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Abstract—The problem of force-reflecting teleoperation
over IP networks is addressed. The existence of time-varying
communication delay and possibility of data packets dropouts
are taken into consideration. Since significant data dropouts
may result in discontinuity of the reference trajectory trans-
mitted through the communication channel, the proposed
control scheme includes a filter that provides a smooth approx-
imation of a possibly discontinuous reference trajectory. The
stability of the overall system is guaranteed by a version of the
IOS small gain theorem for functional-differential equations.
It is also shown that, in the case of reliable communication
protocols, the proposed scheme guarantees that the slave
manipulator tracks the delayed trajectory of the master with
a prescribed small error.

Index Terms— Force-Reflecting Teleoperation, Time Delay,
Stabilization

I. Introduction

Bilateral (or force-reflecting) teleoperation is a chal-
lenging area of modern technology with a number of
traditional and potential applications, including space
and undersea exploration, handling of hazardous ma-
terials, high-precision assembly, and robotic telesurgery.
Recently, essential research interest has been attracted
by using the Internet as a communication medium for
teleoperation. When teleoperation is performed over the
Internet, the signals transmitted between the master and
the slave manipulators are subject to communication
delay. In some exceptional cases (for example, when
a network with guaranteed quality of service (QoS) is
utilized, where there are no network congestions or node
failures), the communication delay may be known and
constant or vary very little, however, in the general
situation the communication delay is time-varying and
unknown. It is a well-known fact that the existence of a
time delay in the communication channel may cause the
force-reflecting teleoperator system to be unstable [1].
To the date, several control schemes are proposed in
the literature that overcome the delay-induced instability
(see [2], [3], [4], and the survey [5], among others)
however, only little work address the problem under the
assumption that the delay is time-varying [6], [7]. Another
important feature of the Internet-based teleoperation is
a possibility of data packet dropouts. When a congestion
occurs in the network, and some packets are lost, it may

be advantageous to forget the old packet and transmit a
new one which contains the recent information (see for
example [8]). If a significant amount of data is dropped,
it may result in discontinuity of the reference trajectories
and the forces transmitted between the master and the
slave. To the best of our knowledge, this problem was
not addressed in the literature in the context of stability
and tracking performance of force-reflecting teleoperator
systems.

In this paper, we propose a control scheme that guaran-
tees stable force-reflecting teleoperation in the presence
of time-varying communication delay and data packets
dropouts. The important feature of the scheme proposed
is that it incorporates a “dirty-derivative” filter on the
slave side. The purpose of introducing the filter is twofold.
First, when there are no packets dropouts, the reference
trajectory is smooth, and the filter works as an observer
giving estimates for the velocity and accelerations of
the master trajectory. On the other hand, when the
reference signal is discontinuous (this may happen if the
data packets dropout is essential), the filter operates as
a “governor” providing a smooth approximation of the
discontinuous reference trajectory. The stability of the
overall scheme is investigated using the IOS small gain
theorem for functional differential equations previously
proposed in [9]. For the case of time-varying but smooth
enough communication delay we show that the proposed
control scheme guarantees the stability of the overall
system and, additionally, that the slave tracks the delayed
master trajectory with an arbitrarily small tracking error.
When communication delay is a discontinuous function
(this may happen if a significant amount of data is
dropped), it may result in a discontinuous reference
trajectory for the slave manipulator, which destroys the
tracking properties of the system, however, a form of the
input-to-output stability of the overall scheme can still
be guaranteed.

The paper is organized as follows. The mathematical
model of the teleoperator system is described in sec-
tion II. The control scheme is introduced in section III.
In section IV, our main results are presented. Some
computer simulations of the proposed control scheme are
presented in section V, while the conclusions are given
in section VI. Finally, Appendix A contains a necessary



definition. Proofs are omitted due to space reasons.

