

A QOS-AWARE WEB SERVICE REPLICA SELECTION FRAMEWORK FOR AN

EXTRANET

Kambiz Frounchi
Partheeban Chandrasekaran

Jawid Ibrahimi
Department of Systems and

Computer Engineering
Carleton University, Canada
email: {kfrounch, pchandr3,

jmohamad}@connect.carleton.ca

 Shikharesh Majumdar
 Chung-Horng Lung

Department of Systems and
Computer Engineering

Carleton University, Canada
email: {majumdar,

chlung}@sce.carleton.ca

Laura Serghi
Alcatel

Ottawa, Canada
email: laura.serghi@alcatel.com

Abstract
Business partners in an extranet expect web services to be

offered in a timely fashion. Replicating web services may
reduce the end-to-end web service response time and add fault
tolerance to the system. In this paper, we propose a web
service replica selection framework that can be deployed in an
extranet. The selection procedure is based on dynamic factors
such as communication delays between the web service
provider and the web service requester and the workload of the
web service provider. To analyze the performance of the
framework, two web service replica selection policies are
simulated: minU and random. Simulation results show that the
minU policy has better response time especially under high
load conditions.

Keywords: Extranet, Web Services, Web Service Replica
selection, Web Service Replica Selection Broker, QoS.

1. Introduction

An extranet allows a company to communicate securely with
its business partners using the Internet technology. Major
organizations are forming extranets with their trading partners
to facilitate their transactional business-to-business (B2B)
activities and automate their administrative interactions with
their suppliers, customers and other businesses [1]. Web
services are emerging standards of the service-oriented
architecture, providing means to incorporate web applications
independent of programming language and execution
environment. Web service technology is being highly adopted
to provide various B2B services.

 Replication of web services in a geographically distributed
network as an extranet may decrease web service response
time and achieve fault tolerance. A number of research efforts
have focused on web service discovery but comparatively little
attention has been paid to the devising of an actual framework
that could be employed for web service replica selection. A
client-side based approach has been investigated in [2]. They
propose a framework on the client side to perform the web
service replica selection. However this places the overhead of

performing the web service replica selection on the web
service requester side. In [3], an algorithm is proposed for
dynamic replica selection in a CORBA-based middleware
deployed in a local area network (LAN). Their work is based
on a distributed information repository that stores all the
performance parameters such as gateway-to-gateway delay and
the workload of the server. Although this may be easy to
implement in a LAN, parameters such as gateway-to-gateway
delay may be hard to monitor in a wide area network such as
an extranet. Moreover, issues associated with updating the
information repository such as maintaining the validity of the
information is not raised in their work. In this paper, we
investigate a broker-based solution for web service replica
selection that could be employed in an extranet environment.
The broker is a plug-in software module deployed in the
gateways of the extranet which selects the appropriate web
service replica based on a selection policy. The selection policy
is designed to consider factors such as the communication
delays in the extranet and the workload of the service
providers. Our framework is QoS-aware in the sense that the
selection policy attempts to minimize the response time for the
web service requests. This paper presents some preliminary
research performed in the context of a collaborative project
between Alcatel and Carleton University.

 The rest of the paper is organized as follows. Section 2
describes the web service replica selection framework. Section
3 introduces the simulation model of the framework. The
performance of two selection policies is analyzed in Section 4
and we conclude the paper in Section 5.

2. System Architecture for the framework

In this section we present the traditional web service
architecture and an overview of our framework.

2.1. Extension of the Web Service Architecture

The traditional web service architecture consists of three
components: a service provider, a service requester and a
Universal Description, Discovery and Integration (UDDI)

registry. The service provider publishes its web services to the
UDDI registry. The service requester searches the UDDI
registry to find a binding for a web service. It then binds to the
service provider and the two parties start interacting with each
other (see Figure 1).

Figure 1: The basic web service architecture [4].

Our framework extends the traditional architecture by

introducing a middleware that chooses the appropriate web
service based on dynamic factors such as the service provider
workload and the communication delays. Although primarily
targeted at extranets, the framework could be employed in
other distributed environments as well.

In this framework, the web service requester does not
directly interact with the UDDI registry to find a web service.
It sends a request for a web service to a broker. The broker
finds the appropriate web service and chooses a web service
replica if the web service is replicated and forwards the request
to the web service provider. The selected web service provider
executes the web service and sends the response back to the
web service requester.

Figure 2: Modification to the current web service architecture

In this paper we focus on a web service replica selection
broker. Figure 2 shows how the web service requester could
interact with the appropriate web service replica provider using
the framework. The broker chooses a replica based on a web
service replica selection policy.

2.2. The Replica Selection Framework

There are six components in the context of our proposed
framework: the Web Service Requester (WSR), the Web

Service Provider (WSP), the UDDI Registry, the Gateway that
includes a Broker and a Routing Module. The web service
provider typically refers to a server, running in a company’s
network providing a particular web service replica. A single
WSP can host multiple web services. The gateway component
provides the functionality of a normal router. The web service
replica selection is also done inside the gateway by the broker
component. A WSR models the arrival of web service requests
and also serves as a sink for the responses. Figure 3 shows the
basic flow with reference to how the replica selection is carried
out in an extranet. The broker and routing modules are not
included in the diagram to avoid cluttering.

