
Software Architecture Decomposition Using Attributes

 Chung-Horng Lung, Xia Xu Marzia Zaman
 Department of Systems and Computer Engineering Cistel Technology
 Carleton University, Ottawa, Ontario, Canada Ottawa, Ontario, Canada
 email:{chlung, xiaxu}@sce.carleton.ca marzia@cistel.com

Abstract. Software architectural design has an
enormous effect on downstream software artifacts.
Decomposition of functions for the final system is one
of the critical steps in software architectural design. The
process of decomposition is typically conducted by
designers based on their intuition and past experiences,
which may not be robust sometimes. This paper presents
a study of applying the clustering technique to support
decomposition based on requirements and their
attributes. The approach can support the architectural
design process by grouping closely related requirements
to form a subsystem or module. In this paper, we
demonstrate our experiences in applying the approach to
a communication protocol software system.

1. Introduction
Alexander [1] demonstrated the application of the
partitioning/clustering technique to building a village in
India. Clustering and partitioning are conceptually
similar. Partitioning or decomposition is a top-down
approach to divide a system into subsystems with an aim
of high cohesion within a subsystem and low coupling
among subsystems. Clustering, on the other hand, is a
bottom-up approach to group s imilar objects as clusters.
Collection of clusters forms a subsystem or a system.

Alexander [1] postulated that the major design
principle which is common to all engineering disciplines
is the relative isolation of one component from other
components. Effective decomposition is also a
paramount goal in many disciplines, such as mechanical
engineering and manufacturing. Clustering techniques
have been successfully used in many areas to assist
grouping of similar components and/or effective
decomposition of a system. For instance, the technique
has been used to classify botanical species and
mechanical parts. The key concept of clustering is to
group similar items together to form a set of clusters,
such that intra-cluster similarity is high but inter-cluster
similarity is low.

Software engineering is a relatively new area
compared to other well established disciplines. This idea
of decomposition and clustering has also been
intensively discussed in software engineering.
Decomposition plays a vital role in system design, as it
has tremendous effects on the downstream artifacts and

development phases. Software decomposition is often
conducted by designers based on their intuition and past
experience. While it may work well for some; in reality,
however, many systems failed to meet the requirements
as a result of poor design.

A key point of an effective clustering or
decomposition technique is to maximize cohesion
within a module and minimize coupling between
modules. Clustering techniques have also been
intensively studied in software engineering, particularly
in the area of reverse engineering [11-13,16]. Clustering
technique can also be used for forwarding engineering
early in the life cycle. Inspired by Alexander, Andreu, et
al. [3] and Lung, et al. [15] presented applications of
clustering to requirement analysis or use cases
prioritization. However, the main problem with this
idea is that identification of the interdependencies of use
cases or requirements is difficult due to ambiguities of
the abstract description or understanding at the
requirements stage.

The objective of this paper is to apply the clustering
technique to support software decomposition based on
attributes described in the requirements document and
to mitigate the problem just stated. Identification of the
relationship between requirements and attributes is more
effective and efficient. The main idea is to help the
designer develop a more robust software architecture or
support evaluation of the architecture from the quality
aspect at the early stage.

The clustering techniques adopted in this paper are
based on numerical taxonomy or hierarchical
agglomerative clustering (HAC) method. HAC uses
numerical methods to make classifications of
components. Each method has potential for revealing
insight that may be lacking in other methods and no
scientific study has shown that numerical taxonomy is
inferior to other more complex multiversity methods
[17]. Therefore, we adopt numerical taxonomy mainly
because of its conceptual and mathematical simplicity,
as will be demonstrated in Section 2.

The paper is organized as follows: Section 2 is a
brief overview of the clustering technique adopted for
this research. Section 3 highlights some related work.
Section 4 demonstrates an industrial application of the
technique. Finally, Section 5 is the summary.
2. Clustering

Clustering has been discussed in many disciplines. This
paper adopts the hierarchical agglomerative clustering
(HAC) method. The main idea behind this approach is
to calculate the resemblance coefficients for a number of
components based on a set of attributes. Components are
the entities that we want to group based on their
similarities. Attributes are the properties of the
components. For example, components could be
mechanical parts; the attributes, their features.