II. Mathematical Model of the Telerobotic System

A. Master and Slave Manipulators

Let us consider a teleoperator system where both the
master and the slave are n-DOF manipulators described
by Euler-Lagrange equations of the form

Hm (qm) q̈m + Cm (qm, q̇m) q̇m + Gm (qm)
= um + fh + f̂e,

(1)

Hs (qs) q̈s + Cs (qs, q̇s) q̇s + Gs (qs) = us + fe, (2)

where qi, q̇i are positions and velocities of the master
(i = m) and the slave (i = s), manipulators respectively.
We assume that qm ∈ Qm, qs ∈ Qs, where both
configuration spaces Qm, Qs are assumed to be compact
subsets of Rn. Further, Hm (qm), Hs (qs) are inertia ma-
trices, Cm (qm, q̇m), Cs (qs, q̇s) are matrices of centrifugal
and Coriolis forces, and Gm (qm), Gs (qs) are vectors of
potential forces of the master and the slave manipulators
respectively. Also, fh ∈ Rn is a force applied by the
human operator to move the master manipulator, fe ∈ Rn

is the contact force due to the environment applied to the
slave, and f̂e ∈ Rn is the force applied to the motors of the
master that reflects the contact force due to environment
on the slave side. Finally, um, us ∈ Rn are the control
inputs of the master and the slave respectively. It is
assumed throughout the paper that the dynamics of the
master and the slave manipulators (1), (2) possess several
standard properties (see, for example [10, Section 2.1]).

B. Environment

In this paper, we assume that the environment in
contact with the slave can be described as an unknown
dynamical system satisfying the so called input-to-output
stability condition [11]. More precisely, our assumption is
as follows.

Assumption 1. Suppose fe (·) is a measurable locally
essentially bounded function satisfying the following
property: There exist γf ≥ 0, γe ≥ 0 such that the contact
force due to the environment, fe(t), satisfies the following
two properties:

i) uniform boundedness: there exists C ≥ 0 such that
for any t0 ∈ R

sup
t≥t0

|fe(t)| ≤ max




C, γe

(
sup
t≥t0

∣∣∣ qs(t)
q̇s(t)

∣∣∣) ,

γf

(
sup
t≥t0

|fext(t)|
)


 ;

ii) convergence:

lim sup
t→+∞

|fe(t)| ≤ max




γe

(
lim sup
t→+∞

∣∣∣ qs(t)
q̇s(t)

∣∣∣) ,

γf

(
lim sup
t→+∞

|fext(t)|
)

 .

Here qs(t), q̇s(t) are the state variables (position and
velocity) of the slave manipulator, and fext is an ar-
bitrary measurement essentially bounded function that
represents an equivalent of all external forces imposed on
the environment.

C. Communication Protocol, Communication Delay
The information about master’s position is sent

through the communication channel to the remotely
located slave with communication delay τf (·), i.e., the
signal

q̂m(t) = qm (t − τf (t)) , (3)

is available on the slave side. On the other hand, the
contact force due to environment is transmitted back from
the slave to the master over the communication channel
with communication delay τb(·), i.e., the following signal

f̂e(t) = fe (t − τb(t)) (4)

is sent to the motors of the master. Both τf (·), τb(·)
are assumed to be time-varying and possibly unbounded.
In this paper, we utilize two different assumptions on
communication delay. First, we assume that the commu-
nication protocol in the forward communication channel
guarantees sufficient smoothness of the communication
delay function. More precisely, the following assumption
is imposed on communication delay τ .

Assumption 2. The communication delay τ : R → R+,
is a continuously differentiable function of time t with the
following properties:

i) −Υ1 ≤ dτi(t)
dt ≤ 1 for some Υ1 ≥ 0;

ii)
∣∣dτi

dt (t2) − dτi

dt (t1)
∣∣ ≤ Υ2 |t2 − t1| for some Υ2 ≥ 0

and for all t1, t2 ∈ R;
iii) t − τi(t) → +∞ as t → +∞. •
On the other hand, we also address a situation where

an unreliable communication protocol is utilized which
admits discontinuity of the communication delay as a
function of time. In this case, the following assumption
is imposed.

