
le-
ti-
al
ta-

hi-
oft-
on
 is
,
e
.
rs,
ke-
re
s

or-

 of a
sys-

 to
re’s
ar-
i-

ity
e

ly-
n
nt

re-
n,
s-
or
he

An Approach to Software Architecture Analysis for
Evolution and Reusability

Chung-Horng Lung, Sonia Bot, Kalai Kalaichelvan  Rick Kazman1

Software Engineering Analysis Lab.  Department of Computer Science
Nortel                       University of Waterloo

Ottawa, Ontario, Canada K1Y 4H7             Waterloo, Ontario, Canada N2L 3G1
{lung | sdbot | kalai}@nortel.ca rnkazman@cgl.uwaterloo.ca

Proc. of CASCON (Centre for Advanced Studies Conf.), Toronto, Canada, Oct. 1997, pp. 144-154.
Abstract

Software evolution and reuse is more likely to
receive higher payoff if high-level artifacts—such as
architectures and designs—can be reused and can
guide low-level component reuse. In practice, how-
ever, high-level artifacts are often not appropriately
captured. This paper presents an approach to captur-
ing and assessing software architectures for evolu-
tion and reuse. The approach consists of a
framework for modeling various types of relevant
information and a set of architectural views for re-
engineering, analyzing, and comparing software
architectures. We have applied this approach to
large-scale telecommunications systems, where the
approach is useful to reveal areas for improvement
and the potential for reuse.

Keywords: Software architectures, product lines,
analysis, software evolution, software reusability,
scenarios

1. Introduction

Software evolution and reuse are two critical topics
in industry, because of the huge expense involved
and because of global competition. However, soft-
ware systems are becoming increasingly complex,
further complicating the already difficult problem of
evolving or reusing software assets and products. To
systematically support the process for the ever
growing complexity of software, higher levels of
abstraction are needed. Kruchten [9] noted that “for
a software reuse technique to be effective, it must
reduce the cognitive distance between the initial 

1. Kazman’s current address: Software Engineering
Institute, Carnegie Mellon Univ., Pittsburgh, PA,
15213. E-mail: kazman@sei.cmu.edu

concept of a system and its final executable imp
mentation” (p. 136). Software architectures are cri
cal artifacts in bridging the gap between the initi
concept of a system and the system’s implemen
tion; its low-level software components.

This paper presents a framework and a set of arc
tectural views that were developed to assess s
ware architectures for evolution and reuse built up
a scenario-based approach [7]. This framework
used to model different types of information
namely, stakeholder information [2,4], architectur
information, quality information, and scenarios
Stakeholders can include, for example, designe
managers, and end-users. The information for sta
holders describes their objectives. Architectu
information deals with the critical design principle
or architectural objectives. Quality information
refers to the non-functional attributes such as perf
mance, modifiability, availability, and integrability.
Scenarios are narratives that describe use cases
system. Scenarios can be used to capture the 
tem’s functionality. Scenarios that are not directly
supported by the current system can be used
detect possible flaws or to assess the architectu
support for potential enhancements. A set of scen
ios is derived from the stakeholder objectives, arch
tectural objectives, and desired system qual
attributes or objectives. Section 2 will give a mor
detailed discussion on this topic.

Objectives provide boundaries and drive the ana
sis. Architectural views are important for evolutio
and reuse, because various views provide differe
perspectives, which are useful in understanding, 
engineering, and analyzing systems. In additio
these architectural views support analysis of sy
tems developed using different paradigms. F
example, one application that we have made of t
- 1 -



n
ere
nd
r-
re

to
-

e
al-
nd
he
en:
s,

 is
d
ast

er. 

ion
ted
ive
by

rib-
ch
ill
el-
ft-

e

views is to compare systems developed using fun
tional decomposition and object-oriented design 
the same problem area.

The main objective of the approach was to
assess an existing architecture for project
evolution or reuse in a future project in the
same problem domain or product line. The
work reflects empirical experience gathered
by an external review team to evaluate the
sensitivity of an architecture to changes in
key customer value parameters. An example
of a customer value is scalability. For
instance: what is the sensitivity of an archi-
tecture if the system is to be modified so that
it supports fifteen features, instead of the pre-
vious ten, and at the same time the system is
to be scaled from processing fifty calls to
eighty calls per minute? 

The remainder of this paper is organized as follow
Section 2 demonstrates the framework for analys
Section 3 describes the context of architectu
views and various architectural views adopted f
the analysis of software architectures. Examples
the views are also demonstrated in this section. S
tion 4 highlights some example scenarios and par
analysis results. Section 5 presents some import
lessons learned from applying the approach to s
eral telecommunications systems. Finally, Section
gives our concluding remarks.

2. Framework for Information
Gathering and Analysis

To ensure that the software architecture analy
process is organized and scientific (and henc
repeatable), a framework for architecture informa
tion gathering and analysis was formulated, 
described in Figure 1. The activities described in t
framework are performed iteratively instead of in 
strict sequential manner.

