
A TCP Connection Establishment Filter: Symmetric
Connection Detection

Brad Whitehead and Chung-Horng Lung
Systems and Computer Engineering
Carleton University, Ottawa, Canada
{bwhitehe, chlung}@sce.carleton.ca

Peter Rabinovitch
Research and Innovation

Alcatel-Lucent, Ottawa, Canada
peter.rabinovitch@alcatel-lucent.com

Abstract— Network measurement at 10+Gbps speeds imposes
many restrictions on the resource consumption of the measure-
ment application, making any filtering of input data highly
desirable. Symmetric Connection Detection (SCD) is a method of
filtering TCP sessions, passing only those sessions which become
fully established. SCD can benefit network monitoring applications
that are only interested fully established TCP connections by re-
ducing processing requirements. Incomplete connection attempts,
such as port scanning attempts, simply waste resources in many
applications if they are not filtered. SCD filters out unsuccessful
connection attempts using a combination of Bloom filters to
track the state of connection establishment for every flow passing
through a network device. Unsuccessful flows can be filtered out to
a very high degree of accuracy, depending on the size of the Bloom
filter and traffic rate, 99.5% is typical. Resource consumption,
both memory and CPU is low. The core SCD algorithm is designed
to work in high-speed routers, in real-time, and at line speed. Using
an upper bound of 32k bytes of RAM our experimental results
indicate 99+% accuracy with 900,000 active flows.

I. INTRODUCTION

Network traffic analysis applications intended for network
engineering or other applications by ISPs may require com-
putationally intensive processing of flow records. Processing
the flow records generated by a typical OC-192 (10Gbps) edge
router typically requires either large computational resources, or
techniques which reduce the computational load at the expense
of accuracy. In this paper we advocate a third approach to this
problem; focus available computing resources on flows which
impact directly on the desired measurement by pre-filtering
incomplete flows.

Existing solutions for monitoring network traffic have the
common problem of scalability. The Real-Time Flow Moni-
toring (RTFM) specification describes a fine-grained, flexible,
and programmable architecture for monitoring network traffic
[5]. This architecture processes every packet, matching it to
an existing flow record or creating a new record if the flow
is not found. Many different statistics can be calculated based
on the resulting records, with no loss of accuracy. However,
architectures based on per-flow association of packets, such
as RTFM, can not scale to high-speed links such as OC-192
or OC-768 [10]. Currently specialized hardware is required to
support lower speed links such as OC-48 [6].

Ensuring scalability to 10+Gbps speeds requires a careful
approach to the design of the monitoring application. The indus-
try standard flow reporting solution, NetFlow, is implemented

on edge and core routers using sampling of packets to reduce
processing and memory requirements [16]. The simplest form
of sampling selects only one out of every n packets, thus
introducing substantial inaccuracy in many network statistics
[9]. Several techniques have been proposed to increase the
accuracy of sampled flow statistics [8], or improve the accuracy
for specific applications [7]. These techniques are limited to
solving a specific problem, and can only place an upper bound
on the sampling induced inaccuracy.

Scalability is a crucial element of network measurement
applications, and yet has proved one of the most strenuous
problems to solve. The difficulty of the scalability problem is
best demonstrated by the wealth of work presenting complex
solutions for otherwise simple problems. These solutions are all
intended to provide network measurement at 10+Gbps speeds.
Kumar, et al. propose a hardware-based solution which is
capable of estimating the number of packets sent on a per-flow
basis [13]. They introduce a new type of Bloom filter called a
space-code Bloom filter which allows counting and is ideal for
a hardware implementation.

Ideally we wish to be able to reduce the processing re-
quirements of traffic analysis without sacrificing accuracy. To
this end we describe a filtering technique which is capable of
reducing the number of flows, and therefore the computational
requirements, by up to 95% for average Internet traffic. Like
many other proposed solutions to high-speed network moni-
toring our solution makes use of a time and space efficient
data structure known as a Bloom filter [4]. A Bloom filter is
a bit array which supports set membership tests by using k
independent hash functions to address k bits in the bitmap. To
insert an element the k bits the element hashes to are set to 1,
and therefore all k bits will be 1 if the element is a member of
the set. One main drawback to Bloom filters that they have a
small probability of generating a false positive, which will be
further discussed in section III.

