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Abstract

Program restructuring is a key method for improving the quality of ill-structured programs, thereby increasing the understandability
and reducing the maintenance cost. It is a challenging task and a great deal of research is still ongoing. This paper presents an approach
to program restructuring inside of a function based on clustering techniques with cohesion as the major concern. Clustering has been
widely used to group related entities together. The approach focuses on automated support for identifying ill-structured or low-cohesive
functions and providing heuristic advice in both the development and evolution phases. A new similarity measure is defined and studied
intensively specifically from the function perspective. A comparative study on three different hierarchical agglomerative clustering algo-
rithms is also conducted. The best algorithm is applied to restructuring of functions of a real industrial system. The empirical observa-
tions show that the heuristic advice provided by the approach can help software designers make better decision of why and how to
restructure a program. Specific source code level software metrics are presented to demonstrate the value of the approach.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Software evolves over time primarily due to changes in
requirements and technologies. As a result, huge amount
of effort is spent in maintenance and evolution. Software
evolution usually accounts for more than 60% of total soft-
ware costs (Sommerville, 1996). In today’s highly compet-
itive era, software development is often driven by tight
schedules. Hence, software designers often emphasize the
functional aspect of a system. Even if a software product
is well designed, the code is often modified over time in
response to the changing needs of customers. As a conse-
quence, its original structure gradually drifts and quality
degrades. Hence, the program becomes difficult to under-
stand. As a result, it is often costly to maintain.
0164-1212/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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Müller, et al. indicate that 50–90% of software evolution
work focuses on program comprehension or understanding
(Müller et al., 1995). Program understanding could be at
various levels, including architecture, design, and code. At
the implementation level, a large or poorly coded function
usually involves multiple activities or has low functional
cohesion, which makes the program difficult to understand
and modify. Program restructuring (Chikofsky and Cross,
1990) or refactoring (Fowler, 1999) can transform these
functions to functions that are better organized and easier
to understand, without changing their behaviors. The new
functions will usually be higher quality and less costly for
further evolution. More importantly, a desirable restructur-
ing should achieve high cohesion and low coupling (Briand
et al., 1996; Munson, 2003; Pressman, 1997).

Cohesion, as an important measure in restructuring, is
to measure how tightly related elements are in a compo-
nent. The goal of clustering is to group similar or related
elements together. It is possible to use clustering analysis
to measure the strength of the relationship between
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elements in a component. Previous articles of software clus-
tering demonstrate research potential in software clustering
field (Tzerpos and Holt, 1998) and conclude that clustering
methods may be a very good starting point for the remod-
ularization of software (Wiggerts, 1997).

However, existing research on the software clustering
field has mainly been concerned with software remodular-
ization at the architecture level and has not been used in pro-
gram restructuring at the source code level. Source code
contains critical information regarding the behavior of a sys-
tem. The understanding and manipulation of source code is
a pressing issue for maintenance and evolution. This paper
focuses on source code. Specifically, this paper deals with
restructuring of each individual function. One challenge of
restructuring at this level is how to meaningfully and effec-
tively group related code segments together inside a large
or poorly structured function to form small or cohesive
functions, because it is not uncommon that unrelated frag-
ments and functionally cohesive code segments are inter-
leaved in real software products. In addition, the approach
should be easy to understand and also effective in practice.
Clustering techniques are suitable for this problem, because
the objective of clustering is consistent with that of cohesion.

This paper presents an approach to program restructur-
ing using clustering techniques at the function level. It
focuses on using automated support for identifying low-
cohesive functions and making restructuring decisions,
instead of the automated restructuring process. The pur-
pose is to help software designers identify ill-structured
functions and provide them with heuristic advices. In
detail, this paper discusses how to select entities and how
to select attributes that are important to distinguish two
different entities from the cohesion perspective. A new
resemblance coefficient as a similarity measure is defined.
Extensive experiments on the weights of different attributes
are conducted. Three hierarchical agglomerative algo-
rithms: single linkage algorithm (SLINK), complete link-
age algorithm (CLINK) and weighted pair-group method
using arithmetic averages (WPGMA1), are chosen and an
intensive comparative study on them is conducted. These
algorithms are highlighted as follows:

• SLINK: also called the nearest neighbor method. It
defines the similarity measure between two clusters as
the maximum resemblance coefficient among all pair
entities in the two clusters.

• CLINK: also called the furthest neighbor method. It
defines the similarity measure between two clusters as
the minimum resemblance coefficient among all pair
entities in the two clusters.

• WPGMA: this defines the similarity measure between
two clusters as the simple arithmetic average of resem-
1 In the previous version of this paper published in the Proc. of SCAM

2004, WPGMA was mistakenly termed as UPGMA.
blance coefficients between two clusters without consid-
ering the cluster size.

The algorithm that produces the best result will then be
applied to program restructuring of an industrial system.

The structure of the rest of this paper is as follows. Section
2 reviews the related work in both program restructuring and
software clustering areas. Section 3 proposes an approach to
program restructuring using clustering techniques and dis-
cusses the issues involved in the approach. Section 4 provides
an extensive study on the similarity measure by weighting
attributes differently. Section 5 gives a comparative study
of three clustering algorithms: SLINK, CLINK and
WPGMA. Section 6 presents a case study of program
restructuring using the clustering results on an industrial
software system. Empirical observations are also summa-
rized. Section 7 presents the conclusions and future work.

2. Related work

There has been extensive research on software restruc-
turing. This section describes related research on restruc-
turing at the function or the design level. Additionally,
this section also presents related research on software
clustering.

2.1. Restructuring at function level

The early days of restructuring efforts focused on mak-
ing a program’s control flow easier to follow. This category
is quite mature (Arnold, 1989). Previous research on pro-
gram restructuring at the function level has primarily used
program slicing or input/output dependence techniques to
restructure modules with cohesion as the main criterion
(Kang and Beiman, 1998, 1999; Kim and Kwon, 1994;
Lakhotia and Deprez, 1998, 1999). Conceptually, their
works are similar.

Kim and Kwon (1994) present a method of restructuring
a poor-structured module. The method applies program
slicing to extract tightly coupled sub-modules (processing
blocks), and uses module strength as a criterion to identify
multi-function modules and to decide how to restructure
such modules. Based on the code implementation, module
strength is defined in terms of the level of sharing between
processing blocks. However, the method does not give the
information that is not related to output variables.

Kang and Beiman (1998, 1999) have introduced a
method to restructure modules during the design or main-
tenance phases. The authors define the input/output depen-
dence graph (IODG) of a module, similar to the variable
dependence graph (VDG) in (Lakhotia, 1993), to model
the data dependence and control dependence relationship
between input and output components of a module. They
also define an association-based design-level cohesion
(DLC) measure as a criterion of program restructuring.
The cohesion measure presented in these papers only con-
siders dependence information between input and output
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components, and does not reflect code fragments that are
not related to the output components.