Gathering. This phase focuses on becoming awa
of the available and required information to do th
analysis, and then to collect and compile it. Cu
rently four categories of information are bein
addressed: stakeholder, architecture, quality, a
scenarios or use cases. In the future, the informat
categories may be extended, to include for examp
competitive analysis.

G

M

An

Ev
c-
in

s:
is.
ral
or
 of
ec-
tial
ant
ev-
 6

sis
e,
-

as
he
a

re
e
r-
g
nd
ion
le,

FIGURE 1. 
Framework for Architecture Information 

Gathering and Analysis

Modeling. Once it is gathered, the information is the
aligned across information categories. The focus h
is on mapping stakeholder, architecture, quality, a
scenario information into usable artifacts. This info
mation is used to direct the capture of the architectu
(if it is not already recorded in a usable form) and 
drive the analysis. It is also a critical vehicle in pro
viding feedback in the latter phases. 

Modeling is a critical phase, since if it is not don
correctly, it can mislead and skew the rest of the an
ysis. In the modeling phase both the breadth a
depth of the analysis are taken into account. T
breadth aspect describes the relationships betwe
stakeholders objectives, architectural objective
quality attributes, and scenarios. For example, it
useful to form a matrix of quality attributes an
stakeholders, to ensure that each attribute is at le
considered from the perspective of each stakehold

The depth aspect deals with the levels of abstract
at which the stakeholder objectives are represen
(and hence analyzed). A single stakeholder object
or an architectural objective could be represented 
several quality attributes or scenarios, each desc
ing one aspect of the objective. The depth at whi
various types of information are represented w
affect the accuracy (and cost) of the analysis. Mod
ing of the depth aspect is supported by adopting so
ware QFD (quality function deployment) [2], wher
relational matrices are used to prioritize high-level 

Stakeholder
Information

Architecture
Information

  Quality
Information Scenarios

Stakeholder
    Entity

Architecture
   Entity

Quality
  Entity

Scenarios

Architectural Analysis and Artifacts

Architectural Drivers

athering

odeling

alyzing

aluating
- 2 -



 4.
r-
s.
ll.

m
rs
m.
f a
es

An
e
r. 

at
e

 a
w
fly

l
is

-

,
n
n

s
w
al
 or
ia-

s.
t of

g

ar-
he
e
ch

or
le
n-
objectives and the results are fed into corresponding
objectives at the next level.

Analyzing. This phase focuses on specific software
architecture analysis and generation of artifacts to
do the analysis. Examples of artifacts include:
domain models (which help in comparing compet-
ing architectures within the same functional area
[6]); relevant architectural views; scenarios; envi-
ronmental assumptions and constraints; and trade-
off rationale. SAAM (Software Architecture Analy-
sis Method) [7] is adopted and extended for the
analysis. Explicit scenarios are mapped onto an
architecture for analysis of quality attributes. 

Evaluating. This phase focuses on drivers for archi-
tectural development. In this phase recommenda-
tions are made, “hot spots” in the architecture (areas
of high predicted complexity, large numbers of
changes, performance bottlenecks, etc.) are located
and strategies for their mitigation are enumerated,
common reference models (independent of architec-
ture capture) are identified. It is important that this
phase ties back to the stakeholders’ values, as they
are the drivers of the analysis in the first place.

2.1 Example of Modeling of Objectives

Having described the framework, we now give an
example in the domain of telecommunication
switching software. In this example we show a cou-
ple of stakeholder objectives, architectural objec-
tives, and quality objectives, and the alignment of
these three types of objective in Table 1.

A set of scenarios are then developed based on the
stakeholder and architectural objectives. Each
objective may consist of a set of scenarios or sce-
nario classes. Each scenario class in turn consists of
various number of scenarios or sub-classes. An

example of scenarios will be presented in Section
The objectives also are important factors in dete
mining when to stop generating more scenario
This concept will be addressed in Section 4 as we

3. Architectural Views for Evolution and 
Reusability Analysis

The development of a complex software syste
involves various stakeholders. Diverse stakeholde
have different needs and perspectives of the syste
Each perspective represents a partial description o
system. A complete description of a system requir
multiple viewpoints. In addition, various viewpoints
may be needed at various stages in the life cycle. 
architectural view, in this context, is a perspectiv
that satisfies the expressed needs of a stakeholde

SEAL has adopted various architectural views th
are critical for software architecture analysis. Th
set of views includes: a static view, a map view,
dynamic view, and a resource view [11]. Each vie
and some commonly used methods are brie
described below. 

• Static view. The static view shows the overal
topology. The methods that can be used for th
view include logical diagram, structure dia
gram, object diagram, and module diagram.

• Map view. The map view identifies the style
design violations, and the mapping betwee
components and functions or features. A
example will be presented in the next section.

• Dynamic view. The dynamic view addresse
the behavioral aspects of a system. This vie
can be supported by functional or operation
diagram, causal diagram, messaging diagram
message sequence chart, object interaction d
gram, state machine, and Petri net.