Symmetric Connection Detection (SCD) is method of fil-
tering network traffic such that only fully established TCP
flows will pass through the filter. SCD uses Bloom filters to
maintain minimal state about every TCP connection attempt.
The operation of SCD can be summarized as follows; TCP
SYN packets are associated to flow identifiers, in a highly
compressed format, using two Bloom filters. Once a TCP
SYN has been “seen” from both sides of a connection SCD

1-4244-0353-7/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

247

will report that the connection was successfully established.
The unique feature of SCD is its ability to provide very
high accuracy while using very small amounts of RAM and
CPU time. In section IV we show that using only 32k bytes
of memory SCD can achieve 99% accuracy even in adverse
conditions (900,00 active flows).

Network monitoring applications such as tracking the du-
ration of TCP flows can be optimized using the pre-filtering
provided by SCD to filter out flows which are never fully
established. In typical Internet traffic TCP accounts for 95%
of traffic, of which 5-10% is SYN packets [19] (also shown in
section IV). Reduction in flows can benefit many applications,
for example, an application which is tracking the duration
of flows only requires access to those flow which are fully
established, processing any other flows or SYN packets is a
waste of computing and memory resources. In this paper we
show that many of the SYN packets seen on the general Internet
are not valid connection attempts, but instead are part of DDoS
attacks or port scanning. These SYN packets will almost never
become established flows. We show in section IV that filtering
these flows can reduce the processing requirements of our
hypothetical duration tracking software by 95%.

II. RELATED WORK

After an extensive survey, to the best of our knowledge there
is no work directly related to filtering incomplete TCP flows
out of network flow data in real-time. This is perhaps due to
the relative simplicity of the problem when infinite resources
are available to filter traffic. In this section, we discuss other
work that has laid the ground work for our extension of Bloom
filters and approach.

Stateful packet filters are able to track the connection state
of TCP sessions, examples of these are [17][5][1]. From the
perspective of resource consumption, these stateful filters are
equivalent to tracking all flows individually. Storing per-flow
state makes these applications very flexible in their feature set,
but also requires memory on a per-flow basis. As a result, these
applications are unable to process packets at the line speed of
a 10Gbps edge router due to, the requirement to use DRAM
to store the flow information, and the computational resources
required for flow lookup. It will be shown in section IV that
even when a stateful filter uses optimization techniques such
as a very large hash table to increase flow lookup speed, SCD
provides an order of magnitude better performance.

Since SCD focuses on connections that are established, and
the opposite problem is detecting connections that are never
established, the research into detecting port scanning contains
some work that is similar in concept to SCD. However, it should
be understood that detecting incomplete connections and report-
ing complete connections are two different problems. SCD is
able to report fully-established connections, but without further
processing SCD is not able to report half-open connections.
Paxon describes a system called Bro which detects port scans
by tracking the number of connection failures for specific hosts
[14]. TCP SYN, FIN, and RST packets are used by Bro to track
the state of every connection on a per-flow basis (see section III

for a brief description of TCP). Tracking per-flow state requires
the use of DRAM to store the large amount of state, so Bro is
limited to lower-speed networks.

Weaver, Staniford, and Paxon present a method of contain-
ing scanning Internet worms by detecting their port scanning
attempts [21]. Again this paper focuses on port scan detection,
not established connections. The authors mention using Bloom
filters as an approximation cache, but not in the context of
tracking connection attempts. Their implementation uses an
associative cache to track external connections, and requires
a notion of internal and external IP addresses, which would
result in inefficient operation on edge or core routers.

The use of Bloom filters as a time and space efficient data
structure to keep state on set membership is not unique to this
paper [3]. A survey of the network applications of Bloom filters
is [4]. Attig and Lockwood have shown that a Bloom filter can
be implemented in hardware and can scale to OC-192 (10Gbps)
speeds [2], a low power strategy is [12]. Attig and Lockwood
use a Bloom filter based method to detect patterns in network
traffic and report on suspicious flows.