Assumption 3. The communication delay τi : R → R+,
i ∈ {f, b}, is a piecewise continuous function with the
following properties:

i) there exists Υ1 ≥ 0 such that the inequality

−Υ1 (t2 − t1) ≤ τi (t2) − τi (t1) ≤ t2 − t1;

holds for any t1, t2 ∈ Rn, t2 > t1, such that τi(t) is
continuous on (t1, t2);

ii) t − τi(t) → +∞ as t → +∞. •
III. Control Scheme

In this section, let us present our control strategy
for the force reflecting teleoperator system. The control
scheme consists of local controllers on the master and
the slave sides. The control algorithm for the master
manipulator is as follows

um = −Hm (qm) Λmq̇m − Cm (qm, q̇m) Λmqm

+Gm (qm) − Km (q̇m + Λmqm) ,
(5)



where Km ∈ Rn×n and Λm ∈ Rn×n are symmetric
positive definite matrices. On the other hand, the control
algorithm for the slave manipulator is given below

ξ̇1 = ξ2 + gα1 (q̂m − ξ1) , (6)
ξ̇2 = g2α0 (q̂m − ξ1) , (7)
us = Hs (qs)

(
g2α0 (q̂m − ξ1) (8)

+Λs (ξ2 + gα1 (q̂m − ξ1) − q̇s))
+Cs (qs, q̇s) (ξ2 + Λ (ξ1 − qs))
+Gs (qs) − Ks (q̇s − ξ2 + Λ (qs − ξ1)) ,

where Ks ∈ Rn×n, Λs ∈ Rn×n are symmetric positive
definite matrices, α0, α1 are positive constants such that
the roots of p(s) = s2 +α1s+α0 have negative real parts,
and g > 0 is a constant.

Remark 1. It is easy to see that the control algorithm
for the slave manipulator includes a “dirty-derivative”
filter (6), (7). The purpose of introducing the filter (6),
(7) into the control algorithm is twofold. First, when the
reference signal q̂m is sufficiently smooth (which generally
corresponds to the case of using a reliable communication
protocol), the filter works as a (reduced-order) observer
providing estimates for the time derivatives (first and sec-
ond) of q̂m. On the other hand, when the reference signal
is discontinuous (which may happen if the communication
protocol admits data packets dropouts), the filter (6), (7)
operates as a “governor”(see for example [12]) providing
a smooth approximation of a possibly discontinuous
reference trajectory q̂m.

IV. Main Results

A. Lossless Communication Protocol

In this subsection, we study the stability and tracking
properties of the controlled telerobotic system under
the assumption that the communication protocol in the
forward communication channel (from the master to the
slave) guarantees sufficient smoothness of the communi-
cation delay function. More precisely, we assume that the
function τf (·) that represents the communication delay in
the forward channel satisfies the assumption 2. For this
case, it is convenient to choose the state of the telerobotic
system as follows

xt :=
(
qT
m, q̇T

m, ξ̃T
1 , ξ̃T

2 , q̃T
s , ˜̇q

T

s

)T

t
, (9)

where ξ̃1 = q̂m − ξ1, ξ̃2 = ˙̂qm − ξ2, q̃s := qs − ξ1, and
˜̇qs := q̇s−ξ2, and where we use the notation xt(s) := x(t−
s), s ∈ [0, td(t)], td(t) ≥ 0. The input of the telerobotic
system is

u :=
(
fT

h , fT
ext

)T
. (10)

Also, for our purposes, it is convenient to define the
following output of the controlled telerobotic system

y :=
(
ξ̃T
1 , ξ̃T

2 , q̃T
s , ˜̇q

T

s

)T

. (11)

The main result of this section can be formulated as
follows.

