
Performance Analysis of Web Service Replica Selection in an Extranet
Partheeban Chandrasekaran1, Shikharesh Majumdar1, Chung-Horng Lung1 and Laura Serghi2
1Department of Systems and Computer Engineering, Carleton University, 1125 Colonel By Drive, Ottawa. 2Alcatel, Ottawa.

partheeban@yahoo.com, majumdar@sce.carleton.ca, chlung@sce.carleton.ca,
laura.serghi@alcatel-lucent.com

Abstract

Providing web service replicas improves the overall

system performance and redundancy for hardware
failures. In Business-to-Business, this may be particularly
interesting for organizations in an extranet. In our
previous work, we proposed a broker to perform the web
service replica selection. Furthermore we investigated a
replica selection algorithm called minU and performed a
preliminary analysis comparing random replica selection
algorithm in a simple 4-node ring topology. In this paper
we present a detailed performance analysis of minU and
the factors affecting its performance under a larger 11-
node network. The factors are weight given to most recent
utility value (p), weight given to communication delay (a)
and replica placement to name a few. Results show that
the response time achieved using the minU replica
selection policy greatly depends on these factors and also
on the topology used. For instance, as the weight given to
the most recent utility value is increased, the response
time of the web services decreased. In our simulation
experiments, choosing a to be 0.3 results in minimum
response time.

1. Introduction

Web Services have become a common standard for
complex software systems to interact with each other in a
distributed network. Due to their ability to provide
platform and language independence, they are being
increasingly used in providing Business-to-Business
(B2B) transactions. An extranet takes advantage of web
services to expose a part of a company’s intranet to its
business partners. These business partners are authorized
users of the extranet and can thus access any available
web service of the participating company. In order to
increase availability and to reduce the response time for
the deployed web services, a company often decides to
replicate key web services. This introduces the need for
web service replica selection in the extranet.

In our previous work [1], we introduced a web service
replica selection framework that can be used in an
extranet. The main component of this framework is a
broker that is responsible for replica selection. This
broker can be placed in an extranet gateway which lies in
between a web service provider (WSP) and a web service
requester (WSR). The broker is also responsible for web
service discovery which decreases the workload at the

WSR. An extranet gateway is a regular gateway which
has the capability of performing web service replica
selection. The workload of the WSP and the
communication delay between the WSR and WSP are the
key parameters used in replica selections.

Using a replica selection strategy called minU, the
broker first polls the WSPs for their load information and
then determines the communication delay by calculating
the round trip time from the WSP to itself. It then
calculates the utility values (see Section 3) of each WSP
and chooses the one with the minimum utility value. The
performance of minU was compared with that of Random
policy which randomly selects a replica. The simulation
results based on our preliminary study using simple
parameters on a small 4-node topology showed that the
minU replica selection strategy performs better under
high load situations. This shows that it is important to use
the knowledge of load information of the WSP and
communication delay while selecting a replica in an
extranet.

In this paper, we present a detailed performance
analysis of the framework proposed in [1] by simulating a
larger topology to represent a more realistic extranet
topology with 11 nodes. In addition, several factors
affecting the minU replica selection policy are
investigated in detail. Should our framework be deployed
in a system, it is important to study the effect of these
factors. This paper helps one to understand the minU
replica selection strategy and its performance in a sample
topology.

The rest of the paper is as follows: Section 2 provides
a background on the web service replica selection and the
framework we introduced in [1] and its deployment in an
extranet. Section 3 explains the working of the minU
replica selection strategy. The simulation model we used
in our experiments is described in Section 4. The results
are summarized in Section 5. Finally, Section 6 concludes
this paper.

2. Web Service Replica selection framework
and its deployment

Since a web service-based extranet extends from the
traditional web service architecture, it consists of WSPs,
WSRs and a registry implemented using the Universal
Description Discovery and Integration (UDDI) protocol.
The WSP could reside in a server located inside a
company’s private network. The WSR is a client

requesting services. It allows applications to find binding
information such as the Web Service Description
Language (WSDL) documents for web services [2].
These three components interact with each other.
However this interaction needs to be modified to meet our
requirements. Thus in an extranet, the traditional web
service architecture is extended to accommodate the
broker to perform replica selection. Figure 1 shows the
components of this extended web service architecture.
They are WSP, WSR, UDDI registry and a broker.