Lakhotia and Deprez (1998, 1999) use tuck transforma-
tion to restructure program by breaking large functions into
small functions. The method complements those reported in
(Kang and Beiman, 1998, 1999; Kim and Kwon, 1994) by
computing pairwise cohesion. Tuck includes three transfor-
mations: wedge, split and fold. A wedge is a subset of state-
ments in a slice, which contains related computations. After
a wedge is formed, it is split from the rest of the code and
folded into a new function. The paper uses a rule-based
approach proposed in (Lakhotia, 1993) to compute pair-
wise cohesion between variables in the function as a crite-
rion of restructuring. The empirical study in the paper
(Lakhotia and Deprez, 1999) shows that the approach has
some limitations for industrial applications.

The methods in (Kang and Beiman, 1998, 1999; Lakho-
tia and Deprez, 1998, 1999) extract computations related to
output variables. A function, which has a single output var-
iable, cannot be decomposed further. In practice, especially
with regard to telecommunication programs, it is common
that some code fragments, such as error handling routines,
may not be related to output variables. In such cases, the
slices of output variables cannot reflect the code fragment
related to error handling. In addition, it is also common
that in a large function there is only one output variable
(a global variable), but the function involves multiple
activities. Therefore, previous approaches have some
limitations.

Lung and Zaman (2004) apply clustering techniques to
function restructuring and demonstrate how to restructure
a low-cohesive function into high-cohesive functions using
simple examples presented in the literature. They treat exe-
cutable program statements as basic components, or enti-
ties, and variables as attributes. They also introduce
artificial variables for iterative loops and logical control
statements. This paper, however, extends the concept,
defines a new similarity measure, and compares various
weights systematically and applies the technique to indus-
trial software.

2.2. Restructuring at design level

There also has been extensive research on software clus-
tering conducted at the design or architectural level
(Anquetil and Lethbridge, 2003; Anquetil et al., 1999;
Arnold, 1989; Bieman and Kang, 1998; Bieman, 1994; Chi-
kofsky and Cross, 1990; Choi and Scacchi, 1990; Chu and
Patel, 1992; Hutchens and Basili, 1985; Kang and Beiman,
1998, 1999; Kim and Kwon, 1994; Lakhotia and Deprez,
1998, 1999; Lakhotia, 1993, 1997; Lung et al., 2004; Lung
and Zaman, 2004; Lung, 1998; Mancoridis et al., 1999;
Mancoridis et al., 1998; Maqbool and Babri, 2004; Mitch-
ell and Mancoridis, 2001; Müller et al., 1993, 1995;
Schwanke, 1991; Tzerpos and Holt, 1998; Wen and Tzer-
pos, 2004; Wiggerts, 1997). Tzerpos and Holt (1998) survey
clustering approaches and find that classic clustering tech-
niques can be used in the software context and that there is
a research potential in the software clustering field. They
point out that some structure is better than no structure.
Wiggerts (1997) provides a general overview of clustering
techniques and their applications to system re-modulariza-
tion, highlighting the benefit of the general theory of clus-
tering analysis. Lakhotia (1997) gives a survey on
subsystem classification techniques and provides a unified
framework for entity description and clustering methods
in order to facilitate comparison between various sub-
system classification techniques.

Previous software clustering approaches have concen-
trated on software system modularization or re-modular-
ization at the architectural or design level. The entities to
be clustered could be functions (routines), global variables
(for identifying abstract data types), or files. Their similar-
ity measures are either based on relationships between
entities (Hutchens and Basili, 1985; Lung et al., 2004;
Mancoridis et al., 1998; Mitchell and Mancoridis, 2001;
Müller et al., 1993), or based on shared features (Anquetil
and Lethbridge, 2003; Anquetil et al., 1999; Schwanke,
1991), with or without giving weights to the relationships
or features. Researchers have used different information
or formula to measure the similarity based on different
perspectives.

2.3. Clustering algorithms

The clustering algorithms used in previous work fall into
three categories: hierarchical algorithms (Anquetil and
Lethbridge, 2003; Anquetil et al., 1999; Hutchens and
Basili, 1985; Lung et al., 2004; Lung and Zaman, 2004;
Schwanke, 1991), optimization algorithms (Mancoridis
et al., 1999; Mancoridis et al., 1998; Mitchell and Manco-
ridis, 2001), and graph theoretic algorithms (Choi and
Scacchi, 1990; Müller et al., 1993).

Among the hierarchical agglomerative algorithms,
UPGMA (unweighted pair-group method using arithmetic
averages) is a commonly used approach (Romesburg,
1990). Lung (1998) and Lung et al. (2004) present reverse
engineering and reengineering experiences for architecture
or design recovery based on UPGMA. Both UPGMA
and WPGMA are average linkage clustering algorithms.
The difference is that UPGMA considers all pair entities
in two clusters or cluster size in calculating the average;
whereas WPGMA calculates the simple average.

However, the survey in (Lakhotia, 1997) suggests that
most researchers prefer the SLINK algorithm in subsystem
classification. Girard et al. (1999) tailor the SLINK algo-
rithm because the approach generated very large groups
that were not useful. Alternatively, Anquetil and Leth-
bridge (2003) suggest the CLINK algorithm based on their
experiments for software re-modularization using files.
Maqbool and Babri (2004) present a weighted combined
linkage algorithm of software clustering to support archi-
tecture recovery and a comparative study with some clus-
tering algorithms.
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Different algorithms may be suitable for different appli-
cations. Recently, Wen and Tzerpos (2004) presented a
comparative study of software clustering, including hierar-
chical agglomerative algorithms, based on MoJo distance
for architecture decomposition. The paper adopts the Jac-
card coefficient to calculate the resemblance coefficients.
Their approach also automatically generated clusters by
the software based on the number of clusters selected by
the user. Our paper, however, advocates user inputs to
decide the final clustering results, because other factors in
software could affect relationships of entities or compo-
nents, especially at the code level. In addition, testing needs
to be conducted after function restructuring. Function
restructuring without user inputs could create a lot of
burdens in post-mortem analysis and testing.

Software clustering is a complicated research area. The
user of the clustering approach needs to decide how to
choose entities and attributes, how to measure and com-
pute similarity, and which algorithm to use for a specific
problem. This paper targets clustering at the program
statement level inside of a function, which is a relatively
new area. We have conducted a number of experiments
to help answer those questions.

3. An approach to program restructuring using clustering

techniques

This section presents an approach to code restructuring
using clustering techniques and discusses key issues of
clustering techniques.

3.1. Program restructuring approach

The objective of program restructuring is to improve the
structure or internal strength of a function. The program
restructuring approach proposed in this paper is supported
by a set of tools. The approach is based on clustering anal-
ysis, with cohesion as the main criterion. The existing struc-
ture of a program with quantitative measure is shown in a
tree after a clustering analysis has been performed. The
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approach provides information about the existing structure
of a function, the quantitative structure measure, and a
heuristic guideline for improving the existing code. It can
be used to help software designers make a decision – why
and how to restructure an existing program.

Fig. 1 shows the approach for program restructuring
using clustering techniques. The approach also deals with
some fundamental and challenging issues of clustering for
functions. Those issues include: definition of entities and
attributes inside of a function, an algorithm to calculate
resemblance coefficients, and selection of the best clustering
method. Each of these issues will be discussed in detail later
in this paper. Currently, the study is conducted for C
programs; however, the technique can be applied to other
languages as well.

