problem-oriented approaches first
analyze a set of problems and concentrates on prob-
lem-level concepts. Solution-oriented methods, on the
contrary, examine existing applications to determine
common problems. ABDA starts by analyzing and
identifying problems, which is followed by identifying
and examining analogous features in existing appli-
cations and by mapping solutions over to the target.

• Permanence of domain analysis results mutable. A
process is defined to be permanent if there is no pro-
vision for the products to evolve over time; otherwise,
a process is mutable. ABDA allows domain analysis
products to evolve as new features are identified or
new components/systems are developed.

• Relation to the software development process meta-
process. A process is defined as meta-process if the
construction of domain analysis process is one of the
objectives. More specifically, domain analysis is part
of a meta-process, and the process for domain analysis
is separate from the process for application develop-
ment. ABDA shares similar idea in that it is inde-
pendent of the software life cycle models.

• Focus of analysis decisions and objects/operations.
Domain analysis can focus on objects and operations
among similar application systems or decisions that
the developer needs to make to derive a solution to a
problem. In the later case, the analysis centers around
not only the similarities, but also the differences
among systems.

• Paradigm of problem space models both generic
requirements and decision model. In ABDA, com-
monalities are identified and generalized. At the same
time, alternatives and differences are also highlighted
explicitly to guide the analyst in choosing appropriate
software artifacts.

• Purpose and nature of domain models process spec-
ification. An effective process specifies both the
products it requires as inputs and what products it
produces as outputs. The process also may describe

18

how to effectively use those products. ABDA depicts a
process which also describes the products it produces.

• Approach to reuse systematic. Systematic reuse aims at
the future potential of reuse by investing effort up
front to build software assets and provide a rigorous
process, which is what ABDA advocates.

• Primary product of domain development application
engineering process. The criterion deals with the most
significant product resulting from domain modeling
and implementation. The product can be a reuse
library or application engineering process. The main
product of ABDA deals with the retrieval of analo-
gous domains and presents a process to develop
reusable domain models. In addition, the process
addresses the mapping and transfer of knowledge to
the target domain.

5.4 Practical application experience

We have applied ABDA to two pairs of problems. The
first study was to the application of the library problem
to the car rental problem. Domain models for the library
problem were developed on some existing system models
in the literature. The system models were expanded by
including variabilities and commonalities, and were
generalized to generic models. The domain models were
then classified using the layered faceted classification
scheme. Finally, the generic domain models were map-
ped to the car rental problem.

The second study was the mapping from the discrete
manufacturing to the continuous manufacturing prob-
lem. Domain analysis was conducted in discrete event
simulation in manufacturing (Lung et al. 1994), which
served as a foundation for the modeling effort for the
discrete manufacturing problem. Multiple domain
models were then developed and generalized as depicted
in Sect. 4. The knowledge was transferred to the new
continuous manufacturing area.

In both cases, the development time for the domain
models were significantly reduced for the target prob-
lems. For the first study, the time spent on the base
problem, primarily generalization and classification
tasks, was several days. The time spent on the target
problem, however, was only several hours. In the second
study, the time used for the discrete manufacturing do-
main modeling was about 2 months. The time that was
taken for the target was merely a few days. The base
systems for both scenarios were adopted to facilitate the
development of a mental or conceptual model for the
target. The conceptual model captures the domain
knowledge, which significantly improves understanding
of the problem area and could evolve into the architec-
tural model, which has the potential to support large-
scale reuse (Jacobson et al. 1997).

Some of the concepts were also adopted in a software
architecture recovery effort (Lung 2002). The target was
a new system developed rapidly for concept demon-
stration in a then advanced and exploratory network

application area. The project had been cancelled, but
later there was a need to use the system again. Unfor-
tunately, designers had left the project and there was no
documentation. Another similar and well documented
system in the traditional telecommunications industry
and some relevant design patterns were used as the base.
More generalized representations were developed from
an existing product and design patterns and were used as
a mental model. Two modeling techniques were used for
this exercise because there was a high demand on timing
and resources. The two primary representations used
were similar to the concept of object modeling and dy-
namic modeling techniques discussed in Sect. 4. During
the process, we found that these two domains had much
in common. The knowledge gained from the existing
solutions was used to help recover the architecture of the
target system quickly, which is useful because the target
system was exploratory and not well understood.

The proposed approach has extra cost overhead due
to additional modeling efforts, primarily generalization
and classification. To develop a comprehensive cost
model is beyond the scope of this paper. In the follow-
ing, we present a brief discussion on this issue. Although
there is an extra cost, however, the overhead is low
provided that domain analysis or something similar
(e.g., commonality and variability analysis) has been
applied to the problem area, since ABDA is built on top
of such an approach.