Figure 1: Extended Web Service Architecture [1].

In a typical private network, a gateway connects the

WSP and the WSR to the outside world. Thus in this
case, it is logical to put the broker in the gateway. In [3],
the web service replica selection is done at the WSR.
However this introduces extra overhead of the system-
level or implementation modification at the WSR to
incorporate the web service replica selection. Figure 2
shows a sample extranet architecture. Company A’s site 1
consists of a gateway, a WSP and a WSR. The gateways
can interconnect company A’s other sites to this one and
its extranet partner C as shown in Figure 2. One of the
functionality of a gateway is that of a router. Using our
framework, one can deploy the broker in the gateway to
intercept all web service related packets.

Figure 2: Sample extranet architecture [4].
The broker intercepts any web service requests from a

WSR. It retrieves all the Uniform Resource Identifiers

(URIs) of the WSPs providing that particular web service
using the web service discovery policy. It then uses them
to obtain their load information and the communication
delays to the WSPs.

Figure 3 shows an extranet gateway with the broker
module and its policies. The method of obtaining the load
information is based on the information policy. Load
information can be obtained by pull or push (i.e. polling
or using a centralized load information repository). The
broker then uses this information to estimate the load of
the WSP and the communication delay using the load
estimation policy. Then based on the implementation of
the replica selection policy, the broker selects a web
service replica and forwards the request to that WSP.

Figure 3: Broker and its plug-in components [1].

3. The minU replica selection strategy

The following sub sections summarize the policies
used (see Figure 3) and the equations used in each policy
by the minU strategy.

3.1 Web Service Discovery policy

To find out all the available replicas for a web service,
the broker contacts the UDDI registry and obtains the
URIs of the WSPs. These URIs are then used to obtain
the load information of the WSPs as explained in the
following section.

3.2 Information policy

The WSPs are polled to obtain their load information
(WSPLoad). In our simulation, we have considered the
number of requests queued for execution (LQ) multiplied
by the average service time (s) for a web service request
as the WSPLoad, as depicted in Eq. 1. On a real system,
measurements need to be made to determine average

service time. In our experiments, the service time of a
web service is normally distributed (explained further in
Section 4). Thus the service time of each web service can
vary. The average value of s is an input parameter in our
simulation experiments. The WSPLoad is obtained by
sending a load information request probe. When the
probe returns, it contains WSPLoad and the broker
calculates the round trip time which models the
communication delay between the WSP and the broker
(CommDelay). Once it has these values, it calculates a
utility value (U) of the WSP by using Eq.2

WSPLoad = LQ * s (1)

U=a*WSPLoad + (1-a)*CommDelay (2)

a = weight given to the WSPLoad (0 ≤ a ≤ 1)
LQ = queue length of the WSP
s = average service time for a web service request

3.3 Load Estimation Policy

In [5], the authors investigate the importance of
latency in obtaining load information in a distributed
database environment. This latency may be caused by
communication delays in receiving load information from
a node. If the load information is obsolete, then choosing
a node based on this information may result in an
inefficient load sharing. Some nodes may be highly
utilized while others may be idle. This results in load
imbalance. One way to improve the load information
accuracy is to increase the frequency of polling. Although
this may solve the problem, it is often not feasible due to
resource limitations of polling. To compensate for the
effect of inaccurate input of load information, one can
add an extra term to Eq.2 which is the age of the load
information. Another way to estimate the load
information given the fact these information may be
obsolete is through exponential averaging or exponential
moving average [6].

In this paper, we experiment with an exponential
averaging approach to compensate for the effect of age of
the load information which is obtained through polling.

In a typical polling scenario, the broker would wait for
the probe to come back. This adds extra time to the
overall response time of the web service. To mitigate the
problem, exponential averaging was adapted. By using
exponential averaging, the broker uses the previous utility
values of the WSP to estimate the current value rather
than polling the WSPs on demand. This is done using
Eq.3. Exponential averaging is particularly efficient
because it weighs old data according to its age. This can
be seen in Eq.3 where p is called the smoothing constant.
This equation shows that the old data should be given less
weight while predicting the utility value (EU). However if

the communication delays are very high and the requests
are being generated in a non-uniform fashion, the effect
of the age of the utility values may be too high. This
makes exponential averaging inefficient. In this case, we
can wait for the load information probe to come back and
then make a replica selection.