• Resource view. The resource view deals with
the utilization aspect of the system resource
Various techniques have been used in suppor
this view, including the identification of the
mapping of software onto hardware, queuin
model, simulation and performance.

The development of the views does not have be c
ried out in a strict sequential manner. Rather, t
process is iterative in nature. Further, not all th
views may be needed for each evaluation and ea
view is not constrained by a particular method 
notation. Selection of appropriate views and suitab
methods depend on the specific application enviro
ment and stakeholder values.

Figure 2 demonstrates a real usage of these

Table 1: Stakeholder-Architectural-Quality 
Objectives: An Example

Stakeholder 
Objectives Architectural Objectives

Quality 
Attributes

Allow interworking 
with other products 
and third.
parties

Expose functionality 
which provides the 
implementation of stan-
dardized third party 
application program-
ming interfaces.

Reliability
Modifiability
Portability

Allow independent 
development and 
incremental deliv-
ery of new features.

Decouple functionalities 
and use of virtual inter-
faces.

Reliability
Modifiability
Integrability
- 3 -



re
le-

em
o, a
 a
ll.

l

g
 to
a
rall
d
 to
 of
he

ts
of
or
ro-
a
rly

-
al

ts
is,
views for a project. The structural view corresponds
to the static view. The functional flow and the
causal diagram belong to the dynamic view. The
map view consists of three items as just described.
The resource view was not incorporated for this
exercise primarily because the main objective
focused on evolution and reuse perspective, and a
separate team was working on the performance
issues. The views and their relationships are
described next.

FIGURE 2. An Example of the 
Usage of Architectural Views

Scenarios. In this study, scenarios are the main
driver for the capture of other architectural views and
for the analysis of an architecture. To begin the
analysis process, a few scenarios are typically
selected to identify and understand the system’s
critical functionality.

Functional Flow. The functional (sometimes called
operational) flow, in this context, refers to the
sequence of functions that are identified based on a
set of scenarios. This view reveals how the system
works to realize particular scenarios. 

Most architectural representations emphasize only
static entities: the system’s “boxes” (components)
and “links” (connectors). A high-level functional
flow view aids understanding by showing the critical
system functions and the processing of these func-
tions: an operational view of the system. This view

Functional

 Causal Mapping of
 functionality
 & component 

Identification
  of design

Structural

Functionality and
non-functional aspects

Process of

critical

functions

Static relationships Architecture

Components 
 & links

ExplicitDynamic
between functions
and components

       relationships
between components  features and

Scenarios

diagram

and systems behaviors

  violations

Identification
   of styles

     flow

consistency
violations &
rationales

view

is s
ticu
whe
enti
the 

To r
are 
com
as a
typi
sys
A si
in a

The
and
cos
inst
ces
cha
(and
ing 
ana

Map
The
prov
- 
imple but useful. In our experience it is par-
larly useful for an object-oriented system
re frequently only the modelled real-world
ties are described rather than showing how
system actually functions.

eturn to our telecommunications example, the
large number of features in an advanced te
munications system. Understanding the syst
 whole is an enormous and daunting task. S

cal scenario for beginning to understand such
tem would be to model a normal telephone ca
mplified functional flow for a normal phone cal
 call processing system is shown in Figure 3.

FIGURE 3. Functional View for a 
Hypothetical System

Structural View. Existing legacy systems
usually do not have appropriate pre-existin
architectural representations. Consequently,
analyze a software architecture, 
representation is needed that shows the ove
system topology. This view integrates an
extends two methods presented in [5] and [6]
address the classification and generalization
a system’s components and functions, and t
connections between components.

 classification and generalization of componen
 connections also facilitates the estimation 
t or effort required for changes to be made. F
ance, the cost for a change to be made to a p
sing unit normally would be higher than 
nge to be made to a data repository. Such ea
 intentionally crude) estimates help in determin
where to place more effort in an architectur
lysis.

ping between Functions and Components.
 mapping between functions and componen
ides a view that supports traceability analys

 provide
 prompt

  create 
 process

 collect
   digit

analyze
  digit

 connect
   call

 

handle
 answer
4 -



 

Blackboard 

Service Handler

    
    Control

   Translation

Service Initiator 

Service

Service
Supplier

Digit Analyzer

Connection

Selector Route
Selector

Account
Information

Service
Source

      

Process

Computation

Active Data Repository

Logical Grouping

Control Flow 

Data Flow

Synchronization

Passive Data Repository

Dial 
Plan

Resource
Handler

Update
Account

Billing
Handler

Line
Interface

Service
Events

Service
Plan

Service 
Base

Service
Directory

Digit
Collector

Physical
Connection

Digit
Translator

FIGURE 4. Structural View for a Hypothetical Call Processing System
especially if there is any modification to be made to
the system. Two different representations are used
for the mapping. Table 2 shows the mapping of the
system’s main functions or features to components,
whereas Table 3 demonstrates an example of the
mapping of components to functions or features.
The components involved are tied back to those
shown in the structural view as shown in Figure 4.
The table helps locate all components involved for a
particular function. The book-keeping effort in cre-
ating and maintaining such views, and the links
between them, is crucial to supporting analysis.
Humans can not be expected to keep all the details
in their heads, all the time.