A resemblance coefficient for a given pair of
components indicates the degree of similarity between
these two components. A resemblance coefficient could
be qualitative or quantitative. A qualitative value is a
binary representation; e.g., the value is either 0 or 1. A
quantitative coefficient measures the literal dis tance
between two components.

There are many HAC algorithms of calculating the
resemblance coefficients [2,8,17]. This paper does not
dis cuss those in detail. The idea adopted in this paper is
similar to Lung, et al. [16]. Typically, for binary data,
HAC methods examine each pair of attributes between
two components and keep track of the number of
similarities or dissimilarities. A formula is then applied
to the calculation of the resemblance coefficient
between these two components.

For instance, let a, b, c, and d represent the number of
the pair of 1-1, 1-0, 0-1, and 0-0 matches between two
components and assume the following component-
attribute input data set for an eight-attribute case.

i = {1, 0, 1, 1, 0, 0, 0, 1}
j = {1, 1, 1, 0, 0, 0, 1, 0}
k = {0, 1, 1, 0, 1, 0, 1, 0}

A 1-1 match between two components indicates that
they share this specific attribute. Based on the
definition, we can obtain for components i and j that a =
2, b = 2, c = 2, and d = 2. Similarly, for components i
and k, we obtain that a = 1, b = 3, c = 3, and d = 1;
components j and k, a = 3, b = 1, c = 1, and d = 3.

There are various ways to calculate the coefficient.
The following are three typical examples:

§ Jaccard Coef: cxy = a / (a+b+c)
§ Simple Matching Coef: cxy = (a+d) / (a+b+c+d)
§ Sorrenson Coef: cxy = 2a / (2a +b+c)

Given a resemblance matrix, the next step is to group

similar components. In essence, a clustering method
consists of iterative operations that incrementally groups
similar components into clusters. The sequence begins
with each component in a separate cluster. At each step,
the two clusters that are closest to each other are merged
and the number of clusters is reduced by one. Once
these two clusters have been merged, the resemblance

coefficients between the newly formed cluster and the
rest of the clusters are updated to reflect their closeness
to the new cluster.

An algorithm known as UPGMA (unweighted pair-
group method using arithmetic averages) is commonly
used to find the average of the resemblance coefficients
when two clusters are merged [17]. Two other
algorithms have often been studied are SLINK (single
linkage) algorithm, CLINK (complete linkage
algorithm). The results are usually represented using a
dendrogram for HAC. Figure 1 illustrates the concept.
In this example, the clustering steps are (a, c), (b, d), ((a,
c), e), and finally ((a, c, e), (b, d)). The dendrogram
grasps the relative degree of similarity among
components or clusters. In general, the lower the level,
the more similar the components or clusters are.

Figure 1. An Example of a Dendrogram

 a c e b d

step
 4

 3

 2

 1

3. Related Work
A lot of research on clustering has been conducted in
software engineering. Most of these approaches are
proposed to support reverse engineering or at the code
level. More discussion of the related work can be found
in [16]. In this section, we focus on research efforts that
are specifically used for high level artifacts and in the
forward engineering process.

As pointed out in Section 1, Alexander devised a
clustering approach to the building of an Indian village.
He demonstrated 141 requirements based on 13
categories (e.g., religion, water, agriculture, and etc.).
He then identified the relationships or interactions
between requirements. For example, requirement 1
interacts with 8,9,12, 13, … Based on the interactions,
the complete list of requirements were decomposed into
four major subsets or subsystems , and those four subsets
in turn are broken into twelve minor subsets. Finally, he
identified an architectural style for each subset.
Together, all the subsets form the entire village.

Andreu and Madnick [3] applied the concept to a
data base management system. Requirements and their
interdependencies were first identified and were
converted to a graph problem. Various partitioning
alternatives were examined and a quantitative metric
was calculated for each alternative. The alternative with
the lowest value of coupling was chosen as the optimal
partitioning. The system was divided into 5 partitions,
each constituting a subsystem in the architecture.