(3) EU(n) = p * U(n-1) + (1-p) * EU(n-1)

EU = Estimated Utility value

3.4 Replica Selection Policy

Once the broker has estimated all the utility values of
the WSPs, it chooses the one with minimum estimated
utility value (EU) and forwards the request to the
appropriate WSP.

4. Simulation model

By applying discrete event simulation techniques and
using C++ as the programming language, we simulated
the extranet components. The WSP was modelled as a
queue with a very large queue size. The service time of a
web service was normally distributed with a mean equal
to 2000 and a standard deviation of 250 time units. The
coefficient of variation for all the experiments was set to
0.125 except for Section 5.3. To investigate the effect of
the communication delay in the replica selection, the ratio
of service time of a WSP to the service time of a link
should be significant. We chose this ratio to be 0.125.
The links were modelled as an infinite queue with service
time exponentially distributed with a mean of 250 time
units. That is, each packet takes 250 time units on average
to get serviced by a link. The links receive packets from a
gateway at one end and transmit it to another gateway at
the other end. The overall model is given in Figure 4. The
WSR was implemented as a request generator and as a
response receiver.

Figure 4: Simulation model of a gateway, a WSP
and a link.

An 11-node with 25 links topology (see Figure 5) was

simulated to investigate the performance of the minU
replica selection strategy. Each node is considered as a
company’s site and it contains a gateway, a WSP and a
WSR. Thus a total of 11 WSRs generate web service
requests. The communication delay between a WSR and a
WSP within the same intranet was considered negligible.
The routing inside the topology was based on Shortest
Path First algorithm [7].

Figure 5: Topology used in the simulation [8].

5. Results

A number of simulation experiments were performed
and the factors affecting the performance of minU and
thus the framework are investigated. This section
summarizes the results. Note that all the time metrics are
expressed in terms of simulation clock ticks.

5.1 Effect of p

By increasing the value of p used in Eq. 3, we give
more importance to the most recent utility value while
estimating the current utility value of a WSP. When the
value of p was varied from 0.1 to 0.9, we can investigate
the impact of the weight given to the utility values in Eq.
3 on system performance.

Figure 6 shows the measured mean response time as a
function of the mean inter-arrival time. As the mean inter-
arrival time decreases, there is more contention for system
and mean response time increases.

As parameter p is increased, the mean response time
decreases. The impact of p on mean response time is more
at low mean inter-arrival time. When mean inter-arrival

time is 3000, there is a sharp decrease in mean response
time when p increases from 0.1 to 0.3. Further increasing
p produces a smaller improvement in performance.
Results captured in Figure 6 show that p has a strong
impact on the performance. Moreover a large value of p
needs to be used for achieving a small response time.

Figure 6: Effect of p on the mean response time

5.2 Effect of a

By changing the value of a in Eq. 2, we can
investigate which factor among the WSPLoad and the
CommDelay should be considered more in selecting a
web service replica.

In this paper, due to the complexity of the system we
did not derive a mathematical function to obtain the
response time in terms of parameter a. However we
assumed that the response time is indeed a function of a
and used a trial and error method. Parameter a was varied
from 0.1 to 0.9 to obtain a value close to the best value of
a.

Figure 7 shows that the mean response time as a
function of the mean inter-arrival time of the requests.
Note that the units of axes in this graph and in the rest are
in simulation clock ticks. The Each curve in the figure
was obtained for different values of a. As it can be seen
from the graph, the best value of a is 0.3. This means that
more weight needs to be given to the communication
delay while using Eq.2. This is because with the workload
experimented with, the communication delays have a
much higher impact on the response times of the web
services compared to the load at the WSPs. Note that this
was observed when the link service time was
exponentially distributed with an average of 250 time
units (exp(250)) and a routing algorithm based on SPF
(shortest path first) was used. Thus, for a topology with
different parameters, the best value of a can be different
than what is reported in this paper.

So far we considered all web services with same
execution time. In reality, different web services may
require different execution times. To investigate such
systems, we experimented with three classes of web
services. Web services in the same class are statistically
identical. The CoV is kept constant at 0.125 for the three
classes. The mean service time of a web service in class I
is less than that of class II and the mean service time of a
web service in class II is less than that of class III by the
same difference. In our experiment, we chose this
difference to be 1000. The probability of generating a
request of any class is the same. This ensures that there is
no bias towards any particular class. The parameters
characterizing the three web service classes are presented
in Table 1.