Figure 3: The overview of the framework for web service
replica selection in an extranet.

A brief description of the flow of messages among the

different system components is provided below.

1. The WSR sends a web service request to the Broker in

the gateway.
2. The gateway then obtains all the addresses (Uniform

Resource Identifier, URI) of the WSPs offering that
specific service from the registry [5].

3. An information policy is used to get the status of the
WSPs and the communication delays between the
gateways. This step is explained further in Section 2.3.
Note that for avoiding cluttering we have shown the
polling of only one WSP in Figure 3.

4. The request is then forwarded to the gateway with
which the selected WSP is associated.

5. The receiver gateway then forwards the request to the
appropriate WSP.

UDDI
Registry

Web Service
Provider

Web Service
Requester

1. PUBLISH

2. FIND

3. INTERACT

WSPWSP

WSP
WSP

WSPWSP

WSR

WSR

WSR

WSR

1

2

UDDI
REGISTRY

GATEWAY 3

GATEWAY 4

GATEWAY 2

GATEWAY 1

4

5

Key:
WSR: Web Service Requester
WSP: Web Service Provider

6

7

WSPWSP

3

6. The WSP services the request and sends a response
back to the gateway it is connected to.

7. The gateway then forwards the response to the WSR.

Note that depending on the route more than one gateway
may be involved in delivering a message to a WSR or WSP
(see Figure 3).

2.3. Broker

The web service replica selection is performed in the broker
component which is a software module residing within a
gateway. The internal plug-in policies determine the web
service replica selection. Our framework is modeled in such a
way that it allows for these policies and criteria to be easily
altered or added as required. Figure 4 shows the internals of the
broker.

Figure 4: The broker and the routing module inside a gateway

Information policy includes the methods to obtain load

information of web service providers and to estimate the
communication delay in links between the gateways. Load
Estimation policy is used to estimate the current state of the
WSP and the links between the gateways [6]. Moreover,
additional functionalities such as a cache can be added in the
broker to minimize the number of requests to the UDDI
registry.

Various replica selection policies may be used in different
environments. For example, replica selection may be based on
the geographical location of a WSP or it may be based on
achieving a particular performance objective. An example is
captured in equation (1) where the objective function is to
minimize the following utility function.

)()(CommDelaybWSPloadaU ×+×= (1)

a is the weight associated with the load of the WSP (WSPload),
b is the weight associated with the communication delay
(CommDelay is the communication delay between the gateway
and the WSP). The replica that gives rise to the smallest U is
selected for satisfying the request of the WSR. Methods for
computing WSPLoad and CommDelay are discussed further in
the following section.

3. Simulation

Discrete event simulation was used to model the proposed
framework, using C++ as the implementation language. The
simulation model consists of the six extranet components in the
framework plus an additional link component that models the
congestion in the links and the propagation delay between the
gateways. In order to study the performance of our web service
replica selection framework, a minU selection policy was
designed and compared with the random selection policy.

MinU
The features of the plug-in components for the broker used

in this selection policy are given below:
Information Policy: The workload of a WSP is calculated

using equation (2):

)ˆ(sLQWSPload ×= (2)

where LQ is the queue length of the WSP and ŝ is the average
service time for a web service request. These values are
obtained by polling the WSPs. The communication delays to
the WSPs are gathered as round trip times. Each time, the
broker receives these parameters, it uses them to calculate the
utility function (see equation 1) for a particular iteration.

Load Estimation policy: To reduce time wasted in waiting
for the workload information and the communication delay, we
used an exponential average of the utility function. Equation
(3) shows how to predict the utility function of the nth iteration
based on the two previously computed utility functions:

)2()1()1()(−×−+−×= nUpnUpnEU (3)

where EU(n) is the estimate for the utility function for the nth
iteration. U(n-i) (i=1,2) is the utility function computed using
equation (1) in the (n-i)th iteration and p (p≤1) reflects the
weight given to the most recently computed utility function.

Web Service Discovery: Upon receiving a web service
request, the broker sends a discovery request to the UDDI
registry which then returns the addresses of the WSPs
providing the web service. This information is used by the
broker to find out which WSPs to be polled. We did not model
the publishing of the web services by the web service providers
as it is outside the scope of this paper. The locations of the web
service replicas are assigned to the UDDI registry during
initialization of the simulation.

Replica Selection Policy: The WSP that gives rise to the
least EU(n) is chosen. This selection is based on the

B R O K E R
M O D U L E

R O U T IN G
M O D U L E

G A T E W A Y

In fo rm a t io n P o lic y

W e b S e rv ic e
D is c o v e r y

L o a d E s t im a t io n
P o lic y

R e p lic a S e le c t io n
P o lic y

communication delay between the gateways and the WSP’s
workload. If there are more than one WSP giving rise to the
same EU(n), then one WSP is chosen randomly.