III. SYMMETRIC CONNECTION DETECTION

Symmetric Connection Detection (SCD) provides a 95%
reduction in the number of flows which must be tracked and
processed by a per-flow network monitoring algorithm. This
reduction is accomplished by reporting when a TCP or other
connection-oriented connection attempt is very likely to result
in a fully established connection. When used as a filter, SCD
is able to filter flows which are never fully established, and
therefore pass only those flows which are fully established to a
secondary processing algorithm. In this section we give a high-
level overview of the operation of basic SCD, and in section
III-A we describe an extension to SCD to improve accuracy.

Two fundamental requirements can be identified for any
algorithm that implements a filter which passes only complete
connections. First, every network packet must be processed
and some amount of state must be stored for every connec-
tion establishment attempt. Storage of the connection state is
necessary for the algorithm to track the connection progress
of the endpoints, and determine when a connection is either
fully established or is very likely to become fully established.
Second, a detection mechanism must decide when the flow
establishment process is complete by monitoring or comparing
the state of all flows.

Based on these two fundamental requirements the basic
operation of SCD is straight-forward to describe. SCD stores
the state of all connection attempts and performs a comparison
on the connection state to determine when a connection has
been established. SCD can report the current connection status
in real-time, every time the state of a flow changes. The
connection status is reported as a boolean value; true if the
flow is now established, and false if it is not yet established.
Connection information can then be used to filter or pass
packets for that flow to a higher level monitoring system, or
the statistics can simply be logged and provided to network
operators.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

248

The process of tracking the connection state may be specific
to the underlying protocol being tracked. In this section, we
assume that the underlying protocol is TCP, and therefore
begin with a short description of the TCP connection process
and how it relates to SCD. To establish a TCP connection
a three-way handshake process takes place; each computer
sends a SYN, and the initiating computer sends an ACK to
complete the connection [15]. Once the ACK is received the
connection process is completes and the TCP session is fully
established. Tracking the establishment of a TCP connection
therefore requires keeping track of all three states, however this
can be simplified to two states with the following observation.
From a point in the middle of the route between the computers
the receipt of SYN packets from both sides of a connection
implies that both computers can reach each other and want to
establish a connection, strongly indicating that the connection
will be established with a completing ACK. SCD makes use of
this observation and defines an established connection as one
where both sides have received a SYN from the other side but
not necessarily an ACK. Therefore SCD processes only TCP
SYN packets, or an average of about 1 in 20 packets (TCP
SYN is about 5% of network traffic as discussed in section I).

The problem of tracking connection establishment can now
be defined as the following question; when a TCP SYN is
received from one side of a connection has the other side
already sent a SYN? If so then the connection is established,
if not then store the fact that this side of the connection
has sent a SYN. To answer this question SCD keeps state
on all SYN packets that have been sent and the direction
that they were sent in. Direction is determined by comparing
the source and destination IP addresses, e.g. if source IP is
greater than destination IP then the packet is assigned direction
1, and if source IP is less than destination IP the packet
is assigned direction 2. Storing the flows which have sent a
SYN in a specific direction could be accomplished through the
use of many different data structures, but many potential data
structures would lack sufficient performance to be able to keep
up with the requirement to perform a search and possibly an
insert on every SYN packet. Therefore, the data structure must
be time and space efficient, and ideally would support searching
and inserts that scale in constant time with the number of items
stored. Bloom filters are such a data structure.

SCD is designed to operate in a resource-limited environ-
ment, and undergo gradual degradation of accuracy as resources
become more limited. This operation is accomplished through
the use of Bloom filters. The only data storage required by SCD
is the SYN-direction information for each flow. To meet this
storage requirement we employ two Bloom filters, one filter for
each SYN direction. Bloom filters represent a set that can be
tested for membership. Mapping this concept to our problem
can be done as follows; when a SYN is received, test the Bloom
filter for the opposite direction to see if a SYN was sent from
the other side; if so, the connection is established. If a SYN has
not yet been received from the other side, then the connection
is not yet established, and this is either the first SYN packet in

Fig. 1. Flow-Chart of SCD Operation

the connection or the other side is not responding. If the flow
was not already stored in the filter for its direction it is added.