Figure 7: Effect of a on the mean response time
 Table 1: Types of requests and their mean service

time and standard deviation 5.3 Coefficient of Variance of the web service

Class Resource
requirement

Mean
Service
Time

Std
Dev

The coefficient of variation (CoV) of a web service
allows us to investigate the randomness in the
requirement of the execution time of a web service.

I LOW 1000 125 As this ratio increases with the mean service time kept
constant, a small number of very large requests and a
large number of smaller requests are generated. These
large requests introduce large queuing delays for the
smaller requests. Overall, this leads to significant delays
for the web service requests. As a result, the mean
response time of the web services increase. Figure 8
shows that as the coefficient of variation is increased
from 0.125 to 0.5, the mean response time increases. The
difference in mean response time when CoV is 0.5 and
CoV is 0.25 is higher than when CoV is 0.25 and CoV is
0.125. This suggests that to achieve minimum response
time, the value of CoV should be kept below 0.25.

II MEDIUM 2000 250
III HIGH 3000 375

Figure 9 shows that for any given arrival rate the mean

response time for the single class system is lower to that
achieved with the multi-class system. Although the
average mean service demand is the same in both the
cases, the multi-class system workload inhibits a higher
variability in service demands. This introduces a small
number of very large requests which tend increase the
queuing delays experienced by smaller requests and the
mean response time deteriorates.

Figure 8: Effect of Coefficient of variation (CoV)

5.4 Multiple web service classes

Figure 9:
Impact of

multiple class
web services

5.5 Effect of
replica
placement

To see the
impact of
replica
placement on
the
performance of minU, we considered two placements.
Table 2 shows the number of replicas for each web
service type across the nodes. For example in placement
1, web service 4 is replicated at 5 WSPs.

Table 2: Placement of replica

WS type Placement 1 Placement 2

WS 1 6 7
WS 2 6 8
WS 3 6 6
WS 4 5 3
WS 5 5 4
WS 6 5 4

Figure 10 shows the response time observed for web

services when the two placements were used. As seen
from the graph, there is significant performance
degradation when Placement 1 is changed to Placement 2.

In placement 2, the number of WSPs that can service
WS 2 is 8 whereas for WS 4 only 3 WSPs can service this
request. As a result, for WS 2 there are more resources
available than for WS 4. We observed that for WSPs that
can service WS 4, the utilizations were very high. These
WSPs were in fact the bottlenecks in the system. This
gave rise to a higher response time than in placement 1.

Figure 10: Impact of replica placement on the
performance on minU

5.6 Impact of the number of the WSPs polled

Polling can be resource intensive in terms of
communication link utilizations and WSP utilizations.
One method to reduce the overhead is to poll a lesser
number of WSPs for a particular web service request. In
[9, 10], the authors investigate the impact of polling in a
distributed system. In their research, the nodes are probed
for load information and a request is sent to the least
loaded node among these polled nodes. The authors in
[10] claim that a small poll size could result in almost the

same performance as could have been gained by probing
all nodes. But in [9], a small poll size was found to
perform better than larger poll size. In this paper, we
study the overhead of polling in terms of link utilizations
since a wide area network is used for extranet. To
investigate the impact of the number of the WSPs polled,
we used the default parameters but changed the
percentage of the WSPs to be polled. Figure 11 shows the
impact of the number of WSPs polled. At 10% of the total
number of WSPs available, the minU replica selection
policy behaves like a random replica selection policy in
the sense that only one of 11 WSPs is polled. As the
percentage of the WSPs polled is increased, the response
time is observed to improve. This is contrary to what was
reported in [9]. In our experiments, we assumed that the
service time for a load information request in the WSP to
be negligible in comparison with a WS service time. Thus
there is no CPU cost involved due to polling the WSPs.

It is possible that as the number of nodes in the
extranet increases, polling 90% of the nodes may yield to
a worse performance than polling a lesser percentage of
the nodes. In our future work, we plan to investigate the

impact of polling overhead on the WSPs and on the
system performance.

Figure 11: Impact of number of WSPs polled

Although a high system performance is desired, there
are tradeoffs which need to be addressed. Aggressive
polling may not be feasible due to resource limitations.
The load information probes introduce queuing delays at
the links and consume CPU resource in the WSP. Figure
12 shows that as the number of WSPs polled increases,
the link utilizations increase. Thus for one to use our
proposed framework, such resource limitations must be
considered before setting up the parameters for number of
WSPs polled.