The approach has four key phases as shown in Fig. 1.
Phase one is data collection and processing. In this phase,
the Parser tool parses source code automatically and gener-
ates raw data of entity–attribute matrix. The raw data may
contain some ‘‘noises’’ (unwanted data), which are removed
during data refining. Entities are the items or components
that are going to be clustered. Each entity has one or more
attributes. Entities are grouped based on the attributes that
they share. In other words, the more attributes two entities
have in common, the more closely related these two entities
are. However, in order to apply the clustering technique to
programs, we first need to define entities and attributes spe-
cifically relevant to functions in this phase, which will be
presented in detail in Sections 3.2 and 3.3. The entity–attri-
bute matrix generated after data refining is the input data
for the next phase – clustering.

Phase two is clustering. The most important and funda-
mental step in clustering analysis is the similarity measure.
After entities and their attributes are defined, a metric
called resemblance coefficient is calculated to measure the
similarity between two entities. Basically, similarity or the
resemblance coefficient between two entities is measured
or calculated based on the common attributes that these
two entities share. Many algorithms have been proposed
or used to compute the coefficients for various applications
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(Everitt, 1974; Romesburg, 1990; Sneath and Sokal, 1973).
Software, however, potentially consists of many artificial
factors for which those algorithms are not directly suitable.
Section 3.4 discusses in length how to calculate resem-
blance coefficients specifically for program restructuring.

After the resemblance coefficient has been defined, clus-
ters can be constructed using a clustering algorithm. Cur-
rently, three hierarchical agglomerative algorithms:
SLINK, CLINK and WPGMA, are supported. Selecting
the best clustering algorithm is another challenge. Different
algorithms may be better suited for different applications as
summarized in Section 2.3. We have conducted a number
of comparative studies in different areas and selected the
best one for program restructuring. Section 5 presents
the comparison among the three clustering algorithms.
The Clustering tool performs this phase automatically.

Phase three is visualization and analysis. After the clus-
tering phase, the result is displayed as a tree, which shows
the existing structure of a function being analyzed. Closely
related entities are grouped into a cluster. The degree of
relatedness of two entities in a cluster is represented by
the resemblance coefficient. By examining the tree, ill-struc-
tured code fragments may be identified; these are candi-
dates for restructuring. The clustering tree provides
heuristic advice on how to restructure a function. But soft-
ware designers must participate in making the final deci-
sion based on their experience, insights, and the
restructuring objectives, though the tool itself can automat-
ically generate clusters if the number of clusters is provided.

Phase four is the actual restructuring of a program. The
identified low-cohesive functions will be decomposed into
several code fragments, and some of them are composed
into new functions. This phase is processed manually.

3.2. Entities

Entities are those items that needs to be grouped. For
program restructuring at the function level, statements are
chosen as entities, because statements are the basic units
of a program and it is not our intention to change the behav-
ior of a program. There are two types of statements: execut-
able and non-executable statements. Non-executable
statements, such as comments and declarations, have no
real effect on the functionality provided by the function.
So they are not selected as entities. Executable statements
include assignment statements, predicate statements, itera-
tion statements, function call statements, end statement
and so on. In the restructuring approach, only the execut-
able statements that can be described by their attributes
are considered to be entities (attributes are discussed in Sec-
tion 3.3). Entities are further divided into control entities
and non-control entities. A control entity refers to an entity
that is either a predicate statement (such as if or switch state-
ment) or iteration statement (such as for or while statement).
If an entity is not a control entity, it is a non-control entity.
Each entity is represented by a number, which corresponds
to the line number of a statement in the source code.
3.3. Attributes

An attribute is a feature or property of an entity. An
entity may have many attributes. Different properties of
an entity can be described by different attributes. However,
selected attributes must contribute to the understanding of
predefined objective criterion. Attributes will be used to
calculate how closely two entities are related based on the
fact that entities are more similar if they share many
common attributes.

In order to perform clustering on program statements
(entities), we first need to identify the attributes of the
entity. A statement consists of variables, constants, opera-
tors, keywords, brackets, function names (in function call
statements) and semicolon. In the context of cohesion, a
statement is evaluated to see if it is related to a functional
activity. Different variables and function names may be
related to different functional activities and therefore are
used as attributes. Constants, operators and keywords
are not chosen as attributes.

Based on data dependence and control dependence
relationship, variables are divided into data variables and
control variables, which are described below.

3.3.1. Data variable

A data variable refers to the variable that is directly used
in a statement. Data variables as a type of attribute reveal the
data dependence relationship of entities. Data variables
include local variables, global variables, and parameters
passed to a function. They can also be divided into two types
of variables: variables with a primitive type and variables
with a composite type, or a user-defined type. A composite
variable, such as an array, a linked list, or a user-defined data
structure (struct), is treated as one variable. In addition, a
function name in a function call statement is also treated
as a data variable.

3.3.2. Loop counter variable
A loop counter variable is another kind of data variable

and is used to count the number of times that a loop is
repeated. Because the restructuring focuses on static func-
tional structure, no matter how many times a loop is
repeated, the loop body is treated as having the same relat-
edness to one or more functional activities. In addition, the
loop counter is usually associated with a composite vari-
able, e.g., an index variable used in an array. Therefore,
the loop counter variable is not counted as an attribute.

3.3.3. Control variable

In order to reveal control dependence, control variables
are postulated as a type of attribute in the restructuring
approach. A control variable is one that is artificially added
to describe entities in a control block. It is a logical variable
used to describe control dependence relationship between
entities. Entities with the same control variable mean that
they belong to the same control block, e.g., if or while

block, in the source code.



1266 C.-H. Lung et al. / The Journal of Systems and Software 79 (2006) 1261–1279
Therefore, in the restructuring approach, data variables
(excluding loop counter variables) and control variables
are chosen as attributes to describe entities. They are also
called data attributes and control attributes, respectively.
An attribute can be measured with a quantitative scale or
a qualitative scale. Based on our definition of attributes,
each attribute is measured on a qualitative scale as a binary
representation. Thus, each attribute has two states either
presence or absence, which are described below.

0 – absence state of a control or data attribute;
1 – presence state of a control attribute;
2 – presence state of a data attribute.

In addition, the data attributes in control entities are
treated as control attributes due to the fact that the entities
are used for the control purpose. Based on the above dis-
cussion, between any two entities, there are six different
types of combinations or matches for each attribute, as
follows:

• 1–1 match: a control attribute is present in both entities.
• 2–2 match: a data attribute is present in both entities in

case neither of them is a control entity.
• 0–0 match: an attribute is absent in both entities.
• 1–0 or 0–1 match (mismatch): a control attribute is

present in one entity but absent in the other.
• 2–0 or 0–2 match (mismatch): a data attribute is present

in one entity but absent in the other.
• 2–1 or 1–2 match: a data attribute is present in both

entities in case one of them is a control entity and the
other is a non-control entity.

3.4. Similarity measure

Similarity measure is used to evaluate closeness between
two entities and is represented with a resemblance coeffi-
cient. Many algorithms have been proposed depending on
the nature of the data and selection of weights. The main
idea is based on two features: Attributes and Matches.