Table 2: Mapping of Functions to 
Components: An Example

Function Components Involved

Digit 
Collection

Dial Plan, Line Interface, Service Handler, 
Service Initiator 

Call
Connection

Service Handler, Line Interface, Billing 
Handler 

Answer 
Handling

Service Handler, Line Interface, Connection
- 5 -



he
sis

n
y
b-
d
and
m-

e-
 as
on

e:
ts,
.
r
g
e-
e
lps
ns.
Table 3 shows the mapping of components to func-
tions for a particular scenario. The mapping sup-
ports the identification of the functions that a
component contributes. The functions identified for
the mapping do not have to be specific to a system.
In other words, these functions could also be generic
to a application area such as a set of reference func-
tions for the purpose of comparing different sys-
tems. When sets of functions are broadly agreed
upon and re-used, we have a reference model.

The tables, though conceptually simple, are useful
in demonstrating different aspects of functions and
components. The concept is similar to spreadsheet
software where diverse representations can be

quickly generated based on a user’s needs. T
tables can also be used as a quick-and-dirty analy
of functional cohesion and coupling. If a functio
involves too many components, this function ma
need to be decomposed further into several su
functions. In addition, the information could be use
to cluster components based on the cooperations 
dependencies of components. For instance, the co
ponents Service Handler and Line Interface pr
sented in Table 3 show higher functional cohesion
both components are related to a set of comm
functions.

Causal Diagram. Architectural representations
most commonly describe static features, things lik
components, the relationship between componen
high-level functionality, and allocation to hardware
The behavioral aspect of the system is important fo
high-level understanding, communication amon
stakeholders, architecture evolution, and r
engineering. This view also supports th
development of an accurate static view and he
validate the consistency of the other representatio

Table 3: Mapping of Components to 
Functions: An Example

Component Functions Involved

Dial Plan Digit Collection

Service
Handler

Digit Collection, Call Connection, 
Answer Handling

Line Interface Digit Collection, Call Connection, 
Answer Handling
- 6 -

FIGURE 5. Dynamic View: An Illustration of “Create Process” for the 
Hypothetical Call Processing System

O.S.

Interrupt handler
sets the default- 
receiver to 

Receiver 
component sends
original message
to Object1

Object2
creates
Object3

Object1 initiates
 
to Object5

Object5 sends
the event to
Object2

   Object2 sends
 a command
 to Object5

Object5
creates
Object7 Object5

creates
Object6

Object5 sends
a reference

Object5 sends
a reference

Object1
creates
Object2

Object3
creates
Object4

an event
Receiver

to Object6 so
that Object6
points to Object7

to Object1,
so that Object1
points to Object6

  

Function 2

Function 3



av-
te
ets.
ig-

icts
,
the
te
s

the
ic

m
he
he
be
,
y
 if

ay
y

 an
s

 is
 a
ck-
ns

of
ce
ice
he
n
f a
m-
or
e
re
in

Table 1: Features to Focus on for the 
Analysis of the Blackboard Model

In addition, the analysis can support the decision-
making process in choosing an appropriate style for
the target domain or trade-off analysis. The appro-
priate style can then be reused for the target domain,
even if the architecture itself is evaluated to be risky
to be directly reused for the target. For large systems
where multiple styles may exist, analysis of style
interoperability is important. Style interoperability
is directly related to system integritymaintainability.
It is important to identify and analyze how one par-
ticular style communicates with other styles [1].

Identification of Design Violations. This view
deals with the components or links that are missing
or are not represented properly, and the control or
communication mechanisms that violate the policy
of the identified architectural style. The architec-
tural style may only reveal an “idealized” or “as-
intended” software architecture initially developed
by a group of software designers. This view, on the
other hand, recovers the “as-built” aspect of an
architecture supported by the causal representations.
For instance, the blackboard’s control mechanism
requires a single point of contact between the cen-
tral control unit and the other cooperative compo-
nents, but the architecture that follows the style, in
fact, has multiple points of contact under certain cir-

Control/
Registration 
mechanism

• When the blackboard wants to send a 
message to some units, does it 
broadcast the message to all the units 
or simply send the message to the 
registered units?

• Does the model support independent 
control or broadcast control?

• Is the control single-threaded or multi-
threaded? 

• Is the message control, data, or both?

Communicatio
n mechanism

• Is there a specific point of contact or 
multiple points of contact between the 
blackboard and the computational 
units?

Violations • Are there any links that violate the 
control or communication policy?