The use of Bloom filters in SCD introduces the first two
parameters of the algorithm. First, the length m of the array of
bits comprising the filter can be varied, resulting in a memory
usage of 2 * (m/8) bytes for SCD. Second, the number of hash
functions, k, used to insert a new entry into the Bloom filter
can be varied. The optimal value of k has been calculated to be
k = ln(2) * (m/n), where n is the maximum expected number
of entries in the filter [4]. The value of k can also affect the
computational requirements of SCD since k independent hash
functions must be evaluated for every packet. Bloom filters can
generate false positives due to the fact that two different flow
identifiers may hash to the same k values. The probability of a
false positive is given by f = (1 − e−kn/m)k.

Figure 1 is a flow chart describing the processing of a TCP
SYN packet by SCD, with the following steps:

• 1. Compute Src > Dst: The source and destination IP
addresses are compared as unsigned integers to determine
which address is greater, source or destination. If they are
equal the packet is assumed to be corrupt, and is ignored.

• 2. Lookup IP: The Bloom filters are queried to see if
a SYN packet was sent in the opposite direction for this
flow, e.g., if the incoming packets source IP is greater than
the destination IP, then the Bloom filter for the opposite
direction (Dst > Src) is queried. The packet is used to
generate a number of hashes which are used to query the
Bloom filters. The number of hashes used is a parameter.

• 3a. Connection Established: If the Bloom filter returns a
positive result to the query, then it can be concluded that
the connection is established, to a high degree of accuracy.

• 3b. Add to filter: If the Bloom filter returns a negative
result the corresponding Bloom filter is updated with the
flow, e.g., if the incoming packets source IP is greater than
the destination IP, then the flow is added to the Src > Dst
Bloom filter.

A potential problem arises when continual operation of SCD
is considered. If left unchecked, the Bloom filters representing
each direction would eventually become full and false positive
error rates would climb to unacceptable levels. To avoid this
situation the Bloom filters can be cleared of all their data on a

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

249

periodic basis. The length of this period is the third parameter of
SCD, the maximum connection time. The maximum connection
time describes the maximum time that a TCP connection can
take before it is no longer tracked by SCD. If the connection
establishment exceeds this time the connection becomes a false
negative due to the filters being cleared. A false negative occurs
if the connection state is lost when the filters are cleared,
because the recorded state verifying that the original SYN was
sent is erased, resulting in SCD reporting that the flow was
never established (a false negative). This raises a potential issue;
the minimum connection time that will report a false negative is
potentially 0 if the original SYN packet was received by SCD
just before the filters were cleared. We call the minimum time
that a TCP connection can take to complete before being lost
when the filters are cleared the lower bound of the maximum
connection time. This leads us to propose an improvement over
basic SCD, dual-filter SCD.

A. Dual-Filter SCD

The connection establishment phase of TCP can range from a
few milliseconds to several minutes. This extreme variability in
the connection establishment time for TCP is one of the major
sources of error in SCD. Connections which take much longer
than normal to complete (more than a few seconds) can become
false negatives if they exceed the lower bound of the maximum
connection time. Dual-Filter SCD reduces the number of errors
caused by this variability by raising the lower bound of the
maximum connection time from zero to half of the upper bound
of the maximum connection time.

Dual-filter SCD modifies basic SCD from one Bloom filter
per direction to two Bloom filters per direction. Each Bloom
filter contains the state of connection attempts for a non-
overlapping portion of the total range of time. For example,
if the SCD maximum time is 10 seconds one filter would
initially cover the 0-5sec range and the other would track 5-
10sec. Flows are moved between filters by an aging process,
which will be described below. After 10 seconds of running
time the newer filter will contain flows for the past 0-5 seconds,
and the older filter would contain flows from 5-10 seconds.
During operation of SCD new SYN packets are recorded in
the newer filter, and the older filter simply maintains the state
of older connection attempts. Upon receipt of a new SYN
packet, queries for membership to check if the connection is
now established are performed against both the older and newer
filters.

As with standard SCD, Dual-Filter requires an aging process
to prevent the build up of out of date flow data and maintain
accuracy of the filter. Each filer has a lifetime which is half
of the maximum connection time. Aging occurs when a filter
has reached the end of its lifetime, which is five seconds in our
example above. The aging process moves the newer filter to the
older position (which can be as simple as updating a pointer),
and clears the older filter and moves it to the newer position.