Heyliger [10] proposed to use N square charts to
partition a large system. The objective was to refine the
design incrementally to maximize cohesion and
minimize coupling. He has identified a set of patterns
that characterize specific interfaces among system
elements. This process, as depicted by the author, is
labor intensive and the rearrangement of the elements is
a major problem even for small or modest systems.

Lung, et al, [14] reported an experience of building a
reusable simulation framework in manufacturing. The
approach surveyed over 100 simulation models and
identified their features or attributes. Clustering was
then conducted based on those features to group similar
or related features into a set of generic models. Each
generic model was further decomposed into a number of
specific models. A framework was then constructed
based on the generic and specific models, which could
support over 100 simulation models in manufacturing.

Lung, et al., [15] proposed the usage of HAC to use
cases and requirements analysis . The concept followed
Alexander’s idea. However, the main challenge with this
approach is the identification of interdependencies
between requirements. It is time consuming and labor
intensive to conduct the exercise. More importantly,
requirements may be ambiguous or too general at this
stage. It may be very difficult to clearly identify the
relationships between requirements at that stage.

In fact, we applied the approach to a new project in
an advanced network communications technology. It
was a technology-driven approach for the development
of next generation networking equipments, where there
were no clear or specific requirements. During the
process, we encountered practical problems at times due
to the fact that the requirements were specified in a very
high-level general fashion. Specifically, they are:

• Difficult to judge if two requirements are actually
interdependent, because some parts are not clear;

• Many requirements seemed to be interdependent at
that level; and

• Requirements are incomplete; therefore, many
interdependencies between requirements may be
missing.

The intension of this paper is to simplify the

previous process by using requirements and attributes
relationships. The main idea is that if there are specific
attributes or features that are known or can be identified,
it will be easier to identify the interdependencies
between requirements indirectly through attributes.
Lung, et al. [16] demonstrated the concept in software
architecture decomposition. However, that case study
was a reverse engineering effort. In this paper, we apply
the concept to study a network communication protocol
in the forward engineering process.

4. Industrial Application Experience

This section illustrates the application of the clustering
to an industrial software system. Section 4.1 briefly
describes the problem domain. Section 4.2 demonstrates
the experience.

4.1 Background of Case Study
The problem under study is a real network protocol,
RSVP-TE [4], in industry. RSVP [6] is a resource
reservation control protocol that enables Internet
applications to obtain different qualities of service
(QoS). RSVP-TE is a signaling protocol that extends the
RSVP to support multiple protocol label-switching
(MPLS) [18] traffic engineering applications. RSVP-TE
provides a mechanism to establish and maintain
explicitly routed label switched paths (LSPs).

RSVP-TE has two fundamental messages: Path and
Resv (reservation request) messages, which are used to
set up LSPs and also used as refresh messages to
maintain existing LSPs. Both Path and Resv messages
comprise a number of optional objects describing traffic
parameters, QoS, and so on. These parameters are used
to support advanced traffic engineering. In addition,
there are also PathTear (path teardown), ResvTear
(reservation teardown), PathErr (path error) and ResvErr
(reservation error) messages. The PathTear and
ResvTear messages are used to tear down existing LSPs
and release reserved resources. The PathErr and ResvErr
messages deal with the errors that occur during Path and
Resv message-processing, respectively.

The protocol under study is part of a network system
which consists of a suite of protocols and base facilities
to support communications of network elements.

4.2 Application of Clustering to Software
Decomposition
This section demonstrates the application of clustering
to software decomposition based on attributes specified
in the requirements document. The following outlines
the iterative process that we adopted:

• Identify functional requirements
• Identify attributes
• Identify the relationship between requirements and

attributes
• Apply clustering
• Develop a conceptual architecture based on the

decomposition and architectural styles or patterns

Identify Functional Requirements:
The first step identifies critical requirements. In this

study, we focus on functional requirements. In RSVP-
TE, there are different types of messages. Each message
could have a variable number of objects embedded in it.
For example, the protocol is primarily used to support
network traffic engineering by creating an explicit path
from a source to a destination. The information of the

explicit path is captured in the ERO (explicit route
object) inside of a Path message described in the RFC.
Therefore, it is required to process the ERO. Another
object that could be embedded in messages is RRO
(record route object), which is used to record the IP
addresses at every hop or the label used at every hop.
Similarly, there is a need to process the RRO. Table 1
lists twenty-eight important requirements (rows)
specified in the RFC document.