The following illustrates the cost overhead associated
with our approach. Let Cra represent the cost of con-
ventional requirements analysis; Cda, cost of domain
analysis; and Caa, cost of ABDA. Typically, we have
Cra < Cda < Caa. The overhead of domain analysis and
ABDA, on the front end analysis, is Cda�Cra and
Caa�Cda, respectively. It is generally a reasonable
assumption that Caa � Cda � Cda � Cra: In other words,
domain analysis has much higher cost than requirements
analysis. However, once domain analysis is conducted,
the extra cost of ABDA is mainly generalization and
classification, which should be much lower. This view is
from the development for reuse perspective.

From the development with reuse aspect, a search
phase is needed to retrieve existing knowledge. For do-
main specific areas, the overhead of this phase generally
is not high assuming that reusable domain models have
been generated. For inter-domain reuse, the cost is
higher, since the retrieval phase needs more time and the
mapping phase involves further reasoning effort. In
addition, analogy is opportunistic from the development
with reuse perspective even though the method for reuse,
e.g., ABDA, is planned. In this case, estimation of the
cost or return on investment becomes complicated due
to various influential factors, such as the complexity,
size, and probability of inter-domain reuse.

There are research efforts on the tool support for
retrieving analogous domains or components that
could mitigate this problem (Bjornestad 2003; Yimam-
Seid and Kobsa 2003; Hamza and Fayad 2005). On
the other hand, in practice, many problems share

19

similarities (Batory 1994) and same patterns, especially
domain-neutral patterns (Hamza and Fayad 2005),
exist in many different domains, the likelihood for
inter-domain reuse may not be very low. The potential
for higher return on investment is to support reuse for
novices and new areas. Novices are more likely to
reuse knowledge or artifacts from various sources
(Desouza et al. 2006). Overall, for novices or for
solving new domains where the risk or unknown
information is high, a critical need is a sense of the
whole rather than the parts. We can gain such a sense
by examining similar or analogous problems.

The cost overhead could be lowered if an effort sim-
ilar to patterns (analysis patterns or design patterns)
could be adopted. Patterns could be seen as a scaled
down version of domain analysis conducted collabora-
tively by the community. Knowledge in patterns is re-
viewed by peers and organized in an open and easy to
access environment. The community serves as a virtual
organization and provides a continuous learning mech-
anism. Various ways for discussions, e.g., conferences
and discussion groups across organizations, have been
formed. Many concrete examples have been captured
and documented in patterns, which is also a key factor
to analogy. The lessons learned from the patterns com-
munity could be adopted for reuse in large to capture
more concrete knowledge and artifacts for further reuse.

6 Summary

This article presented an approach, called ABDA, which
is an integration of two streams of research areas,
namely domain analysis and analogy. The methodology
is based on models and empirical evidences reported in
analogy and experiences presented in domain analysis
and software reuse. Domain analysis and analogy are
regarded as complementary tasks in this approach.
Domain analysis performed in one problem area sup-
plies quality information for potential analogical trans-
fer to a new or not well-understood domain in addition
to reuse within the same domain. On the other hand,
analogy studies identify the needs in order to facilitate
domain analysis by providing effective information for
knowledge transfer. Furthermore, studies and lessons
reported in analogy are beneficial to the software com-
munity. Examples reveal a productivity of several folds
in the analysis phase for our studies by reusing domain
models across problem areas.

Analogy does not guarantee a solution if no existing
solutions are adequate. Nevertheless, this experience is
still useful to identify problems, especially early in the
life cycle. Moreover, the previous design process, not
just design products, may support the development of
the new target problem. The information and experience
of failing to transfer knowledge from one domain to a
new problem area are also valuable.

There are commonalities in generic solutions across
domains (Batory 1994). Two related questions that are

vital in analogical transfer are identification of an
analogous problem and the classification of application
domains. Most papers, including this paper, do not
explicitly explain how the base problem is identified.
This phase is still in the state of art and is highly
dependent on experience and how the artifact is repre-
sented. However, much progress has been made lately
thanks to the advanced information technology and KM
(Bjornestad 2003; Yimam-Seid and Kobsa 2003; Hamza
and Fayad 2005). Problem identification and retrieval
can be further improved if quality domain models can be
effectively classified.

Classification has long been a topic of interest in
various areas. Problems that are distinct in syntax may
have similar solutions. The problems grouped in one
class may be retrieved for a target problem at the same
time, where each selected problem may contribute some
insights for the understanding and development of the
target domain. The challenge is to recognize and group
those domains that share significant aspects. In this
paper, we demonstrated the layered faceted classification
scheme to classify domains and applications.