The aging process is as follows, and is repeated once for
each direction;

2
4

8
16

32

64

2097152

1048576

524288

262144

131072

65536

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Error Probability

Max Connection Time

Filter Size

Error rates for CAIDA_04

Fig. 2. SCD Performance for Trace C 04

2
4

8
16

32
64

20
97

15
2

10
48

57
6

52
42

88

26
21

44

13
10

72 65
53

6

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

Error Probability

Max Connection Time

Filter Size

Error rates for NLANR_12

Fig. 3. SCD Performance for Trace N 12

1) The older filter is cleared. Any flow information that was
in this filter is lost.

2) The newer filter is aged to become the older filter,
possibly by simply updating a pointer

3) The older filter is recycled to become the newer filter.

As a result of the dual-filter setup, flows that are received
just before the aging process takes place will be moved to the
older filter. Once in the older filter the connection state will
be maintained until the next aging occurs, therefore the lower
bound of the maximum connection time is increased to half the
maximum connection time (5 seconds in our example).

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

250

IV. EXPERIMENTAL RESULTS

This section describes the expected performance of BDFT
and SCD when deployed in real-world situations. Internet traffic
traces are used to drive the experimental implementations of
BDFT and SCD to obtain an indicator of expected performance.
Analysis and validation was accomplished by implementing
SCD and running experiments based on Internet traffic traces.
To verify the SCD results, a 100% accurate flow tracker tracks
the true connection status of every flow observed in the traces.
This flow tracker was implemented using standard per-flow
tracking and measurement techniques. We defined a flow to
be the standard 5-tuple of IP source and destination address,
TCP source and destination port, and protocol type.

To evaluate the results of our experiments the connection
status reported from the flow tracker was compared to the
results returned from SCD, giving one of three results. First
the SCD algorithm can indicate that the flow is established, in
agreement with the flow tracker, this counts as a successful
indication by SCD. Second, SCD returns that the flow is
established, but the flow tracker indicates that the flow is not
established, this is a false positive and is a characteristic of
bloom filters as explained in section III. Third, SCD can fail
to report an established flow, and the flow tracker indicates
that the flow is established, this is a false negative and occurs
when the flow took longer to establish than the maximum flow
connection time parameter of SCD.

The SCD algorithm was implemented in the C programming
language using standard techniques of bitmap manipulation to
implement the Bloom filters. Packets are read from the trace
and the Bloom filter hashes are generated by three independent
hash functions from the following packet header information; IP
source and destination address, and TCP source and destination
port. The Dual-filter SCD method, described in section III-A,
was implemented by clearing the old filter for either direction
and then simply updating pointers to exchange the new and
old filters. For every SYN packet in the trace the hashes are
passed to the SCD Packet function, which returns true if the
flow is now established and false if it is not. The connection
establishment indication is stored and compared with the final
state of the flow to determine if it was a successful indication.

We obtained traces of Internet traffic from the well-known
networking research organizations CAIDA [20] and NLANR
[11], with the two traces hereafter referred to as C 04 (CAIDA)
and N 12 (NLANR). This section describes many of the intrin-
sic characteristics of these two traces and explains why they
are representative of the diverse extremes of Internet traffic.
In general, the C 04 trace represents normal “dirty” public
backbone Internet traffic, with many packets being invalid
attempts at port scanning or DDoS attacks. This trace was
collected by CAIDA from both directions of an OC48 link at
AMES Internet Exchange (AIX) on Apr. 24, 2003, at Mountain
View, CA, a west coast peering link for a large ISP [20]. The
second trace, N 12, was obtained by NLANR in December of
2003, from their NCAR Gigabit tap (at the National Center

for Atmospheric Research, Boulder) [11]. This trace represents
the other end of the traffic spectrum from C 04, being fairly
“clean” and containing a low number of active flows and very
little or no attack and port scanning traffic.