3.4.1. Attributes

Generally, the more attributes two entities share, the
closer they are related and the more similar they are. There
are two types of attributes: data attributes and control
attributes. From the cohesion point of view, these two
types of attributes contribute to different degrees of cohe-
sion because they describe different dependence relation-
ships. Lakhotia (1993) indicates that two variables, which
have a data dependence relationship, are more high-cohe-
sive than two variables that have a control dependence
relationship. Therefore, data attributes and control attri-
butes should be weighted differently.

Data attributes have different types, namely a local vari-
able, a global variable, a parameter passed to a function or a
function name in a function call statement. It is important to
understand if we need to treat these different types of data
attributes differently. In addition, a data attribute may
appear in a non-control entity or a control entity. Hence,
it is also important to understand if a data attribute is mea-
sured equally when it describes different types of entities. We
analyze different types of data attributes as follows:

Variable scope: A global variable can be referenced by
multiple functions in a program. It may be related to many
different functional activities. A local variable is referenced
inside a function and it is only related to the functional
activities provided by the particular function. At the func-
tion level, however, from the functional activity point of
view, there is no difference between a global variable and
a local variable. In a low-cohesive function, a global vari-
able may be referenced by several different activities. But
a local variable may also have the same situation. Hence,
a global variable and a local variable in a function play
the same important role in function cohesion and are there-
fore, treated equally.

Function name: A function name in a function call state-
ment is treated as a data variable. In the approach, a func-
tion call statement is treated as a non-control entity.
Different functions usually perform different tasks or activ-
ities. A function name is used to distinguish different func-
tion calls that correspond to different functionalities.
Therefore, a function name in a function call is measured
in the same way as a local variable.

Data attributes in control entities: A control entity is dif-
ferent from a non-control entity in that it has an indirect
contribution to a functional activity. When a variable or
a data attribute appears in a control entity, it has no direct
relatedness to an activity. However, when a data attribute
is used in a non-control entity, it is directly related to an
activity. Therefore, data attributes in control statements
or entities should be treated differently from those in
non-control entities. In the approach, data attributes in
control entities are simply treated as control attributes.

Therefore, all the data attributes (e.g., variables) in the
data entities (non-control statements) are considered to
have equal importance for functional cohesion. As the data
attributes in control entities are treated as control attri-
butes (e.g., if statements), the problem of the weighting
attributes boils down to the problem of the weighting
between control attributes and data attributes. We believe
that data attributes should be weighted more than control
attributes, since a data attribute affects a functional activity
directly while a control attribute affects indirectly.

3.4.2. Matches

Now, the problem is to determine the weights for
various matches in the similarity measure.

0–0 match: A 0–0 match means that an attribute is not
used in either of the two entities. An entity–attribute matrix
gives all the attributes that are used in a function. However,
each entity is only related to a few attributes, and most of
them are valued with 0. There are many 0–0 matches in the
matrix. Lung et al. (2004) address that counting 0–0
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matches will generate distortion and result in dissimilarity.
The study presented in (Anquetil and Lethbridge, 2003)
also shows that better results are obtained without consid-
ering 0–0 matches. In program restructuring, the similarity
of two entities is not affected by adding unrelated attri-
butes. Therefore, 0–0 matches are ignored.

1–2/2–1 match: This kind of match occurs between one
control entity and one non-control entity when they share
a common data attribute. When these two entities are in
the same control block, they share a common control attri-
bute and there is already a 1–1 match that counts the control
dependence. Thus, there is no need to use 1–2/2–1 matches
to describe control dependence again. When these two enti-
ties are not in the same control block, they do not have
control dependence. So 1–2/2–1 matches are also ignored.

1–1 match and 2–2 match: 1–1 matches and 2–2 matches
mean that two entities share common attributes, which
have a positive contribution to the similarity measure. A
1–1 match indicates that two entities have a control depen-
dence relationship, or two control entities share a common
data variable. It reflects the control structure of a function.
A 2–2 match shows that two entities have a data depen-
dence. Because data dependence contributes more to cohe-
sion than control dependence, a 2–2 match should have
more weight than a 1–1 match.

1–0/0–1 match and 2–0/0–2 match: A 1–0/0–1 match is a
mismatch on a control attribute and shows the dissimilarity
for control dependence or control structure. A 2–0/0–2
match is a mismatch on a data attribute and describes
the dissimilarity for data dependence. Both contribute to
the dissimilarity between entities. If matches on common
data attributes (2–2 matches) play a more important role
in the similarity between entities than matches on common
control attributes (1–1 matches), then mismatches on data
attributes (2–0/0–2 matches), should also have more
importance for dissimilarity than mismatches on control
attributes (1–0/0–1 matches). Hence, 2–0/0–2 matches
should be weighted more than 1–0/0–1 matches.

In summary, 0–0 matches and 1–2/2–1 matches are
ignored; 2–2 matches contribute more to the similarity than
1–1 matches; while 2–0/0–2 matches contribute more to the
dissimilarity than 1–0/0–1 matches. The matches on data
attributes are more important than on control attributes.
The weighting of matches is consistent with the weighting
of attributes.

3.4.3. Resemblance coefficient

Based on discussion mentioned above, a new resem-
blance coefficient between two entities is defined as follows:

coeff ¼ wdad þ wcac

wdad þ wcac þ wdbd þ wcbc

ð1Þ

where

coeff – resemblance coefficient;
ad – number of 2–2 matches between two entities;
ac – number of 1–1 matches between two entities;
bd – number of 2–0/0–2 matches between two entities;
bc – number of 1–0/0–1 matches between two entities;
wd – weight of data attributes;
wc – weight of control attributes;
wd > wc > 0.

Here, the weight of an attribute represents its importance
compared to other attributes. Attributes of the same type
are weighted the same and the weight of data attributes
is heavier than that of control attributes. If there is no com-
mon attribute shared by two entities, they are unrelated
and coeff = 0. If all attributes used to describe two entities
are shared by them, bd = 0 and bc = 0, then they achieve
the maximum similarity with coeff = 1. The value of the
resemblance coefficient is between 0 and 1.

4. Experiments on similarity measure

The resemblance coefficient has been defined, but how to
decide the weights is still unsolved. Previous research did
not give systematic study on this issue. Dhama (1995) uses
a heuristic estimate to give the data parameters twice as
much weight as the control parameters. Schwanke (1991)
estimates the significance of a feature using Shannon infor-
mation content, which gives rarely-used identifiers higher
weights than frequently-used identifiers. In this paper, the
weights of attributes are considered as positive integer
and are decided through extensive experiments.

The experiments focus on the different weight ratios
between the data attributes and the control attributes. A
number of functions appearing in papers (Bieman and
Kang, 1998; Bieman, 1994; Kim and Kwon, 1994; Lakhotia
and Deprez, 1999), student assignments, and real industrial
programs are used for evaluation. The size of each function
ranges from 8 to 55 lines (not including comments and white
spaces). The experiments start with a weight ratio of 2:1,
that is, in Eq. (1), wd = 2 and wc = 1. The results shown in
this section are generated by the WPGMA algorithm.