Theorem 1. Consider the force-reflecting telerobotic
system (1), (2), (3), (4) under the controls (5), (6), (7),
(8). Suppose the contact force due to environment fe

satisfies Assumption 1. Further, suppose the communi-
cation delay τf (·) in the forward channel (3) satisfies
Assumption 2, while the communication delay τb (·) in
the backward channel (3) satisfies Assumption 3. Then
the closed-loop teleoperator system is semiglobally input-
to-state stable. More precisely, given positive constants
γs, ∆xm, ∆xs, ∆fm, ∆fs, there exist κm ≥ 0, κs ≥ 0, and
g∗ > 0 (all independent on τm(·), τs(·)) such that if Km in
(5) satisfies λmin (Km) ≥ κm, g in (6), (7) satisfies g ≥ g∗,
and Ks in (8) satisfies λmin (Km) ≥ κm, then the closed-
loop telerobotic system with state (9) and input (10) is
input-to-state stable at t = 0 in the sense of definition 1
(see Appendix A) with

td = max
{

τf (0) + τb (−τf (0)) ,
τb(0) + τf (−τb(0))

}
, (12)

and restriction (∆xm, ∆xs, ∆fm, ∆fs). Moreover, the IOS
gain with respect to output (11) is less than or equal to
γs.

Remark 2. The results of Theorem 1 can be interpreted
as follows. First, the stability of the overall system is guar-
anteed. Second, the IOS gain with respect to output (11)
can be assigned arbitrarily small which means that the
slave manipulator tracks the (delayed) master trajectory
with an error bounded by an arbitrarily prescribed bound.

B. Communication Protocol without Retransmission
In this subsection, we study the properties of the pro-

posed scheme in the situation where the communication is
unreliable between the master and the slave manipulators.
In fact, in some telerobotic applications, it may be
desirable to always transmit the most recent available
information about the master’s position to the slave side.
In this case, if some packets of information are lost during
the transmission, they are usually not sent again. This
may result in discontinuity of the communication delay
function, which generally implies the discontinuity of the
reference trajectory for the slave manipulator. Although
in this case perfect tracking cannot be achieved because of
such a possible discontinuity of the reference trajectory,
however, as shown below, the proposed control scheme
still guarantees the stability. To formulate the result, let
us introduce a new set of state variables as follows

xt :=
(
qT
m, q̇T

m, ξT
1 , ξT

2 , q̃T
s , ˜̇q

T

s

)T

t
. (13)

The main result of this subsection is given in the following
theorem.

Theorem 2. Consider the force-reflecting telerobotic
system (1), (2), (3), (4) under the controls (5), (6),
(7), (8). Suppose the contact force due to environment
fe satisfies Assumption 1. Further, suppose the delays



τf (·), τb (·) in both the forward and the backward
communication channels (3), (4) satisfy Assumption 3.
Then the closed-loop teleoperator system with state (13)
and input (10) is input-to-state stable at t = 0 in the
sense of definition 1 (see Appendix A) with td defined by
(12).

V. Simulations

In this section, we present some results of simulations.
We have simulated a force-reflecting telerobotic system,
where both the master and the slave are identical 2-DOF
manipulators with Hm(q) = Hs(q) ∈ R2×2, where

h11 = (2l1 cos q2 + l2)l2m2 + l21(m1 + m2),
h12 = h21 = l22m2 + l1l2m2 cos q2,
h22 = l22m2,

Cm (q, q̇) = Cs (q, q̇) ∈ R2×2, where

c11 = −l1l2m2 sin(q2)q̇2,
c12 = −l1l2m2 sin(q2) (q̇1 + q̇2) ,
c21 = l1l2m2 sin(q2),
c22 = 0,

and Gm(q) = Gs(q) ∈ R2, where

g1 = g (m2l2 sin(q1 + q2) + (m1 + m2)l1 sin(q1)) ,
g2 = gm2l2 sin(q1 + q2),

m1 = 10, m2 = 5, l1 = 0.7, l2 = 0.5, g = 9.81. The forces
(torques) applied by a human operator to the master
manipulator are plotted in figure 1. When slave follows
the resulting trajectiory of the master, it hits an obstacle
which is located at x = 0.2 m. The x-component of the
contact force due to contact with the obstacle is described
by the following equations