For our simulations two one-hour long traces were selected
which are representative of classic Internet traffic mixes. We
obtained the traffic traces from two well-known networking
research organizations; CAIDA [20] and NLANR [11], with
the two traces hereafter referred to as C 04 (CAIDA) and
N 12 (NLANR). This section describes many of the intrinsic
characteristics of these two traces and explains why they
are representative of the diverse extremes of Internet traffic.
In general, the C 04 trace represents normal “dirty” public
backbone Internet traffic, with many packets being invalid
attempts at port scanning or DDoS attacks. This trace was
collected by CAIDA from both directions of an OC48 link at
AMES Internet Exchange (AIX) on Apr. 24, 2003, at Mountain
View, CA, a west coast peering link for a large ISP [20]. The
second trace, N 12, was obtained by NLANR in December of
2003, from their NCAR Gigabit tap (at the National Center
for Atmospheric Research, Boulder) [11]. This trace represents
the other end of the traffic spectrum from C 04, being fairly
“clean” and containing a low number of active flows and very
little or no attack and port scanning traffic.

Table I describes the characteristics of the traces we used.
Out of 12.7 million flows in the C 04 trace only 556,000, or
4.3%, are valid fully-established flows. The high invalid-flow
ratio combined with the high number of active flows make this
trace a good worst-case test of SCD. The second trace, N 12,
represents the other end of the traffic spectrum, containing a
low number of active traces and very little or no attack and port
scanning traffic. Out of 358,048 flows in this trace 274,473 are
valid (76.7%), making this trace an example of the best-case
performance of SCD.

Table I also contains two additional columns. The “SYN,
FIN, RST” column shows the percentage of packets from the
trace that are TCP packets with the SYN, FIN, or RST flags on.
Average Active Flows gives a rough estimate of the number of
flows actively transmitting data in the trace. Flow timeouts are
set to thirty seconds for flows that have contained at least one
FIN or RST, and ten minutes for all other flows. Flows that
began before the start of the trace, or have their connection
phase span the end of the trace, are ignored by the flow tracker
and are not included in the results.

Our experimental results are presented in Figure 2, Figure
3, and Table II. To evaluate the performance of SCD, we
varied two parameters of the algorithm, filter size and maximum
connection time. Filter size represents the size of one Bloom
filter in bits. Given that dual-filter SCD uses four filters, the
total memory usage can be calculated as:

Memory Usage =
(

bits per filter
8 bits/byte

)
∗ 4 (1)

The maximum connection time specifies the maximum time
that can elapse between a SYN packet in one direction and

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

251

TABLE I

TRACE CHARACTERISTICS

TraceName TotalPackets TotalTCPF lows AverageActiveF lows SY N, FIN, RST
CAIDA 2003-04 (C 04) 202510985 12795449 901245 10.71%
NLANR 2003-12 (N 12) 196960126 358048 11284 0.66%

TABLE II

SCD PARAMETERS AND ACCURACY

Trace Memory(bytes) Max.Conn.T ime Accuracy
N 12 524288 64 99.9996%
N 12 32768 16 99.9982%
C 04 524288 32 99.9685%
C 04 32768 8 99.0553%

the response SYN from the other direction. Due to the nature
of dual-filter SCD, the actual maximum connection time on a
per-flow basis varies from Max Conn Time / 2 to Max Conn
Time. If this time is exceeded a false negative is generated.

Table II lists example configurations and shows that SCD is
99%+ accurate even at only 32k bytes of memory usage. This
level of memory usage indicates that SCD can be implemented
using SRAM at the datapath level of a router or other network
device. By increasing memory usage to 512k, over 99.9%
accuracy can be achieved. As a comparison of memory usage,
our per-flow tracker used 24MB of memory to store about one
million flows, or forty-eight times more memory than the 99.9%
accurate SCD.

An important observation can be made by analyzing the
SCD results. Some of memory usage plots in Figure 2 have a
local minimum, indicating that there is an ideal setting for the
maximum connection time parameter. The ideal setting occurs
when the false negative and false positive rates balance out.
With a low maximum connection time setting many flows fail to
establish before the filters are cleared, leading to a high number
of false negatives. As the maximum connection time parameter
increases, the Bloom filters start to become overloaded with
flows, leading to a high number of false positives. The increase
in false positives is balanced by the decrease the number of
false negatives as maximum connection time increases. False
negatives decrease for two reasons. First, the direct reduction;
flows that take a long time to establish may take less than the
new maximum connection time, resulting in a false negative
turning into a successful result. The second, is less obvious;
the increasing number of false positives from Bloom filter
overloading result in some beneficial errors; flows that still
exceed the maximum connection time, and therefore should be
false negatives, are reported as being connected due to Bloom
filter errors.