4.1. Weight ratio of 2:1

The weight ratio of 2:1 works well for most of selected
examples. But it does not work well when it is used to ana-
lyze an example with communication cohesion in (Bieman
and Kang, 1998). The example code is shown in Fig. 2, the
entity–attribute input matrix (without function name and
parameters, and variable declarations) is shown in Table
1, and Fig. 3 illustrates the clustering result depicted by a
clustering tree or a dendrogram. A dendrogram is a two-
dimensional diagram, in which there is a vertical scale of
a resemblance coefficient from 1 to 0, and the entities are
indicated in a horizontal direction. The numbers along
the horizontal direction correspond to the line numbers
in a function. The diagram illustrates the hierarchical struc-
ture of the functional relatedness of the entities. Entities
that are more closely related are grouped in the lower layer
with the higher resemblance coefficients.



Fig. 4. Clustering tree with 3:1 weight ratio for sample code 1 in Fig. 2.

Table 1
Entity–attribute matrix of sample code 1

Entity Attribute

Data attribute Control attribute

n arr sum prod avg for

4 0 0 2 0 0 0
5 0 0 0 2 0 0
6 1 0 0 0 0 1
7 0 2 2 0 0 1
8 0 2 0 2 0 1
10 2 0 2 0 2 0

1 procedure sum_and_prod(n: integer; arr: int_array;
var sum, prod: integer;  var avg: float);

2 var i: integer; 
3 begin 
4 sum := 0; 
5   prod := 0; 
6 for i:=1 to n do begin 
7   sum := sum + arr[i]; 
8 prod := prod + arr[i]; 
9   end; 
10 av := sum/n;g
11 end;

Fig. 2. Sample code 1: sum and prod (Bieman and Kang, 1998).

Fig. 3. Clustering tree with 2:1 weight ratio for sample code 1 in Fig. 2.
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Fig. 3 shows that entities (7,8) are grouped together, and
entities (4,10) are grouped together. But in fact, entities
(4,7) are related to the same functional activity – the com-
putation of sum. Entity 10 uses the result of sum to com-
pute the average avg. Entities (5,8) contribute to the same
activity – the computation of prod. The tree does not reveal
the real functional structure in this example.

The resemblance coefficients between those entities give
the explanation of the result.

coeff ð4;7Þ ¼
2� 1

ð2� 1Þ þ ð2� 1Þ þ ð1� 1Þ ¼ 0:40:

coeff ð5;8Þ ¼
2� 1

ð2� 1Þ þ ð2� 1Þ þ ð1� 1Þ ¼ 0:40:

coeff ð7;8Þ ¼
ð2� 1Þ þ ð1� 1Þ

ð2� 1Þ þ ð1� 1Þ þ ð2� 2Þ ¼ 0:43:

Because coeff(7,8) > coeff(4,7) and coeff(7,8) > coeff(5,8), the
algorithm groups entities (7,8) together instead of entities
(4,7) and entities (5,8). Although data attributes are
weighted twice as heavily as control attributes, it seems that
the control attributes still play more of a role in similarity
measure than they should, and more weight should be
added to data attributes.

4.2. Weight ratio of 3:1

The weight ratio of 3:1 is used in the sample code 1 in
Fig. 2 and the result is shown in Fig. 4. The clustering tree
illustrates two clusters: C1 and C2. Cluster C1 has three
entities (4,7,10), which are related to the computation of
sum and avg. Cluster C2 consists of two entities (5,8),
which are related to the computation of prod. Entity 6 is
a control entity that is shared by two computation activi-
ties. The tree shows the real functional structure.

With a 3:1 weight ratio, the clustering result of sample
code 1 is totally different from the result obtained with a
2:1 weight ratio. Now the resemblance coefficients of the
entity pairs (4,7), (5,8), and (7,8) are as follows:

coeff ð4;7Þ ¼
3� 1

ð3� 1Þ þ ð3� 1Þ þ ð1� 1Þ ¼ 0:43:

coeff ð5;8Þ ¼
3� 1

ð3� 1Þ þ ð3� 1Þ þ ð1� 1Þ ¼ 0:43:

coeff ð7;8Þ ¼
ð3� 1Þ þ ð1� 1Þ

ð3� 1Þ þ ð1� 1Þ þ ð3� 2Þ ¼ 0:30:

Here, coeff(4,7) > coeff(7,8) and coeff(5,8) > coeff(7,8), so enti-
ties (4,7) and (5,8) are grouped together, respectively.

Sample code 2 in Fig. 5 is an example from an industrial
program. It is the implementation of processing the body
of a function based on the token type in a C code parser
program. The main functional activity is to process the
token body with an unreserved token type, which is imple-
mented in the source code from line 27 to line 57.

Fig. 6 shows the clustering result with a weight ratio of
3:1. The cluster C1 is related to the activity of processing
the body with an unreserved token type, which should be
involved with entities from entity 27 to 54, as mentioned
above. Here entities 16 and 19 interleave cluster C1. Entity
16 merges with this cluster by sharing a common data attri-
bute token with entities (30,38,43,45). Entity 19 joins to
cluster C1 by sharing a common data attribute cntl_flag

with entities (32,36,40,50). This shows that data attributes
with a 3:1 weight ratio may play more of a role in the sim-
ilarity measure than they should. In the experiments, differ-



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 process_functionBody (char[] token, int *token_type, int *cntl_flag, 
                int *strcpy_flag, int equal_flag, int line_no) 
2 {   
3     int  position; 
4     int  check_type_process_reserved (); 
5     int  search_local_list     (); 
6     int  search_decl_keywords  (); 
7     int  search_decl_user      (); 
       //... 
16    *token_type = check_type_process_reserved (token); 
17   
18    if (*token_type == CNTL_KEY) 
19        *cntl_flag = TRUE; 
20    else if (*token_type == LIBRARY_FUNC) { 
21        if (strcmp (token, "strcpy") == 0) 
22           *strcpy_flag = TRUE; 
23        else 
24           ;   /* to avoid ambiguity of nested if */ 
25    } 
26    else if (*token_type == IDENTIFIER) {  
27        if (! search_decl_keywords (token) && 

        ! search_decl_user (token)){ 
28           //... 
30           position = search_local_list (token); 
31           if (position != -1) {     
32              update_local_list (position, *cntl_flag, line_no); 
                  //... 
36              update_para_list (*strcpy_flag, equal_flag,   
                                               *cntl_flag, position); 
37           } else { 
38               position = search_global_list (token); 
39               if (position != -1) { 
40                  update_global_list (position, *cntl_flag, line_no); 
41                           
42                  if (global_list [position].type == GLOBAL) 
43                      put_token_into_local_list (token, GLOBAL); 
44                  else if (global_list [position].type == FUNCTION) 
45                      put_token_into_local_list (token, FUNCTION);          
                       //... 
49                  position = local_count - 1;  
50                  update_local_list  (position, *cntl_flag, line_no); 
51              } 
52          } /* end of outer if (position != -1) */ 
53           if (*strcpy_flag) 
54               *strcpy_flag = FALSE; 
55   
56       } /* end of if (!search_decl_keywords ...)  */ 
57    } /* end of if (*token_type == IDENTIFIER)  */ 
58 }

Fig. 5. Sample code 2: Process functionBody.