Identify Attributes:

The second step is to identify the attributes identified
in the requirements, use cases, or scenarios. Attributes,
in this context, closely resemble objects or features. For
RSVP protocol, some typical attributes are stated in the
previous section. Examples include various types of
messages, e.g., Path message and Resv message. The
attributes are presented in the columns in Table 1.

In addition to the attributes identified in the
requirements document, those attributes in other existing
subsystems that are closely related to the protocol are
also identified. Those attributes are listed from columns
15 to 18. A typical example is that RSVP -TE protocol is
on top of the IP (Internet Protocol). In other words, it
has to interwork with the IP module. Other subsystems
that are related are connection management module,
traffic control module, and forwarding engine module.

Identify the Relationship between Requirements and
Attributes:

The third step is to identify the relationships between
requirements and attributes. As mentioned earlier, this
task is primarily used to simplify the step –
identification of the relationships between requirements
– described in the Section 3. Requirements may be
depicted in very general or high-level terms which are
difficult to interpret precisely or many requirements may
seem to be related. On the other hand, it is easier to
check if a requirement is related to some attributes
identified in the previous step.

For example, the two objects, RRO and ERO,
involved in the first two requirements may seem
independent, since they are used for different purposes.
However, both of them directly interact with common
attributes, e.g., PathMsg and in-Intf as shown in Table 1.
Similarly, requirements 6 and 8 are indirectly related
through attributes ResvMsg and Out_intf.

Apply Clustering:

The next step is to apply the clustering technique to
the requirement-attribute matrix. Selection of an
appropriate algorithm may not be trivial, because there
is no clear distinction between various resemblance
coefficients (Jaccard, Sorenson, and so on) and
clustering methods (UPGMA, SLINK, CLINK, and
etc.). Figure 2 demonstrates the clustering results using

the Jaccard coefficient and the UPGMA algorithm.
Results obtained from SLINK and CLINK are not
shown due to space limitations. For this particular case,
the result obtained from the Sorensan coefficient is very
similar to Figure 2, except that the resemblance
coefficients are different. Therefore, we are not
repeating the diagram.

Figure 2. Decomposition of Requirements into
Subsystems Based on Clustering Using UPGMA

In Figure 2, the numbers along the horizontal line

correspond to the requirements lis ted in Table 1. The
numbers on the vertical line are resemblance
coefficients. The results, reported by the designer,
obtained from UPGMA gives the best result. Based on
the clustering, there are five main clusters:

• Cluster 1: requirements 1-5 and 17, 19.
Requirements 1-5 are directly related to the
PathMsg processing; while requirements 17 and 19
are for PErrMsg, which is used to send error code
for the PathMsg.

• Cluster 2: requirements 23-28 are related to the
functionality of sending messages to its neighbors.

• Cluster 3: requirements 6-12. Those requirements
are related to ResvMsg processing.

• Cluster 4: requirements 13, 14 and 16. This group is
used to tear down LSPs.

• Cluster 5: requirements 18, 20, 21, 22. Those
requirements are related to RErr processing.

Requirement 15 is not grouped with other

requirements clearly. It has to do with cluster 4 which
processes teardown. It is not uncommon to see some
components that are not clustered clearly with other
components. In such cases, domain knowledge plays a
vital role to manually group those with other clusters.
As stated earlier, the process could be iterated if
necessary based on the input data and validation of the
results. For instance, requirements 17 and 19 in cluster 1
could be further divided into a separate cluster that
handles specifically for the error processing for
PathMsg. The design decision will be made by the
designers. Nevertheless, the results could be used as a
guideline to facilitate decomposition. For this case
study, the requirements can be decomposed into five
major subsystems as outlined above.