Random
In order to compare the performance of the minU policy, we

simulated the random selection policy which only performs
web service discovery and randomly chooses a WSP among a
set of WSP replicas.

4. Sample Results and Analysis

A sample set of initial simulation results is presented in this
section. More results are forthcoming [7]. The open model
simulation is conducted with four gateways, four homogeneous
WSPs and four WSRs (see Figure 3). A ring topology is used
for interconnecting the gateways. A Poisson process is used to
model the arrival of requests at a gateway. Each WSR
generates requests with the same mean inter-arrival time. A
centralized UDDI Registry is used and three different types of
web service requests are generated with equal probability. All
the WSPs provide the three web service types, thus there are
four replicas of each web service type in the system. Each web
service type is characterized by a given mean service time (see
Table 1). The service time for the web services are normally
distributed which enables us to effectively control the
variability of service times. The link service times (see Table
2) are exponentially distributed and are based on the measured
round trip times for internet ping messages sent to different
locations in the world from our lab. The values of a, b and p
are 0.6, 0.4 and 0.5 respectively. Thus a higher weight is
associated with WSPLoad in comparison to CommDelay. This
is appropriate for a typical system in which the server load is
higher than the loads of the communication links. Table 1 and
2 show the simulation parameters. These values characterize
typical systems in which computation times associated with the
web services are higher than the communication link service
times. Note that service discovery requires some processing,
thus the UDDI registry service time is chosen to be higher than
the communication link service times. Results of experiments
using other system and workload parameters are forthcoming
[7].

Table 1: Simulation parameters: Web Services

Table 2: Simulation Parameters: System Components

Figure 6 compares the minU and the random selection
policies in terms of web service response times under different
load conditions.

Figure 6: Response Time Comparison of minU and random

selection policies

The minU replica selection policy performs better in terms
of response time especially at high loads as shown in Figure 6.
This demonstrates the effectiveness of using knowledge of
WSPload and link delays that are not considered by the random
policy in replica selection. However at very low loads, both the
policies give rise to similar performances.

5. Conclusions and Future Work

In this paper we proposed a web service replica selection
framework extending the traditional web service architecture
by introducing a broker component which performs the
selection procedure. The selection procedure is transparent to
the web service requester, and avoids the need for the web
service requester to directly interact with the UDDI registry. In
selecting the web service replica the broker considers dynamic
factors such as the communication delays between the
gateways and the workload of the web service providers, thus
achieving a high system performance. Since an extranet is a
geographically distributed network, it is logical to place the
broker module inside the gateways. Simulations were
conducted to analyze the performance of the minU web service
replica selection policy. The simulation results presented in
this paper showed that the minU policy performed better than a

Web Service
Type

Mean Service
Time (ms)

Std. Dev
(ms)

1 4000 500

2 6000 750

3 8000 1000

Component Mean Service Time
(ms)

Link 1 230
Link 2 20
Link 3 100
Link 4 140

UDDI Registry 500

6000

10000

14000

18000

22000

26000

6000 10000 14000 18000 22000 26000

Mean Inter-Arriva l Time (msec)

Re
sp

on
se

 T
im

e
(m

se
c)

Random
MinU

random policy especially under high load conditions. Further
expriments with various different parameter combinations are
being conducted for comparing the performance of the two
strategies.

Our future work consists of simulating a larger network. We
also plan to investigate the impact of using different web
service replica selection policies and changing topologies in
the context of extranets. Furthermore, we plan to consider the
effect of changing the values of p, a and b as well as varying
the number of web service replicas and the workload
parameters.

6. References

[1] J. López, J.J. Ortega and A Maňa “An User Authentication
Infrastructure for Extranet Applications,” in Proceedings
of the 33rd Annual International Carnahan Conference
on Security Technology, Madrid, Spain, 1999, pp. 354-
362.

[2] J. A. F. da Silva, N. das Chagas Mendonca, "Dynamic
Invocation of Replicated Web Services," in Proceedings
of WebMedia and LA-Web 2004, Rebeirao Preto-SP,
Brazil, October 2004, pp. 22-29.

[3] S. Krishnamurthy, W.H. Sanders, and M. Cukier, “A
Dynamic Replica Selction Algorithm for Tolerating
Timing Faults,” in Proceedings of The International
Conference on Dependable Systems and Networks, 2001,
pp107-116.

[4] G. Alonso, F. Casati, H. Kuno and V. Machiraju, “Web
Services”, Springer, Berlin; New York, 2004.

[5] W3C Working Group Note, “Web Services Architecture:
3.4 Web Service Discovery,” February 2004. [Online].
Available at: http://www.w3.org/TR/ws-arch/wsa.pdf.
[Accessed Feb. 28, 2006].

[6] P K. Sinha, “Distributed Operating Systems Concepts and
Design”, IEEE Press, New York, 1997.

[7] K. Frounchi, J. Ibrahimi, P. Chandrasekaran, “Web Service
Replica Selection in an Extranet”, Final year
undergraduate engineering project report, Department of
Systems and Computer Engineering, Carleton University,
Ottawa, April 2006.