Fig. 6. Clustering tree with 3:1 weight ratio for sample code 2 in Fig. 5.

Fig. 7. Clustering tree with 8:3 weight ratio for sample code 2 in Fig. 5.
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ent weight ratios, between 2:1 and 3:1, have been tested.
Those ratios are 9:4, 7:3, 5:2, and 8:3.

4.3. Weight ratios of 9:4 and 7:3

When a weight ratio of 9:4 or 7:3 is used to the sample
code 1 in Fig. 2, both of them generate a similar clustering
tree as the one with a weight ratio of 2:1 shown in Fig. 3.
So both 9:4 and 7:3 weight ratios do not work well for
the sample code 1.

4.4. Weight ratios of 5:2 and 8:3

When a weight ratio of 5:2 or 8:3 is used to the sample
code 1 in Fig. 2, both of them generate a similar clustering
tree as the one with a weight ratio of 3:1 in Fig. 4. So both
5:2 and 8:3 weight ratios work well for the sample code 1.
When these two ratios are used to the sample code 2
in Fig. 5, they generate very close results. Fig. 7 shows
the clustering tree with an 8:3 weight ratio for the sample
code 2.

Fig. 7 shows that cluster C1 contains exact entities that
are related to the activity of processing the token body with
an unreserved token type. Entities 16 and 19, which are
inside cluster C1 in Fig. 6 with a weight ratio of 3:1, are
now outside the cluster here. This is because the weight
of data attributes has been reduced. The relationship
between entity 16 and entities (30,38,43,45), due to sharing
a common data attribute token, becomes weaker and entity
16 is separated from cluster C1. The same reason is for
entity 19. The tree reveals the real functional structure of
the sample code 2. Both 8:3 and 5:2 ratios work well in this
example. These two weight ratios also give expected results
for all selected examples in the experiments.

In summary, six different weight ratios were investigated
in a series of experiments. The weight ratios of 2:1, 9:4, and
7:3 do not work with sample code 1 in Fig. 2. The weight
ratio of 3:1 works well with the sample code 1, but does
not work well with sample code 2 in Fig. 5. Both 5:2 and
8:3 ratios work very well with all selected examples and
generate very close results. Therefore, the ratio of 8:3 is
chosen to weigh the data and control attributes in the
similarity measure.

5. Experimental comparison of WPGMA, SLINK,

and CLINK

The WPGMA, SLINK, and CLINK clustering algo-
rithms have been applied to more than 60 functions in dif-
ferent areas, including functions appeared in papers,
student assignments and industrial programs. This section
presents comparisons of these three algorithms.



1  procedure Sum_Max_Ave(n: integer; var arr: int_array;
 var sum, max: integer;  var avg: float); 

2  var I: integer;
3  begin 
4  sum := 0;
5   max := arr[1];
6 for I := 1 to n do begin 
7   sum := sum + arr[I];
8  if arr[I] > max
9   max := arr[I];
10 end;
11  avg := sum/n;
12 end;

Fig. 8. Sample code 3: Sum, Max and Average (Bieman and Kang, 1998).

Fig. 9. Clustering results for sample code 3.
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5.1. Comparison on small functions

Fig. 8 is an example code in (Bieman and Kang, 1998),
which calculates the sum and average, and selects the max-
imum element of an array. The WPGMA, SLINK, and
CLINK clustering algorithms are applied to sample code
3 of Fig. 8. Fig. 9 presents the results. Fig. 9(a) shows
two clusters, (4,7,11) and (8,9,5). Statement 6, for loop,
does not belong to any cluster; rather, it is shared by the
two clusters. Fig. 9(b) shows two clusters, (4,7) and
(8,9,5). Statements 11 and 6 join two previous groups later,
one by one. This is called a ‘‘chain’’ phenomenon. Fig. 9(c)
generates the worst result. Statement 5 does not show any
Table 2
Comparison between three algorithms for students’ programs

Function WPGMA SLINK CLINK

1 x
2 x
3 x
4 x x
5 x x
6 x x x
7 x x x
8 x
9 x

10 x x
11 x
12 x x
13 x
14 x

Note: x indicates the best algorithm.
relationship with other statements. Its resemblance coeffi-
cient is 0, which clearly does not reflect the real meaning
of the function.

We have applied all three algorithms to 21 small func-
tions (7 LOCs to 22 LOCs) presented in the related litera-
ture (Bieman and Kang, 1998; Bieman, 1994; Lakhotia and
Deprez, 1998, 1999). For all examples provided in the
papers, the WPGMA has an effective rate of 100% based
on designers’ evaluation. Alternatively, SLINK does not
work well for three examples and CLINK does not work
well for 5 examples used in (Bieman and Kang, 1998; Bie-
man, 1994).

5.2. Comparison on student assignments

The three algorithms have also been applied to fourteen
functions from students’ assignments that were designed
for a variation of the classical smoker problem using sema-
phores and shared memory on the Linux operating sys-
tems. WPGMA works well for all but one function.
SLINK generates good clusters for seven functions and
CLINK has good results only for two examples. Table 2
demonstrates the results.

In a few assignments, all three clustering algorithms
detected duplicate code segments. The duplicate code is
detected by the replicated patterns in the dendrogram.
The repeated portions can be replaced with an array, a
function, or a loop depending on the nature of the code.
Replacing repeated code segments or clones will improve
the maintainability of the function.

5.3. Comparison on industrial programs

The next step was a comparison of these three clustering
methods on industrial programs. First, these three algo-
rithms were applied to analyze two functions from an
industrial C parser used for metrics extraction. This was
the preliminary step to evaluate clustering methods for
practical programs. Table 3 summarizes the results.
LOCs Cyclomatic complexity No. of activities

182 36 3
85 19 3
30 6 2
52 14 1
43 8 1
16 2 1
55 14 3
68 13 3

120 20 3
68 14 3
87 14 3
71 13 3

154 30 3
112 27 3



Table 3
Comparison between three algorithms for C parser software

Function WPGMA SLINK CLINK LOCs Cyclomatic complexity No. of activities

process_body x x 41 13 1
process_open_braces x 57 19 3

Note: x indicates the best algorithm.

Table 4
Comparison between three algorithms for RSVP-TE signaling protocol software

Function WPGMA SLINK CLINK LOCs Cyclomatic complexity No. of activities

rsvpTeRx x 74 19 3
rsvpTeDecodeMsg x 283 64 2
rsvpTeRxPath x 104 22 2
rsvpTeProcessERO x 118 23 2
rsvpTeReserve x 100 32 3
rsvpTeUpdateRSB x 58 12 2
rsvpTeBuildResvMsg x 164 24 1
rsvpTeRxPTear x 70 13 2
rsvpTePSBTimeout x 44 8 3
rsvpTeRxRTear x 191 38 2
rsvpTeRxRErr x 140 28 4
rsvpSBFind x x 46 17 2
rsvpTeUpdatePSB x x 76 13 1
rsvpTeBuildRSB x x 32 8 1
rsvpTeProcessFlowDescriptor x x x 98 18 1
rsvpTeUpdateERO x 42 9 2
rsvpTeProcessRRO x 51 16 1
rsvpTeUpdateRRO x 42 9 2
rsvpTeBuildPSB x 110 13 1
rsvpTeBuildPathMsg x 91 10 1
rsvpTeRxResv x 56 12 2
rsvpTeResvRefresh x 57 12 2
rsvpTeRSBAddFilter x 50 7 1
rsvpTeResvTearFD x 70 17 2
rsvpTeRxPErr x 52 8 2

Note: x indicates the best algorithm.
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WPGMA shows better results for both cases while SLINK
generates functional cluster only for one case.