Integrability 
and 
modifiability

• If new components are added to the 
system, will they be integrated into the 
blackboard the same way as existing 
components?
Various methods could be used to model the beh
ioral aspect of a system. Examples include sta
machines, message sequence charts, and Petri n
A generic causal representation is presented in F
ure 5 as an illustration [10]. The tail of an arrow
reveals the cause, while the head of an arrow dep
the effect. For each function in the functional flow
there is a corresponding causal diagram to reveal 
behavioral aspect. Figure 5 is an example of “crea
process” demonstrated in the functional flow (a
shown in Figure 3.) 

The behavioral aspect is important to understand 
system before reuse occurs. In addition, the dynam
view also supports maintainability as a syste
evolves. For instance, if modifications are made t
static architectural representations may stay t
same, but some of the system’s behaviors may 
modified. The modification of behaviors should be
but typically can not be, explicitly represented b
static architectural views. Another example is that
personnel changes or the architect leaves, there m
be different interpretations for the static view b
other designers or new employees. 

Identification of Architectural Styles. An architec-
ture can be classified into more than one style and
architecture allows coexistence of multiple style
[5,8]. The primary purposes of the style or pattern
to impose an overall structural interpretation on
software system or subsystem for consistency che
ing, and to support human to human communicatio
of the software. 

For the example shown in Figure 4, the behavior 
the architecture is similar to a blackboard [3,5], sin
the system has a centralized control, called a serv
handler, to coordinate a group of components. T
identification of an architectural style help focus o
critical features such as the control mechanism o
style, the communication mechanism between co
ponents, and the integrability of new component, 
the modifiability of existing components. Thes
important features for the blackboard model a
identified for more detailed analyses as listed 
Table 4.
- 7 -



d
in
cal

o

m-
w
ser-
.

to

s-

ion
e
ce
for
r-
ed.

of
re-
be
te-
n,

b-
d
os

to
is
m-
er
al
 for
re
der
l-

his
e

us
circumstances.

Some reasons for the violations could be legacy sys-
tems, modifications for performance, understand-
ability, and discrepancies in the levels of
abstraction. The violations must be explicitly docu-
mented to reduce potential problems caused by
ambiguity or inconsistency. The documentation can
also support system maintainability. Architectural
violations are as important as normal architectural
features and must be identified before reuse occurs
to reduce unnecessary maintenance effort.

4. Examples of Scenarios and Analyses

To make a concrete evaluation for the architecture, a
number of explicit scenarios are developed based on
stakeholder and architectural objectives. Elicitation
questions are prepared for each objective and are
used in interviewing domain subject experts. These
interviews are used to better understand systems and
to develop scenarios for analysis.

Each objective may consist of a set of scenarios.
Moreover, the scenarios developed for each objec-
tive could be categorized for complex applications,
creating a reusable checklist of architectural con-
cerns. In telecommunications systems, for instance,
interactions of complex services or features need to
be validated. Those feature interactions are grouped
into different classes to have better scenario cover-
age and to facilitate evaluations.

In addition to the scenarios developed directly from
objectives, a group of scenarios for basic uses of the
system may need to be generated. Often, analyses
will focus on potential future changes to a system.
Basic needs are thus usually neglected. Basic needs
are not and product differentiators, yet one cannot
have a product without the basic functionality. For
example, a basic call service must exist no matter
how complex the communications may be. Basic
needs are thus critical for architectural analysis, but
often are not explicitly expressed by stakeholders.

For each scenario, the effect on the architecture is
identified. Typically, there is either no effect (no
change to the architecture required) since the sce-
nario is directly supported by the architecture, or
changes in the architecture are required to satisfy
the scenario. In addition, the effort required to make
the necessary changes is also estimated based on the
types of changes and components. Issues for further
analysis are addressed if more specific information

is needed to perform the analysis.

The following highlights a couple of scenarios an
partial analysis results for the objectives shown 
Table 1. The analysis is based on the hypotheti
architecture depicted in Figure 4.

Scenario 1: A third party develops a new feature t
interwork with the architecture.

Architecture Impact: Interfaces for third party have
not been implemented. Proxies are needed to co
municate with third party applications. Further, ne
features need to added to the service source and 
vice plan shown in the structural view in Figure 4
More explicit information on new features need 
be identified for further analysis, however.

Scenario 2: The system will be delivered with basic
capabilities. New features for complex call proces
ing will be incrementally introduced.

Architecture Impact: The architecture supports
incremental development because of the separat
of concerns, decoupling of functionality through th
blackboard, the controlled mechanism for servi
interactions, and a mechanism used specifically 
incremental delivery. Further analysis on perfo
mance and memory capacity needs to be conduct

Scenarios could be described in different levels 
detail. Based on the stakeholder objectives and p
liminary analysis results, some scenarios may 
further refined or other scenarios in the same ca
gory may need to be developed. For an applicatio
just a few scenarios were initially developed colla
oratively with the architect. After the analysis an
discussion with the architect, a lot more scenari
were generated for further evaluation.