Fx = 0 if x < 0.2m,
Fx = −Bẋ − K (x − 0.2) if x ≥ 0.2m,

where B ≥ 0 and K ≥ 0 are damping and stiffness
coefficients respectively. In the simulations below, we
consider both the contacts with a soft (K = 100N/m)
and a rigid (K = 10000N/m) environment respectively.
In both the cases we put B = 1N ·sec/m. The parameters
of the control law for the master manipulator (5) are set
to be Km = 5 · I2×2, Λm = 5 · I2×2, while, for the slave
manipulator, the parameters of the control law (6)–(8),
are as follows: Ks = diag {10, 5}, Λs = diag {2, 1}, α0 = 1,
α1 = 2, and g = 10.

In the first set of simulations, the communication
delay function is choosen as a sum of constant signal
τ1 = 0.5 sec and a white noise band-limited by a zero-
order hold with sampling period 0.1 sec. An example
of such a communication delay function is plotted in
figure 2. The corresponding simulation results for soft
(K = 100N/m) and rigid (K = 10000N/m) environments
are presented in figures 3, 4 and 5, 6 respectively. In
particular, x-components of the master and the slave
trajectories as well as the x-component of contact force

due to environment are shown in figure 3 for low stiffness
and in figure 5 for high stiffness environment. In figures 4
and 6 the corresponding trajectories of the master and
the slave in the joint space are shown as well as the
corresponding ξ1-trajectories of the dirty derivative filter
(6), (7).

In the second set, simulations are performed in the
presence of a communication delay function which is
a sum of a discontinuous repeating sequence and a
band-limited white noise, as shown in figure ??. Again,
simulations are performed for both soft (K = 100N/m)
and rigid (K = 10000N/m) environments. The corre-
sponding results are shown in figures 7 – 10. From the
simulations presented, it is clear that in all the cases
under consideration, the closed-loop teleoperator system
demonstrates stable behaviour during contact with both
soft and rigid environments. Moreover, the teleoperator
system shows good tracking properties along pieces of
trajectories that corresponds to motion in free space.

VI. Concluding remarks

In this paper, the problem of force-reflecting tele-
operation over IP networks is addressed. Taking into
account time-varying communication delay and possible
data packets dropout, we propose a control scheme that
guarantees the stability of the overall system. In the
case where the communication delay in the forward com-
munication channel is guaranteed to be smooth enough
function of time, the proposed scheme also guarantees
that the slave tracks the delayed master trajectory with
an error bounded by a prescribed constant. A possible
extension of the proposed scheme may incorporate some
sort of a force control algorithm on the slave side
which may improve the performance of teleoperation. On
the other hand, the master control algorithm can also
be modified to incorporate an estimate of the remote
environment dynamics, as in [15]. These will be topics
for future research.
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Appendix A. Input-to-output stability for FDE

Given a function x : R → Rn, denote xt(s) := x(t− s),
where s ≥ 0. Consider a system of functional differential
equations with l inputs and r outputs of the following
form

ẋ(t) = F
(
xt, u

{1}
t , . . . , u

{l}
t , dt

)
,

y{1}(t) = H{1}
(
xt, u

{1}
t , . . . , u

{l}
t , dt

)
,

. . .

y{r}(t) = H{r}
(
xt, u

{1}
t , . . . , u

{l}
t , dt

)
,

(14)

Here x is the state, u{i}, i ∈ {1, . . . , l} are the inputs,
y{j}, j ∈ {1, . . . , r} are the outputs, and d(·) are the
perturbations that are elements of the set of admissible
perturbations D. It is assumed that both F and H are
continuous operators in xt, ut, and dt. In particular, this
guarantees the existence and uniqueness of solutions as
well as continuous dependence of the solutions in xt,
ut [16].