We presented a primary case study involving two
problems. Additional large scale experiments should be
conducted. On the other hand, a large problem domain
may consist of several ‘‘unit domains’’, where each ‘‘unit
domain’’ is a mature area and solutions to the area are
well accepted. To tackle a problem domain, we could
first decompose the domain and identify analogous
‘‘unit domains’’. The existing solutions and knowledge
of the ‘‘unit domains’’ will then facilitate the under-
standing and construction of solutions for the new do-
main. With the increasing popularity of patterns, this
may be realistic in the future. In other words, docu-
mentation of patterns can be enhanced by incorporating
more information related to analogous problems.

The modeling techniques demonstrated in this article
can also facilitate software architecture construction.
Some techniques used in the paper share commonalities
with UML, which is widely used to model software
architectures and high-level design. Further, the taxon-
omy of semantic relations may support the identification
or distinction of patterns (e.g., architectural patterns,
design patterns) by adding more information to the
context described in patterns. The methodology should
be experimented on different application areas to pop-
ulate the repository of analogous domains and validate
the classification. The taxonomy of relations could also
be refined to meet the features of software and OO
methods (Opdahl et al. 2003).

References

Aamodt A, Plaza E (1994) Case-based reasoning: foundational
issues, methodological variations, and system approaches. Artif
Intell Commun 7(1):39–59

ArangoG, Schoen E, Pettengill R (1993) A process for consolidating
and reusing design knowledge. In: proceedings of the 15th
international conference on software engineering, pp 231–242

20

Basili VR, Caldiera G, Cantone G (1992) A reference architecture
for the component factory. ACM Trans Softw Eng Meth
1(1):53–80

Batory D et al (1994) The GenVoca model of software system
generators. IEEE Software, pp 89–94

Bejar II, Chaffin R, Embretson S (1991) Cognitive and psycho-
metric analysis of analogical problem solving. Springer, Berlin
Heidelberg New York

Bhansali S (1993) Architecture-driven reuse of code in KASE. In:
proceedings of the 5th conference on software engineering and
knowledge engineering, pp 483–490

Biggerstaff TJ (1992) An assessment and analysis of software reuse.
Adv Comput 34:1–57

Borgida A, Greenspan S, Mylopoulos J (1985) Knowledge repre-
sentation as the basis for requirements specifications. IEEE
Comput Mag, pp 82–91

Bjornestad S (2003) Analogical reasoning for reuse of object-ori-
ented specifications. In: proceedings of the 5th international
conference on case-based reasoning, pp 54–60

Chalmers DJ, French RM, Hofstadter DR (1992) High-level per-
ception, representation, and analogy: a critique of artificial
intelligence methodology. J Exp Theor Artif Intell 4:185–211

Chiang C-C, Neubart D (1999) Constructing reusable specifi-
cations through analogy. In: proceedings of symposium on
applied computing, pp 586–592

Czarnecki K, Eisenecker UW (2000) Generative programming,
methods, tools, and applications. Addison-Wesley, Reading,
MA, USA

DesouzaKC,AwazuY, TiwanaA (2006) Four dynamics for bringing
use back into software reuse. Commun ACM 49(1):96–100

Falkenhainer B, Forbus KD, Gentner D (1989) The structure-
mapping engine: algorithm and examples. Artif Intell 41:1–63

Finkelstein A (1988) Re-use of formatted requirements specifica-
tions. Softw Eng J 186–197

Forbus KD (2000) Exploring analogy in the large. In: Gentner D,
Holyoak K, Kokinov B (eds) Analogy: perspectives from cog-
nitive science, MIT, Cambridge

Garot JM, Weathers D, Hawker T (1987) Evaluating proposed
architectures for the FAA’s advanced automation system.
Computer 20(2):33–46

Gennari John H, Altman Russ B, Musen Mark A (1995) Reuse
with PROTEGE-II: from elevators to ribosomes. In: proceed-
ings of the symposium on software reusability, pp 72–80

Gentner D (1983) Structure-mapping: a theoretical framework for
analogy. Cogn Sci 7(2):155–170

Gentner D (1989) Mechanisms of analogical learning. In: Vosnia-
dou S, Ortony A (eds) Similarity and analogical reasoning.
Cambridge University Press, Cambridge

Gentner D, Holyoak KJ, Kokinov BN (eds) (2001) The analogical
mind: perspectives from cognitive science. MIT, Cambridge

Grosser D et al (2003) Analogy-based software quality prediction.
In: proceedings of the 7th workshop on quantitative approach
in object-oriented software engineering