5. Lessons Learned

We have applied this framework and set of views 
several projects within Nortel. The analysis 
heavily based on stakeholder objectives. For exa
ple, in one project we grouped the stakehold
objectives into five categories and added addition
two to cover as many areas as possible. One was
basic needs, the other one was for potential futu
changes that were not described in the stakehol
objectives. Over thirty scenarios were then deve
oped and classified based on the objectives for t
exercise. For another much smaller project, w
ended up with more scenarios than the previo
example for deeper analysis.
- 8 -



es
c-
al

 a
o
ly
at
al
k-
-
rio
c-
e
li-

led
an
-
 in

m.
g-
ed
ns
he
y
to
to
n
ion
is

e,

en-
ed
is
e-
of

ts
s-
 is

d
 to
ted
er
y
h
to
lity
We adopted and extended SAAM [7] by not only
identifying, for each scenario, required changes, but
also estimating the effort required (low, medium, or
high) to make the changes based on the required
changes and domain experts experiences. These two
types of information together gave us a better idea
of how the system could support each of the objec-
tives or the risk levels for system evolution or reuse
across applications than just counting the number of
changes.

Further, the analysis could qualitatively reveal the
reusability aspect of an architecture. By identifying
and analyzing areas that are reusable, tailorable, or
not reusable based on explicit scenarios and various
insight views, rather than design from scratch, the
development time for the architecture and high-level
design for a new one project in the same product
line was reduced. For instance, the service handler
and service initiator in Figure 4 are highly reusable,
and are easy to modify or enhance based on the cur-
rent control and communication mechanisms. On
the contrary, the risk level of reusing the existing
resource handler shown in Figure 4 could be high
due to its idiosyncratic implementation. Similar
results were obtained for a real project, where parts
of the architecture got reused and some areas were
overhauled for a new project.

Three different tabular representations are also used
to summarize the results. One representation shows
the analysis results based on objectives. A summary
is also attached for each objective to address identi-
fied changes and overall effort required or risk level
involved for the required changes for evolution, or
suitability of the architecture for another project.
The second representation demonstrates scenario
interactions. For each component, the list of scenar-
ios that cause changes to it are listed. The third rep-
resentation is a summary based on quality attributes.
Similar to the previous representation, the scenarios
that have significant impact on the qualities are
listed. We found these representations highly useful
devices for communicating with stakeholders.

The role of views. The scenarios are the main driv-
ers to evaluate various areas of an architecture. The
architectural views can reveal deeper information,
however. Scenarios describe important functional-
ity that the system must support or identifies where
the system may need to be changed over time. Sce-
narios and the structural view are effective in identi-
fying components that need to be modified. From
the maintenance perspective, scenarios are useful

for adaptive and preventive maintenance activiti
[13], but are less effective in corrective and perfe
tive maintenance activities. Other architectur
views must be used to support the analysis.

For instance, analysis of scenario interaction is
critical step in SAAM. A high degree of scenari
interaction may indicate that a component is poor
isolated [7]. However, the style view may show th
this is just the nature of a particular architectur
pattern. For instance, the blackboard in the blac
board model highly interacts with other compo
nents. In this case, the focus is shifted from scena
interaction to consistency checking of the archite
ture and its style. The dynamic view may then b
appropriate to examine the behavioral aspect to va
date that the control and communication are hand
in an expected manner. Another example is that 
identified violation or shortcut in the existing sys
tem for performance purposes may not be needed
the future if the system is ported to a faster platfor
Another possible reason for violations could be le
acy systems. A project that we dealt with overhaul
a legacy system. In this case, some known violatio
were not carried into the new design. Hence, t
maintainability of the system could be improved b
removing the violation. Violations were also used 
validate the conformance of the implementation 
the architecture. Similarly, the mapping betwee
components and functions can reveal the cohes
and coupling aspects of the system. This view 
useful for system partitioning and maintenanc
especially for “ripple effect” analysis.

Scenario generation. Another often asked question
about scenario-based analysis is “When to stop g
erating scenarios?” [7]. Two approaches were us
in our study in SEAL. First, scenario generation 
closely tied to various types of objectives: stak
holder, architectural, and quality. We spent a lot 
effort in identifying the information up front. Based
on the objectives, we worked with domain exper
closely and iteratively to identify scenarios and clu
ter these scenarios to make sure each objective
well covered.

QFD (Quality Function Deployment) was then use
to validate the balance of scenarios with respect
the objectives. A cascade of matrices are genera
to show the relational strengths from stakehold
objectives, architectural objectives, to qualit
attributes [2]. Priorities are calculated for eac
objective. Finally, quality attributes are translated 
scenarios to reveal the coverage of each qua
- 9 -



en
chi-
 of
c-
-

and

n
n
of

nd
or
d

ts.
of
re

r-
-

 

-

-
 

 

e 

 
c-
attribute. An imbalance factor is then calculated for
each quality attribute by dividing coverage by qual-
ity priority. If the imbalance factor is less than 1, we
may need to develop more scenarios to address the
quality attribute in accord with stakeholder, archi-
tectural, and quality importances. For instance, if
the relative priority of performance is 18 and the
coverage of performance by the scenarios is 9, the
imbalance factor is 0.5. This suggests that more sce-
narios need to be developed to address performance.