The following definition presents a version of the
notion of input-to-output stability specified for multi-
input multi-output systems of FDE. A close definition
of input-to-state stability (ISS) for FDE was introduced
in [17].

Definition 1. System of the form (14) is said to be input-
to-output stable (IOS) at the moment t = 0 with td ≥ 0,
IOS gains γ{ij} ∈ K, i ∈ {1, . . . , l}, j ∈ {1, . . . , r}, and

restriction
(
∆x, ∆{1}

u , . . . ,∆{l}
u

)
∈ Rl+1

>0 , if the conditions

sup
t∈[−td,0]

|x(t)| ≤ ∆x, and sup
t≥−td

∣∣u{i}(t)
∣∣ ≤ ∆{i}

u , i ∈
{1, . . . , l} imply that the solutions of (14) are well-defined
for all t ∈ [0, +∞), and the following two properties hold:

i) uniform boundedness: there exists a function β ∈ K∞
and C ≥ 0 such that

sup
t≥0

∣∣∣y{j}(t)
∣∣∣ ≤ max




β

(
sup

s∈[−td,0]

|x(s)|
)

,

γ{1j}
(

sup
s≥−td

∣∣u{1}(s)
∣∣) ,

. . . ,

γ{lj}
(

sup
s≥−td

∣∣u{l}(s)
∣∣) , C




for all j ∈ {1, . . . , r};
ii) convergence:

lim sup
t→∞

∣∣∣y{j}(t)
∣∣∣ ≤ max




γ{1j}
(

lim sup
t→∞

∣∣u{1}(t)
∣∣) ,

. . . ,

γ{lj}
(

lim sup
t→∞

∣∣u{l}(t)
∣∣)




for all j ∈ {1, . . . , r}.
In this case, a function γ{i,j} ∈ K, where i ∈ {1, . . . , l},

j ∈ {1, . . . , r}, is called the IOS gain from u{i} to y{j}. •
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Fig. 3. 1st set of simulations, low stiffness 100 N/m, from left to
right: i) X-trajectories of the master and the slave; ii) X-component
of contact forces
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Fig. 4. 1st set of simulations, low stiffness 100 N/m. Trajectories
in the joint space, from left to right: i) 1st joints; ii) 2nd joints
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Fig. 5. 1st set of simulations, high stiffness 10000 N/m, from left to
right: i) X-trajectories of the master and the slave; ii) X-component
of contact forces

0 5 10 15 20 25 30 35 40
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

time (sec)

T
ra

je
ct

o
ri
e

s 
o

f 
1

st
 jo

in
ts

 (
ra

d
)

Trajectories of 1st joints: master, filter, and slave

Master

Filter

Slave

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

time (sec)

T
ra

je
ct

o
ri
e

s 
o

f 
2

n
d

 jo
in

ts
 (

ra
d

)

Trajectories of 2nd joints:  master, filter, and slave

Slave

Master

Filter

Fig. 6. 1st set of simulations, high stiffness 10000 N/m. Trajectories
in the joint space, from left to right: i) 1st joints; ii) 2nd joints
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Fig. 7. 2nd set of simulations, low stiffness 100 N/m, from left to
right: i) X-trajectories of the master and the slave; ii) X-component
of contact forces
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Fig. 8. 2nd set of simulations, low stiffness 100 N/m. Trajectories
in the joint space, from left to right: i) 1st joints; ii) 2nd joints
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Fig. 9. 2nd set of simulations, high stiffness 10000 N/m, from left to
right: i) X-trajectories of the master and the slave; ii) X-component
of contact forces
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Fig. 10. 2nd set of simulations, high stiffness 10000 N/m.
Trajectories in the joint space, from left to right: i) 1st joints; ii)
2nd joints