A. Computational Performance

The computational requirements of SCD are determined by
the specific hardware that the algorithm will be executed on.

TABLE III

COMPUTATIONAL EFFICIENCY

%time selfsec calls name
36.94 1105.5 161273588 FindFlow
18.75 561.12 322547176 StoreComps o
14.19 424.76 330 AgeFlows

9.94 297.61 12225610 RemoveFlow
3.2 95.63 71668476 HashLookup

3.02 90.39 186368015 StoreFlow
1.06 31.85 41426043 HashSet
0.87 25.92 186368015 SCD Frame
0.63 18.98 11798670 NewFlow

0.2 5.84 13808681 HashAdd
0.17 5.13 12322186 PacketHash rev
0.15 4.53 11229407 PacketHash fwd
0.11 3.39 14359349 SCD Packet
0.09 2.72 12225610 ProcessFlowEnd

Scaling to 10+Gbps speeds requires use of SRAM for per-
packet memory accesses, and an Application Specific Integrated
Circuit (ASIC) or Network Processing Unit (NPU) for exe-
cution. To ensure scalability to 10+Gbps requires a hardware
implementation of Bloom filters in the ASIC, or a Bloom filter
program in the NPU. Low power hardware implementations of
Bloom filters have been shown to be viable in several papers
[12] [18].

To get a rough idea of the computational requirements and
efficiency of SCD we ran our experiment program through
the Linux profiler gprof (for trace C 04). Table III shows an
abbreviated portion of the gprof output. The % time and self
seconds columns represent the length of time spent in the
function. The functions FindFlow, AgeFlows, RemoveFlow, and
StoreFlow represent the computational requirements of our flow
tracker, and the functions in bold represent SCD. To decrease
the lookup time in the naive flow tracker, flow lookup was
implemented using a one million element hash table, effectively
reducing the number of lookup operations per packet to one,
given that there are less than one million active flows. However,
even with this drastic attempt to increase the efficiency of the
flow tracker the lookup time still accounts for 37% of execution
time, and in total the naive flow tracking functions account
for 64%. By comparison, the performance advantage of an
SCD implementation is clear. Only 5.76% of execution time, or
172.29 seconds (which is the sum of the SCD execution times,
shown in bold) were required to process the 3600 second trace,
leading to a 11x reduction in processing requirements.

In addition to the intrinsic efficiency of SCD, note that
in typical network hardware many of the functions of SCD
are implemented in hardware, such as the hash calculations,

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

252

and bit-wise manipulation and addressing. If these functions
were implemented in hardware it would essentially remove
the PacketHash functions, and much of the processing time
in HashLookup, HashSet, and HashAdd.

V. CONCLUDING REMARKS

Increases in processing requirements for network measure-
ment applications will continue for the foreseeable future, as
the required statistics become more complex. This increase
combined with the large number of fake flows in Internet
traffic, due to DoS attacks and port scanning, cause network
measurement applications to be overloaded processing traffic
that is not of interest to the operator. Processing-intensive
measurement applications can benefit greatly from the up to
95% reduction in flow records that SCD can provide.

We have shown that SCD provides a viable real-time method
of reporting fully established TCP flows. Using very little
memory, SCD is able to achieve accuracy of 99%+. In addition,
SCD can be implemented using hardware-based bloom filters or
on network processors that use SRAM memory. The parameters
of SCD are flexible and only need to be set to approximately the
ideal value to achieve high accuracy. Also note that as an area
of future work it may be possible that with slight modifications
SCD can be used for port scan detection and detection of some
attacks. The bloom filters can be modified to counting bloom
filters, and the hashes can be based on IP addresses only. In
this way it would be possible to track the number of failed
connection attempts on a per-IP basis, with some errors.

VI. ACKNOWLEDGMENTS

Support for this research was provided by the Center for
Communications and Information Technology, a division of
Ontario Centers of Excellence, and Alcatel-Lucent. The exper-
imental results were generated from traces made available to
us by CAIDA and NLANR.