6. Summary

This paper presented a framework and a set of archi-
tectural views for the analysis of software architec-
ture for evolution and reusability. The approach was
developed from empirical studies on large-scale
telecommunications systems for the assessment of
reuse across applications and for system evolution.
The scenarios are aligned with stakeholder objec-
tives, architectural objectives, and quality attributes.
The scenarios can also be reused across applica-
tions. More importantly, the analysis reveals the
sensitivity of a system due to the change in or the
importance of objectives, and future requirements. 

The method also could facilitate the comparison of
different architectures developed in the same
domain using different paradigms (e.g. OO vs. func-
tional decomposition) by using concrete scenarios
aligned with the other views. In Section 5, analysis
results for one architecture were illustrated. Should
another architecture developed in different paradigm
be in place for comparison, the comparison would
be performed by identifying components that need
to be modified, added, or removed based on scenar-
ios mapped onto the other architectural views. The
effort required to make the modifications for differ-
ent architectures could also be estimated based on
complexity information, architectural views, and
historical data for comparison.

Due to proprietary reasons, detailed architectural
and analysis results could not be presented. In
SEAL, we have used this technique to analyze a sys-
tem for better understanding and project evolution.
The technique was also used to compare two com-
plex call processing systems with respect to their fit-
ness for a new project. The critical successes of
using the technique included better understanding of
target systems, better communications among vari-
ous stakeholders, identification of development of
reusable assets, and extraction of problem areas or

sites of complexity. Furthermore, the technique ev
helped the senior designers better understand ar
tectural issues in their own systems. The capture
architectural views and mapping of various obje
tives also were useful information for existing sys
tems, especially personnel changes are practical 
training for new employee is important.

In SEAL, we have other teams that are working o
the complexity measurement of high-level desig
and code. This measurement provides insights 
complicated components for detailed analysis a
more accurate estimation of the effort required f
the changes. In other words, life cycle end-to-en
analysis is supported for various software produc
We are also developing and validating of a set 
metrics for quantitative assessment of softwa
architectures [12].

References
[1] D. Belanger, et al., Architecture Styles and Se

vices: An Experiment Involving the Signal Op
erations Platforms-Provisioning Operations 
System, AT&T Technical Journal, Jan/Feb 
1996, pp. 54-63.

[2] S. Bot, C.-H. Lung, and M. Farrell, A Stake-
holder-Centric Software Architecture Analysis
Approach, in Proc. ISAW 2 - Int’l Software Ar-
chitecture Workshop, 1996.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Som
merlad, and M. Stal, Pattern-Oriented Software 
Architecture: A System of Patterns, John Wiley 
& Sons, 1996.

[4] C. Gacek, A. Abd-Allah, B. Clark, B. Boehm. 
On the Definition of Software System Architec
ture, in Proc. of ICSE 17 Software Architecture
Workshop, April 1995.

[5] D. Garlan and M. Shaw. An Introduction to 
Software Architecture, Advances in Software 
Engineering and Knowledge Engineering, vol. 
1, 1993.

[6] R. Kazman, G. Abowd, L. Bass, M. Webb, 
SAAM: A Method for Analyzing the Properties
of Software Architectures, in Proceedings of 
the 16th International Conference on Softwar
Engineering, May 1994, pp. 81-90. 

[7] R. Kazman, G. Abowd, L. Bass, P. Clements.
Scenario-Based Analysis of Software Archite
ture, IEEE Software, Nov 1996.
- 10 -



r-
[8] P. B. Kruchten. The 4+1 View Model of Archi-
tecture, IEEE Software, Nov 1995, pp. 42-50.

[9] C. Krueger, Software Reuse, ACM Computing 
Surveys, 24(2), 1992, pp. 131-183.

[10] C.-H. Lung and J. Urban. An Expanded View of 
Domain Modeling for Software Analogy. Proc. 
19th Annual Int’l Comp Software & Applica-
tions Conf - COMPSAC, pp.77-82, 1995.

[11] C.-H. Lung, Empirical Experiences in Analyz-
ing Software Architecture Sensitivity, in Proc. 

of COMPSAC, pp. 164-165, 1997.

[12] C.-H. Lung and K. Kalaichelvan, Metrics for 
Software Architecture Robustness Analysis, 
submitted for publication.