 For this specific example, UPGMA demonstrates
better results based on the designer’s judgment. The tool
can generate clusters automatically if the user specifies
the number of clusters or threshold values of the
resemblance coefficients. However, we recommend that
the designer make the final decision by examining the
overall clustering result, since it will play an influential
role for the design.

Develop a Conceptual Architecture

This step involves more knowledge in software
architecture and design. Decomposition obtained from
the previous step and architectural styles or patterns are
useful in this step. A conceptual architecture in this
context is similar to that described in [5]. It is not a final
system, but a representation of high-level design with
critical components and connectors. For RSVP-TE
design, the conceptual architecture is shown in Figure 3.
There are five main components or clusters , C1, C2, …,
C5, corresponding to those stated above.

Iterative refinement is needed for the conceptual
architecture by adding some attributes listed in Table 1
or more connections of specific types between
components. For instance, shared data structures, PSB,
RSB, and etc. could be added to the diagram. In
addition, input/output queues can be inserted for
incoming/outgoing interfaces. For instance, if simply
based on requirements, PathMsg (C1) and ResvMsg
(C3) may seem independent, since they are used in
opposite directions in the protocol. But they are related
through some attributes after further analysis. In fact,
each will trigger the generation of the other message
type when the message reaches the end router. The
connection between C1 and C3 will then be added to the
design. The iteration process will make the conceptual
architecture more concrete.

Another point that is worth mentioning is that
architectural styles or patterns [9,19] may be identified
for the target system during the analysis. This, however,
requires knowledge in both the problem and the solution
domains. For this particular example, no specific style

Table 1. Relationships between Requirements and Attributes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Attributes

 Path
Msg

Resv
Msg

PTear
Msg

RTear
Msg

PErr
Msg

RErr
Msg PSB RSB TCSB BSB

In_
intf

Out_
intf Nhop Phop

IP_
mod

CM_
mod

TC_
mod

FE_
mod

1 Process RRO x x x x
2 Process ERO x x x x x
3 Create PSB x x x
4 Update PSB x x x
5 Build PathMsg x x
6 Create RSB x x x x
7 Update RSB x x x
8 Create TCSB x x x x
9 Update TCSB x x x x
10 Reserve resource x x x
11 Merge flowspec x x x
12 Build ResvMsg x x x
13 Time out PSB x x x x
14 Process PTearMsg x x x x x x x x x
15 Time out RSB x x
16 Process RTearMsg x x x x x x x x
17 Generate PErr x x
18 Generate RErr x x
19 Process PErrMsg x x x x
20 Create BSB x x
21 Update BSB x x
22 Process RErrMsg x x x x x x
23 Send PathMsg x x x
24 Send ResvMsg x x x
25 Forward PTearMsg x x x
26 Forward RTearMsg x x x
27 Forward PErrMsg x x x
28 Forward RErrMsg x x x
PSB: path state block, RSB: reservation state block, TCSB: traffic control state block, BSB: blockade state block
In_intf: incoming interface, Out_intf: outgoing interface
Nhop: next hop, Phop: previous hop
IP_mod: IP module, CM_mod: Connection Manager Module, TC_mod: traffic control module, FE_mod: forwarding engine module

RSVP-TE module

IP module FE module

CM module

TC module

C1
Process
PathMsg

C2

Send Msg

C5

C4

C3
Process

ResvMsg

Process Tear
Down

Process
RErr

or pattern was selected. In other cases, we have
identified suitable architectural patterns for two
telecommunications systems. One was based on the
Observer [9] pattern; the other one was derived from
Half-Sync and Half-Async pattern [19] before design.

Figure 3. Conceptual Architecture for RSVP-TE
Based on Clustering Analysis

5. Conclusion
We have presented an approach to support software
architecture decomposition using clustering of
requirements and attributes. The approach was extended
from previous research which identified the
relationships between requirements. Based on our
experience, identification of relationships between
requirements may be difficult and confusing early in the
life cycle. The relationships between requirements and
attributes can be identified more easily.