Hamza HS, Fayad ME (2005) Stable atomic knowledge pattern
(SAK)—enabling inter-domain knowledge reuse. In: proceed-
ings of the 17th international conference on software engi-
neering and knowledge engineering, pp 127–132

Hanson SJ (1983) Conceptual clustering and categorization. In:
Kodratoff Y, Michalski R (eds) Machine learning: an artificial
intelligence approach, vol. 3. Morgan Kaufmann Publishers
Inc.,USA, pp 235–268

Harandi MT (1993) The role of analogy in software reuse. In:
proceedings of the symposium on applied computing, pp 40–47

Hoffman, Robert R (1995) Monster analogies. AI Mag 16(3):11–35
Holyoak KJ, Thagard P (1989) Analogical mapping by constraint

satisfaction. Cogn Sci 13:295–355
Idri A et al (2002) Estimating software project effort by analogy

based on linguistic values. In: proceeding of the 8th symposium
on software metrics

Jacobson I, Griss M, Jonsson P (1997) Software reuse architecture,
process, and organization for business success. Addison-Wes-
ley, Reading, MA, USA

Jones C (2000) Software assessments, benchmarks, and best prac-
tices. Addison-Wesley, Reading, MA, USA

Kang KC, Cohen SG, Hess JA, Novak WE, Peterson AS (1990)
Feature-oriented domain analysis (FODA) feasibility study.
Technical report CMU/SEI-90-TR-21

Kedar-Cabelli S (1988) Analogy—from a unified perspective. In:
Helman DH (ed) Analogical reasoning. Kluwer, New York
pp 65–104

Krueger CW (1992) Software reuse. ACM Comput Surv 24(2):131–
183

Liskov BH, Zilles SN (1975) Specification techniques for data
abstractions. IEEE Trans Softw Eng 1(SE-1):7–19

Lung C-H (2002) Agile software architecture recovery through
existing solutions and design patterns. In: proceedings of the
6th IASTED international conference on software engineering
and applications, pp 539–545

Lung C-H, Urban JE (1993) Integration of domain analysis and
analogical approach for software reuse. In: proceedings of the
symposium on applied computing, pp 48–53

Lung C-H, Urban JE (1995a) An approach to the classification of
domain models in support of analogical reuse. In: proceedings
of the symposium on software reusability, pp 169–178

Lung C-H, Urban JE (1995b) An expanded view of domain
modeling for software analogy. In: proceedings of the interna-
tional computer software and applications conference, pp 77–82

Lung C-H, Cochran JK, Mackulak GT, Urban JE, (1994) Com-
puter simulation software reuse by generic/specific domain
modeling approach. Int J Softw Eng Knowl Eng 4(3):81–102

Lung C-H, Mackulak GT, Urban JE (2002) Software reuse and
knowledge transfer through analogy and design patterns. In:
proceedings of the international conference on software engi-
neering research and practice, pp 618–624

MacLean A et al (1991) Reaching through analogy: a design
rationale perspective on roles of analogy. In: proceedings of the
conference on human factors in computing systems, pp 167–172

Maiden NAM (1991) Analogy as a paradigm for specification re-
use. Softw Eng J 6(1):3–15

Maiden NAM, Sutcliffe AG (1992) Exploiting reusable specifica-
tions through analogy. Commun ACM, 35(4):55–64

Maiden NAM, Sutcliffe AG (1993) Requirements engineering by
example: an empirical study. In: proceedings of the interna-
tional symposium on requirements engineering, pp 104–111

Massonet P, van Lamsweerde A (1997) Analogical reuse of
requirements frameworks. In: proceedings of the 3rd interna-
tional symposium on requirements engineering, pp 26–37

Mineau GW (1990) Browsing through knowledge: learning by
comparing generalization. In: proceedings of the international
conference on advanced research on computers in education,
pp 261–266

Mineau GW, Godin R, Missaoui R (1993) Induction of generic
data models by conceptual clustering.In: proceedings of the 5th
international conference on software engineering and knowl-
edge engineering, pp 554–564

Miriyala K, Harandi MT (1989) Analogical approach to specifi-
cation derivation. In: proceedings of the 5th international
workshop on software specification and design, pp 203–210

Moore JM, Bailin SC (1991) Domain analysis: framework for re-
use. In: Tutorial on domain analysis and software systems
modelling. IEEE Computer Society Press, pp 179–204

Morrison CT, Dietrich E (1995) Structure-mapping versus high-
level perception: the mistaken fight over the explanations of
analogy. In: proceedings of the 17th annual conference of the
cognitive science society, pp 678–682