REFERENCES

[1] Snort. http://www.snort.org/ (last accessed on Dec 16, 2006).
[2] Michael E. Attig and John Lockwood. SIFT: Snort intrusion filter for

TCP. In Symposium on High Performance Interconnects, pages 121–127,
Aug 2005.

[3] Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970.

[4] A. Broder and M. Mitzenmacher. Network applications of Bloom filters:
a survey. Internet Mathematics, 1(4):485–509, 2004.

[5] N. Brownlee, C. Mills, and G.Ruth. Traffic flow measurement: architec-
ture (RFC 2722),. http://www.faqs.org/rfcs/rfc2722.html
(last accessed on Dec 17, 2006).

[6] Loris Degioanni and Gianluca Varenni. Introducing scalability in network
measurement: toward 10 gbps with commodity hardware. In Proceedings
of the 4th ACM SIGCOMM Conference on Internet Measurement, pages
233–238, 2004.

[7] Nick Duffield, Carsten Lund, and Mikkel Thorup. Estimating flow
distributions from sampled flow statistics. In Proceedings of the 2003
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, pages 325–336, 2003.

[8] Cristian Estan, Ken Keys, David Moore, and George Varghese. Building a
better netflow. SIGCOMM Computer Communication Review, 34(4):245–
256, 2004.

[9] Cristian Estan and George Varghese. New directions in traffic mea-
surement and accounting. In Proceedings of the 2002 Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications, pages 323–336, 2002.

[10] Cristian Estan, George Varghese, and Mike Fisk. Bitmap algorithms for
counting active flows on high speed links. In Proceedings of the 3rd
ACM SIGCOMM Conference on Internet Measurement, pages 153–166,
2003.

[11] National Laboratory for Applied Network Research. NCAR-1 trace, col-
lected in December, 2003, NSF ANI-0129677 (2002) and ANI-9807479
(1998),. http://pma.nlanr.net/Special/ncar1.html/ (last
accessed on Dec 17, 2006).

[12] T. Kocak and I. Kaya. Low-power Bloom filter architecture for deep
packet inspection. Communications Letters, IEEE, 10(3):210–212, Mar.
2006.

[13] Abhishek Kumar, Jun (Jim) Xu, Li Li, and Jia Wang. Space-code Bloom
filter for efficient traffic flow measurement. In Proceedings of the 3rd
ACM SIGCOMM Conference on Internet measurement, pages 167–172,
2003.

[14] Vern Paxson. Bro: a system for detecting network intruders in real-time.
Computer Networks, 31(23-24):2435–2463, 1999.

[15] DARPA Internet program. Transmission control protocol,. http:
//www.faqs.org/rfcs/rfc793.html (last accessed on Dec 17,
2006).

[16] J. Quittek, T. Zseby, B. Claise, and S. Zander. Netflow version
9,. Cisco Systems http://www.cisco.com/en/US/products/
ps6601/products ios protocol group home.html (last ac-
cessed on Dec 16, 2006).

[17] Darren Reed. Ipfilter. http://coombs.anu.edu.au/∼avalon/
(last accessed on Dec 16, 2006).

[18] Elham Safi, Andreas Moshovos, and Andreas Veneris. L-cbf: a low-power,
fast counting bloom filter architecture. In ISLPED ’06: Proceedings of
the 2006 International Symposium on Low Power Electronics and Design,
pages 250–255, 2006.

[19] K. Shah, S. Bohacek, and A. Broido. Feasibility of detecting TCP-SYN
scanning at a backbone router. In Proceedings of the American Control
Conference, pages 988–995, Jul 2004.

[20] Colleen Shannon, Emile Aben, kc claffy, Dan Andersen, and Nevil
Brownlee. The CAIDA OC-48 traces dataset, collected in April, 2003,.
http://www.caida.org/data/passive/ (last accessed on Dec
17, 2006).

[21] N. Weaver, S. Staniford, and V. Paxson. Very fast containment of scanning
worms. In Proceedings of the 13th USENIX Security Symposium, pages
29–44, Aug 2004.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

253