We have applied the technique to a real system in
network protocol. We have also compared different
clustering approaches: UPGMA, SLINK, and CLINK.
In our study, UPGMA generated the best result based on
the designer’s evaluation. Also, we studied Jaccard and
Sorensan algorithms for resemblance coefficients. The
results were very similar for this case study.

The clustering results are useful to support the
architect or designer for decomposition. The relationship
between requirements and attributes , as shown in Table
1, are also useful, because it reveals how requirements
relate to subsystems through attributes or objects.
Reading across the row, we can associate the attributes
made up the requirements. Reading down the column,
we can find out which requirements the attribute
participates in [20].

Currently, we are working on the integration of the
clustering tool with a commercial requirements
management tool, called Telelogic DOORS [7]. The tool
can capture relationships among various requirements as
well as between requirements and attributes.

Acknowledgements
We would like to thank M. Zaid and R. Crawhall of
NCIT, Ottawa and R. Munikoti and K. Kalaichelvan of
EION, for supporting this work. We also thank A.
Srinivasan and P. Dhakal of EION for supporting
RSVP-TE implementation.

References:
[1] C. Alexander, Notes on the Synthesis of Form,
Harvard University Press, 1964.
[2] M.R. Anderberg, Cluster Analysis for Applications,
Academic Press, New York, 1973.
[3] R.C. Andreu and S.E. Madnick, A Systematic
Approach to the Design of Complex Systems:
Application to DBMS Design and Evaluation , TR CISR
32, MIT Sloan School of Management, 1977.
[4] D. Awduche, et al., RSVP-TE: Extensions to RSVP
for LSP Tunnels, IETF RFC 3209, 2001.
[5] L. Bass, M. Klein, and F. Bachmann, “Quality
Attribute Design Primitives and the Attribute Driven
Design Method”, Proc. of the 4th Int’l Workshop on
Software Product Family Eng., 2001, pp. 169-186.
[6] Braden, R., et al., Resource ReSerVation Protocol
(RSVP) , RFC 2205, 1997.
[7] Telelogic DOORS, http://www.telelogic.com/
products/doorsers/doors/index.cfm, Feb 2005.
[8] B. Everitt, Cluster Analysis, Heinermann
Educational Books, Ltd., London, 1980.
[9] E. Gamma, et al., Design Patterns, Addison, 1995.
[10] G. Heyliger, “Coupling”, Encyclopedia of Software
Engineering, J. Marciniak (ed.), 1994.
[11] Int’l Conf. on Software Maintenance.
[12] Int’l Working Conf on Program Comprehension.
[13] Int’l Working Conf on Reverse Engineering.
[14] C.-H. Lung, et al., “Computer Simulation Soft ware
Reuse by Generic/Specific Domain Modeling
Approach”, Int’l J. of Software Eng. and Knowledge
Eng., vol. 4, no. 1, March 1994, pp. 81-102.
[15] C.-H. Lung, A. Nandi, and M. Zaman,
"Applications of Clustering to Early Software Life
Cycle Phases", Proc. of Int’l Conf. on Software Eng.
Research and Practice , June, 2002, pp. 625-631.
[16] C.-H. Lung, M. Zaman, and A. Nandi, “Applying
Clustering Techniques to Software Architecture
Partitioning, Recovery and Restructuring", J. of Systems
and Software, vol. 73, no. 2, Oct 2004, pp. 227-244.
[17] H. C. Romesburg, Cluster Analysis for
Researchers, Krieger, Malabar, Florida, 1990.
[18] E. Rosen, et al., Multiprotocol Label Switching
Architecture, IETF RFC 3031, 2001.
[19] D. Schmidt, et. al., Pattern-Oriented Software
Architecture, Volume 2, Patterns for Concurrent and
Networked Objects, John Wiley and Sons, 2000.
[20] G. Schneider and J. P. Winters, Applying Use Cases
A Practical Guide, Addison-Wesley, 2001.