Impact of polling on Link Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

10% 30% 50% 70% 90%

Percentage of the WSPs polled

U
til

iz
at

io
n

(<
1)

Figure 12: Impact of number of WSPs polled on the

link utilizations

6. Conclusions

In a web service-based extranet a broker can be used
to perform the replica selection. This broker is
implemented as a software module in a gateway such that
it intercepts all web service requests from a WSR. We
devised a replica selection framework that is described in
[1]. There are different parameters of the minU replica
selection strategy that affect the system performance. In
this paper we have described simulation experiments that
were conducted to investigate the impact of these
parameters on system performance. Insights gained from
these simulation experiments are presented in the
following paragraphs.

Parameter p is the weight given to the most recent
utility value while trying to estimate the current utility
value of a WSP. As p increases, the difference between
the estimated and actual utility value decreases and
thereby decreasing the response time of the web service
requests.

Parameter a is the weight given to the WSP workload
while (1-a) is given to the communication delay. The best

value of a is 0.3 based on our simulation environment and
parameters. This implies that the communication delay in
the links impacts the system performance more than the
load of the WSPs.

In some systems, web services may not exhibit the
same execution time. This affects the response time of the
web service requests. To investigate this, the coefficient
of variation was varied and the response time of the web
services was measured. As the coefficient of variation
was increased, the response time increased significantly.

Web services may have different requirements in
terms of execution time. To investigate this impact on
minU’s performance, we considered three classes of web
services with high, medium and low resource
requirement. Simulation results show that the
performance of minU was not affected significantly.

To study the impact of polling on the utilization of the
communication links, we varied the number of WSPs
polled and measured the link utilization. Results show
that as the number of WSPs polled increases, the response
time decreases; however, the link utilization increases.
Thus a system architect needs to consider the resource
constraints.

As our future work and to validate our simulation
results, we plan to implement a prototype using our web
service replica selection framework.

7. References

[1] K. Frounchi, P. Chandrasekaran, J. Ibrahimi, S. Majumdar,
C.-H. Lung, and L. Serghi, “A QoS Aware Service Replica
Selection Framework for an Extranet”, Proc. of IEEE Canadian
Conference on Electrical and Computer Eng., Ottawa, May
2006, pp.1380-1384.

[2] UDDI Spec Technical Committee, “UDDI Version 3.0.2,”
October 2004, http://uddi.org/pubs/uddi-v3.0.2-20041019.htm.

[3] J. A. F. da Silva, N. das Chagas Mendonca, "Dynamic
Invocation of Replicated Web Services," in Proceedings of

WebMedia and LA-Web 2004, Rebeirao Preto-SP, Brazil,
October 2004, pp. 22-29.

[7] Shay, W. A, Understanding Data Communications and
Networks, Thomson and Brooks/Cole, USA, 2004.

[4] S. Prakash, “Extending the corporate intranet,” First IEEE
Enterprise Networking Mini-Conference, Montreal, June 1997,
pp. 21-26.

[8] Planification et Optimisation des Réseaux de Transport
Optiques, l'INRIA, le CNRS and l'Université de Nice-Sophia
Antipolis, “Dimensionnement de réseaux optiques,” January
2006, http://www-sop.inria.fr/mascotte/porto/.

 [5] A. Leff and P. S. Yu, “A Performance Study of Robust
Distributed Load Sharing Strategies”, IEEE Transactions on
Parallel and Distributed Systems, vol. 5, no. 12, December
1994, pp.1286-1301.

[9] K. Shen, T. Yang and L. Chu, “Cluster Load Balancing for
Fine-grain Network Services”, Proc. of the 16th Int’l Parallel
and Distributed Processing Symposium, Florida, April 2002,
pp.51-58.

[6] A. Silberschatz, P. B. Galvin, G. Gagne, Operating Systems
Concepts, John Wiley and Sons, Inc, USA, 2004.

[10] R. Muntz, J.R. Santos and S. Berson, “A Parallel Disk
Storage System for Real-Time Multimedia Applications,” Int’l

Journal for Intelligent Systems, vol. 13, no.12, 1998, pp. 1137-
1174.