Neal L (1990) Support for software design, development, and reuse
through an example-based environment. In: proceedings of the
5th conference on knowledge-based software assistant, pp 176–
182

Neighbors JM (1992) The evolution from software components to
domain analysis. Int J Softw Eng Knowl Eng 2(3):325–354

Opdahl AL, Henderson-Sellers B, Barbier F (2003) Ontological
analysis of whole–part relationships in OO-models. Inf Softw
Technol 387–399

21

Pisan Y (2000) Extending requirement specifications using analogy.
In: proceedings of the international conference on software
engineering, pp 69–75

Prieto-Diaz R (1991) Implementing faceted classification for soft-
ware reuse. Commun ACM 34(5):89–97

Prieto-Diaz R (1993) Status report: software reusability. IEEE
Software 61–66

Prieto-Diaz R, Arango G (1991) Introduction and overview:
domanin analysis concepts and research directions. In: Tutorial
on domain analysis and software systems modeling. IEEE
Computer Society Press, pp 9–32

Roberts N, Andersen DF, Deal RM, Garet MS, Shafeer WA
(1983) Introduction to computer simulation: the system
dynamics approach. Addison-Wesley, Reading, MA, USA

Silverman BG (1983) A good analogy and how to measure it.
Technical report, Institute for Artificial Intelligence. The
George Washington University

Silverman BG (1985) Software cost and productivity improve-
ments: an analogical view. Comput 18(5):86–96

Simos MA (1991) The growing of an organon: a hybrid knowledge-
based technology and methodology for software reuse.
In: Tutorial on domain analysis and software systems model-
ling, IEEE Computer Society Press, pp 204–221

Sowa JF, Majumdar AK (2003) Analogical reasoning. In: pro-
ceedings of international conference on conceptual structures

Spanoudakis G Constantopoulos P (1996) Analogical reuse of
rquirements specifications: a computational model. Appl Artif
Intell Int J 10(4):281–306

Sternberg RJ (1977) Intelligence, information processing, and
analogical reasoning: the Componential Analysis of Human
Abilities. Lawrence Erlbaum Associates, Hillsdale

Talavage J, Hannam RG (1988) Flexible manufacturing systems in
practice: application design, and dimulation. Marcel Dekker,
New York

UML (2005) UML resource page, http://www.uml.org/, last
accessed date: Oct 17, 2005

Vitharana P, Zahemi F, Jain H (2003) Design, retrieval, and
assembly in component-based software development. Commun
ACM 46(11):97–102

Wartik S, Prieto-Diaz R (1992) Criteria for comparing reuse-ori-
ented domain analysis approaches. Int J Softw Eng Knowl Eng
2(3):403–432

Yimam-Seid D, Kobsa A (2003) Expert finding systems for orga-
nizations: problem and domain analysis and the DEMOIR
approach. J Organ Comput Electron Commer 13(1):1–24

22

	Analogy-based domain analysis approach to software reuse
	Abstract
	Introduction
	Tab1
	Fig1
	Overview of analogical problem solving
	Structure-mapping
	High-level perception \(HLP\)
	Pragmatic approach
	Taxonomy of semantic relations
	Development of a software analogy model
	Constraints of analogy for software reuse
	Tab2
	Components for analogy-based reuse
	Representation
	Mapping
	Generalization and classification
	Fig2
	Software analogy models
	Analogy-based domain analysis \(ABDA\) approach
	Definition and identification
	Fig3
	Domain modeling
	Object modeling
	Functional modeling
	Fig4
	Fig5
	Tab3
	Relational modeling
	Classification of semantic relations
	Fig6
	Taba
	Generation of causal structure of relations
	Fig7
	Fig8
	Tab4
	Fig9
	Dynamic modeling
	Purpose
	Fig10
	Generalize and classify product models
	Evaluation of domain models and classification
	Tab5
	Fig11
	Modeling of domain architecture
	Evaluation and classification of ABDA
	Evaluation based on requirements modeling
	Fig12
	Evaluation from the analogy perspective
	Classification based on domain analysis criteria
	Practical application experience
	Summary
	References
	CR1
	CR2
	CR69
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26
	CR27
	CR28
	CR29
	CR30
	CR31
	CR32
	CR33
	CR34
	CR35
	CR36
	CR37
	CR38
	CR39
	CR40
	CR41
	CR42
	CR43
	CR44
	CR45
	CR46
	CR47
	CR48
	CR49
	CR50
	CR51
	CR52
	CR53
	CR54
	CR55
	CR56
	CR57
	CR58
	CR59
	CR60
	CR61
	CR62
	CR63
	CR64
	CR65
	CR66
	CR67
	CR68

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

