An Experimental Study of Cohesion and Coupling Metrics

Chung-Horng Lung
Department of Systems & Computer Eng.
Carleton University, Ottawa, Ontario Canada
email: chlung@sce.carleton.ca

Nishith Goel and Pulak Dhar Cistel Technology Inc. Ottawa, Ontario Canada email: ngoel@cistel.com and pulak@cistel.com

Qualities Related to Cohesion and Coupling

- Survivability
- Maintainability
- Verifiability
- Flexibility
- Portability
- Reusability
- Interoperability
- Expandability

Metrics & System Studied

Metrics:

- H. Dhama's C&C metrics with modifications J. of Systems and Software 1995
- D. Card and R. Glass's Data Complexity

 Measuring Software Design Quality, Prentice Hall, 1990
- Relative Complexity
- LOC (Lines of Code)
- Cyclomatic Complexity
- LSS (Logical Source Statement)
- Others: Average Depth, Nesting Level, etc.

System:

Large-scale telecommunications software system

Dhama's Cohesion & Coupling Metrics

- Functional Cohesion
- Data Flow Cohesion
- Action-Bundling Cohesion
- Logical Bundling Cohesion
- Coupling

C&C Metrics Used in the Study

- Functional Cohesion: slight modification
- Data Cohesion: hybrid of data flow & action-bundling cohesion
- Uses Cohesion: density of variables
- · Coupling: slight modification
- Data Complexity

F = 1/p,

• Logical Bundling Cohesion: similar to logical nesting level, not used.

Functional Cohesion

```
where p = i1 + q_1i2 + u1 + q_2u2 + 11 + q_3l2 + g1 + q_4g2 + q_5w

i1 = in data parameters
i2 = in control parameters
u1 = out data parameters
u2 = out control parameters
u1 = number of local variables used as data
u2 = number of local variables used as control g1 = number of global variables used as data
<math>u2 = number of global variables used as data
u3 = number of global variables used as control g1 = number of global variables used as control w = number of modules called
<math>u3 = number of modules called
u3 = number of modules called
u4 = number of modules
u4 = number of modules
u4 = number of modules
u4
```

A parameter could be both in & out parameter.

Data Cohesion

- Interdependencies among the different statements depending on the processing of data.
- Hybrid of Dhama's Data-flow and Action-bundling cohesion.
- Consider the type of statement and position of the variable.
- Data-flow cohesion occurs between two statements if data used in one statement is transformed and then used by another transformation or data in another statement.
- Action-bundling cohesion occurs when several actions are performed on a single piece of data which results in that data being transformed.
- Data cohesion (hybrid of data-flow & action-bundling) measures the number of statements (distance) separating pairs of statements that have either cohesion.

Data Cohesion

Example:

Data flow cohesion: B is transformed and used in another statement.

$$\begin{split} B = A & B = A & B = A \\ & \dots & \dots & \dots \end{split}$$

$$C = B$$
 if $(B < D)$ write (B)

Action-bundling cohesion: C is used in both statements on the right.

$$B = C$$
 $B = C$ $B = C$

$$D = C$$
 for i in 1..C write (C)

Uses Cohesion

• Uses cohesion measures code density and involves the number of local variables and global variables divided by the number of tokens (variables + constants + function calls) in the code.

Coupling

```
F = 1/p, where p = i1 + q_1i2 + u1 + q_2u2 + g1 + q_4g2 + w + r i1 = in \ data \ parameters i2 = in \ control \ parameters u1 = out \ data \ parameters u2 = out \ control \ parameters u2 = out \ control \ parameters g1 = number \ of \ global \ variables \ used \ as \ data g2 = number \ of \ global \ variables \ used \ as \ control w = number \ of \ modules \ called r = number \ of \ modules \ calling \ the \ module \ under \ consideration q_1, q_2, q_3, \ and \ q_4 = 2 A variable could be used as both \ data \ & control. A parameter \ could be both in \ & out \ parameter.
```

Data Complexity

• Data Complexity

$$D(i) = V(i) / f(i) + 1$$

where

D(i) = data complexity of module i

V(i) = I/O variables in module i

f(i) = fanout of module i

Conclusions

- Functional cohesion, data complexity, and coupling seem to be consistent enough to produce detectable trends.
- LOC and Cyclomatic complexity seem correlate well with functional cohesion and data complexity.
- Other metrics studied that also correlate well with functional cohesion and data complexity include
 - Logical Source Statement
 - Physical Source Statement
 - Nesting Level
 - Average Depth