Second, the algorithms were applied to 25 functions
(ranging from 32 LOCs to 283 LOCs) from the RSVP-
TE network signaling protocol software. The background
information of the software system is described in Section
6 on program restructuring. These 25 functions were
selected by the designers as restructuring candidates. Table
4 summarizes the comparison results. Furthermore, the
following observations are made:

• WPGMA generates good functional clusters for 15 func-
tions whereas SLINK generates 13 and CLINK only
generates 2.

• Only WPGMA generates good clusters for functions
larger than 110 LOCs or with a cyclomatic complexity
higher than 18.

• WPGMA generates functional clusters also when the
size or complexity was small.

• WPGMA detects duplicated code segment better.
Fig. 10 illustrates the clustering results for the three
algorithms for the rsvpTeRxResv function. The clustering
tree from SLINK shows that there are two big functional
clusters: one functional cluster is related to the RSVP-TE
message sanity check and the other is related to message
processing. The clustering tree from CLINK shows 13
small clusters and the clustering tree from WPGMA is
between SLINK and CLINK. Different clustering algo-
rithms generate different clusters. SLINK tends to build a
small number of loose clusters or generates a ‘‘chain’’ phe-
nomenon as illustrated in Fig. 11. On the other hand,
CLINK tends to form a large number of small but compact
clusters. WPGMA provides a compromise between those
two.

6. Case study of program restructuring

So far, we have defined entities and attributes that are
used in the similarity measure; devised a new algorithm
to calculate the resemblance coefficient; and compared



Fig. 10. Comparison of three algorithms for rsvpTeRxResv.

Fig. 11. Chain phenomenon generated by SLINK.
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three clustering algorithms. In order to evaluate the effec-
tiveness of the proposed approach, we have applied the
approach to restructuring of a real industrial system in data
networks.
6.1. System in the case study

The system in the case study is a real network protocol
RSVP-TE program in the telecommunication industry.



Table 5
Comparison before and after restructuring

Metrics Before After Increased

Average lines per function 94.76 37.29 �60.65%
Average cyclomatic complexity of a function 19.94 7.69 �61.45%
Average cohesion of a function 0.08 0.16 +100%
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RSVP (Braden et al., 1997) is a resource reservation proto-
col that enables Internet applications to obtain different
qualities of service (QoS). RSVP-TE (Awduche et al.,
2001) is a signaling protocol that extends the RSVP to sup-
port multiple protocol label-switching (MPLS) (Rosen
et al., 2001) traffic-engineering applications. RSVP-TE
provides a mechanism to establish and maintain explicitly
routed label switched paths (LSPs) (Rosen et al., 2001),
with or without resource reservation.

The original RSVP-TE program was completed on a
schedule-driven basis. During the initial design, only basic
functionalities for simple cases were coded, and then more
functionalities were added during conformance testing in
order to satisfy the specifications of the protocol. The
emphasis of the software development is on functionality.
The RSVP-TE program was written in C with about
6500 lines of code (LOCs) (in this paper, the LOC metric
does not include comments and white spaces) and 110 func-
tions. Some functions are large and involve multiple func-
tional activities. As a result, the understandability of the
code was low. Maintaining and extending the code for
additional functionality were less than desirable.

Based on the evaluation conducted by the designer, 25
functions, as shown in Table 4, with a total of 2173 LOCs
have been selected as restructuring candidates in order to
improve the software quality. The function size ranges
from 32 LOCs to 283 LOCs.

6.2. Restructuring process

For each of the selected function, the restructuring
process follows the steps shown in figure and is described
as follows:

• Generate input data matrix: the input entity–attribute
data matrix is generated from source code using the Par-
ser tool. The matrix is saved in an input file, which will
be read by the Clustering tool during clustering analysis.

• Perform clustering analysis: the Cluster tool computes
the resemblance coefficients between entities and forms
a clustering tree based on a specified clustering algo-
rithm. All three clustering algorithms, WPGMA,
SLINK and CLINK, are used and compared in the case
study.

• Determine restructuring candidates: After the clustering
analysis, we identified that 17 out of the 25 functions in
Table 4 involve more than one functional activity. Some
of them also have duplicated or interleaved code. They
are difficult to understand and the extensibility is also
less than desirable. In order to support long-term main-
tainability, those 17 functions are selected for restructur-
ing. The final decision on restructuring was made based
on the combination of the heuristic advice, the restruc-
turing objective and the software engineers’ experience,
skills and understanding of the program.

• Restructure poorly designed function: the code of the
selected function is decomposed into different frag-
ments, based on the restructuring decision made in the
previous step. The code that is related to a specific func-
tional activity is composed into a new cohesive function.

The restructuring results are illustrated in Section 6.3.

6.3. Restructuring results

In order to compare restructuring results, some software
metrics are adopted for evaluation (Fenton and Pfleeger,
1997), including two commonly used metrics (LOC and
cyclomatric complexity) and a cohesion measure. The
Krakatau metrics tool is used to calculate metrics of size
and cyclomatic complexity. Although the concept of cohe-
sion is generally accepted, there is yet a standard cohesion
metric in the literature. It is beyond the scope of this paper
to discuss the cohesion metric in detail. This paper, on the
other hand, adopts the cohesion measure suggested by
Anquetil and Lethbridge (2003) as a way to compare the
original code and the restructured program and to present
the improvement of cohesion. Their definition of cohesion
of a function is the average resemblance coefficient between
any two entities in the function.

Table 5 presents a summary of the comparison before
and after restructuring. In the case study, the 17 not well-
designed functions with a total of 1611 LOCs were restruc-
tured, which represent 24.78% of the RSVP-TE program.
After restructuring, 34 new functions were generated.
Compared with the original 17 functions, the average size
of a function, after restructuring, drops by 60.65% from
94.76 LOCs to 37.29 LOCs, the average cyclomatic com-
plexity decreases by 61.45% from 19.94 to 7.69, and the
average cohesion increases by 100%. The restructuring
shows a measurable improvement. The complexity
improvement is especially significant, which shows that
the program understandability and maintainability are
greatly improved.

The Appendix presents an example showing how one
function was actually restructured. The original function
has about 140 executable LOCs with cyclomatic complex-
ity of 28. The function was decomposed into five functions
ranging from 28 LOCs to 50 LOCs, and complexity values
are from 4 to 11. The original code contained four activi-
ties. Each activity was then extracted to become a new
function.

From the designer’s perspective, the restructured soft-
ware becomes smaller in size and simpler in complexity.
Each function performs less or simply one activity. There-
fore, the code becomes easier to understand and maintain.
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The restructured code was also accepted by the design
team.

6.4. Empirical observations

In the case study, the restructuring approach is applied
to 24 functions in the RSVP-TE software. In general the
approach works well and provides heuristics for restructur-
ing. The following presents some observations and
limitations.

Functional clusters: Related entities are grouped together
to form a cluster. If a cluster corresponds to a specific func-
tional activity, it is a functional cluster. A clustering tree
shows functional clusters and gives heuristic advice to
designers to consider restructuring.

Duplicated code: A clustering tree also shows some pat-
terns. The same pattern that appears more than once in a
clustering tree may illustrate problems related to duplicated
code. This happened in the case study.

Interleaved code: Normally, if there is no interleaved
code, a cluster corresponds to a contiguous fragment of
code, e.g., all entity numbers are inside a certain range. If
an entity number belongs to that range but is not grouped
into that cluster, the entity may be an interleaved entity.

Cut-point: In some cases, there is no single cut-point that
can be used to divide the whole clustering tree and get
meaningful results. Especially in a large clustering tree,
there may exist different cut-points used to cut different
branches (functional clusters). Each branch that corre-
sponds to a specific functionality is cut and moved to a
new function for cohesion perspective. The decision should
be made by designers to avoid maintenance problems, even
though the clustering tool can achieve it using some thresh-
old values.

Clustering algorithms: In the case study, the restructur-
ing approach has been experimented on all 25 functions
with three clustering algorithms: WPGMA, SLINK and
CLINK. Table 2 reveals that WPGMA and SLINK gener-
ate similar best results for six out of fourteen functions.
The result obtained from the network protocol software,
however, shows that only one function for which all three
algorithms generate the expected result and only three
functions for which both WPGMA and SLINK work very
well. In total, WPGMA works well for 14 functions and
SLINK works well for 13 functions. CLINK does not
work well in the case study as well as for the students’
assignments.

Restructuring may not necessarily always reduce the size

and/or complexity: In some cases, the size or complexity of
a function may not be reduced much after restructuring.
For example, a function called rsvpTeDecodeMs has simi-
lar metric values before and after the restructuring. This
particular function has a switch statement that consists of
a large number of cases. The big switch statement is used
to decode different possible RSVP-TE objects in an
RSVP-TE message. It is logical to keep those cases in
one place although they may not be related to each other.
Although the clustering analysis in the restructuring
approach can show functional clusters and reveal some
potential problems that exist in the source code, there are
still some limitations, which are describe as follows:

Non-functional clusters: A non-functional cluster refers
to a cluster that does not contribute to a specific function-
ality. Examples of non-functional clusters are clusters that
contain only control entities, or entities with one attribute,
such as the same flag variable, etc. Usually a non-func-
tional cluster is connected to a functional cluster and both
of them together form a more complete functional cluster.
But it may also appear independently. We suggest that the
software designers be responsible to identify whether a
cluster is a functional cluster or a non-functional cluster
primarily due to possibly complicated program semantics
and other factors, e.g., performance.

Singleton clusters: A singleton cluster refers to a cluster
that contains only one entity. It usually represents a rela-
tively independent control statement, a function call state-
ment or an initialization statement. It is also the software
designer’s responsibility to decide whether a singleton
cluster should be grouped with another cluster or not.

Big data structures: In the RSVP-TE program, there is a
global variable rsvpNode, which is a big data structure
(struct) with 52 member variables. In the restructuring
approach, such variable is treated as one variable. There-
fore, different functional activities that are related to differ-
ent member variables could be grouped together.

One variable related to multiple functionalities: In some
functions, one variable may be used in entities that partic-
ipate in different activities. These entities tend to be
grouped together.

7. Conclusions and future directions

This paper presented a program restructuring approach
using the clustering technique, for C programs. Specifically,
we have discussed the selection of entities and attributes,
similarity measure, resemblance coefficient experiments,
hierarchical agglomerative algorithms comparison, and
the application of the approach to an industrial program.
The main goal of the restructuring approach was to pro-
vide automated support to identify poorly designed or
low-cohesive functions and give heuristic restructuring
advice to software designers in order to improve the cohe-
sion of functions in both the software development and
evolution phases.

In the restructuring approach, entities are divided into
control entities and non-control entities. Similarly, attri-
butes are divided into data attributes and control
attributes. A new resemblance coefficient is defined to mea-
sure the similarity between entities in terms of cohesion.
The experimental study of various weight ratios between
the data attribute and the control attribute shows that a
weight ratio of 8:3 (or 5:2) consistently generates
the expected results for all the selected examples under
study.
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Based on the study of more than 60 functions in different
areas, WPGMA generally works best among the three
commonly used algorithms, especially when the software
Fig. 12. The original source code of rsvpTeRxREr
size or complexity is high. It improves the quality of the
code and supports evolution, resulting in software that is
more understandable and maintainable. SLINK works well
without variable declarations and comments.
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in some cases, but the results are more difficult to predict.
On the other hand, CLINK does not produce good func-
tional clusters. To reveal more cohesive clusters, WPGMA
and SLINK can be applied at the same time.

As a case study, the approach was used to analyze a real
telecommunication program and subsequent restructuring.
In general, the approach works well. The clustering analy-
sis based on the resemblance coefficient defined in this
paper can identify high-cohesive sub-functions inside a
large low-cohesive function and reveal potential problems
in the existing code.

In real programs, there are many artifacts, and the code
may be written in an ad hoc manner or drifted away from
the original design idea due to evolution. The resemblance
coefficient defined in this paper only considers the main
factors related to functional cohesion. Although the weight
ratio between data and control attributes was studied
extensively, there are still some limitations. Software
designers need to identify which clusters are functional
clusters. They also need to decide where those singleton
clusters should be placed. In addition, big data structures
with more independent member variables tend to group
different functional activities together and coupling may
increase as a result of the restructuring.

In this paper, the restructuring approach was applied to
a real telecommunication program and provided useful
information. Different types of applications may have dif-
ferent features, which might affect the cohesion or similar-
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ity measure. More experiments are still needed for other
types of programs. In addition, the clustering results were
only compared with the expected results. More objective
criteria to evaluate clustering results should be developed
Fig. 13. Partial clustering

Fig. 14. Restructure
in the future. The cohesion measure defined in (Anquetil
and Lethbridge, 2003) is based on pairwise similarity mea-
sure and therefore it may not be entirely objective. And the
value of the cohesion measure is very low because some
tree of rsvpTeRxREr.

d rsvpTeRxREr.
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entities may not share any common attributes. How to
quantitatively measure the cohesion still needs further
research.
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Appendix

The following presents an example from the RSVP-TE
protocol to show the effect of restructuring. Fig. 12 is a
partial listing of the original code without variable declara-
tions, comments, and white spaces. Hence, the line numbers
are not continuous. Fig. 13 presents part of the clustering
tree. The clustering tree demonstrates four relatively inde-
pendent clusters, C1, C2, C3, and C4. The code can be more
modularized by replacing those clusters with functions.
Fig. 14 is the restructured code which consists of four new
functions correspond to the four clusters shown in the
clustering tree in Fig. 13.
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