[13] S. Wage, Preventive Software Maintenance: 
Prevention is Better Than Cure, Tech. Report, 
School of Info. Science and Technology, Live
pool Polytechnic, 1988.
- 11 -


	FIGURE 5. Dynamic View: An Illustration of “Create Process” for the Hypothetical Call Processing ...
	An Approach to Software Architecture Analysis for Evolution and Reusability
	Chung-Horng Lung, Sonia Bot, Kalai Kalaichelvan Rick Kazman1
	Software Engineering Analysis Lab. Department of Computer Science

	Nortel University of Waterloo
	Ottawa, Ontario, Canada K1Y 4H7 Waterloo, Ontario, Canada N2L 3G1

	{lung | sdbot | kalai}@nortel.ca rnkazman@cgl.uwaterloo.ca
	Table 1: Features to Focus on for the Analysis of the Blackboard Model


	Control/ Registration mechanism
	Communicatio n mechanism
	Violations
	Integrability and modifiability
	In addition, the analysis can support the decision- making process in choosing an appropriate sty...
	Identification of Design Violations. This view deals with the components or links that are missin...
	Some reasons for the violations could be legacy systems, modifications for performance, understan...
	4. Examples of Scenarios and Analyses
	To make a concrete evaluation for the architecture, a number of explicit scenarios are developed ...
	Each objective may consist of a set of scenarios. Moreover, the scenarios developed for each obje...
	In addition to the scenarios developed directly from objectives, a group of scenarios for basic u...
	Abstract
	Software evolution and reuse is more likely to receive higher payoff if high-level artifacts—such...
	Keywords: Software architectures, product lines, analysis, software evolution, software reusabili...
	1. Introduction

	Software evolution and reuse are two critical topics in industry, because of the huge expense inv...
	1. Kazman’s current address: Software Engineering Institute, Carnegie Mellon Univ., Pittsburgh, P...
	concept of a system and its final executable implementation” (p. 136). Software architectures are...
	This paper presents a framework and a set of architectural views that were developed to assess so...
	Objectives provide boundaries and drive the analysis. Architectural views are important for evolu...
	The main objective of the approach was to assess an existing architecture for project evolution o...
	The remainder of this paper is organized as follows: Section 2 demonstrates the framework for ana...
	2. Framework for Information Gathering and Analysis

	To ensure that the software architecture analysis process is organized and scientific (and hence,...
	Gathering. This phase focuses on becoming aware of the available and required information to do t...
	FIGURE 1. Framework for Architecture Information Gathering and Analysis

	Modeling. Once it is gathered, the information is then aligned across information categories. The...
	Modeling is a critical phase, since if it is not done correctly, it can mislead and skew the rest...
	The depth aspect deals with the levels of abstraction at which the stakeholder objectives are rep...
	objectives and the results are fed into corresponding objectives at the next level.
	Analyzing. This phase focuses on specific software architecture analysis and generation of artifa...
	Evaluating. This phase focuses on drivers for architectural development. In this phase recommenda...
	2.1 Example of Modeling of Objectives
	Having described the framework, we now give an example in the domain of telecommunication switchi...
	Table 1: Stakeholder-Architectural-Quality Objectives: An Example

	Stakeholder Objectives
	Architectural Objectives
	Quality Attributes
	Allow interworking with other products and third. parties
	Expose functionality which provides the implementation of standardized third party application pr...
	Reliability Modifiability Portability
	Allow independent development and incremental delivery of new features.
	Decouple functionalities and use of virtual interfaces.
	Reliability Modifiability Integrability
	A set of scenarios are then developed based on the stakeholder and architectural objectives. Each...
	3. Architectural Views for Evolution and Reusability Analysis

	The development of a complex software system involves various stakeholders. Diverse stakeholders ...
	SEAL has adopted various architectural views that are critical for software architecture analysis...
	• Static view. The static view shows the overall topology. The methods that can be used for this ...
	• Map view. The map view identifies the style, design violations, and the mapping between compone...
	• Dynamic view. The dynamic view addresses the behavioral aspects of a system. This view can be s...
	• Resource view. The resource view deals with the utilization aspect of the system resources. Var...
	The development of the views does not have be carried out in a strict sequential manner. Rather, ...
	Figure 2 demonstrates a real usage of these views for a project. The structural view corresponds ...
	FIGURE 2. An Example of the Usage of Architectural Views

	Functional Flow. The functional (sometimes called operational) flow, in this context, refers to t...
	Most architectural representations emphasize only static entities: the system’s “boxes” (componen...
	To return to our telecommunications example, there are large number of features in an advanced te...
	FIGURE 3. Functional View for a Hypothetical System

	The classification and generalization of components and connections also facilitates the estimati...
	Mapping between Functions and Components. The mapping between functions and components provides a...
	Table 2: Mapping of Functions to Components: An Example

	Function
	Components Involved
	Digit Collection
	Dial Plan, Line Interface, Service Handler, Service Initiator
	Call Connection
	Service Handler, Line Interface, Billing Handler
	Answer Handling
	Service Handler, Line Interface, Connection
	Table 3: Mapping of Components to Functions: An Example

	Component
	Functions Involved
	Dial Plan
	Digit Collection
	Service Handler
	Digit Collection, Call Connection, Answer Handling
	Line Interface
	Digit Collection, Call Connection, Answer Handling
	Table 3 shows the mapping of components to functions for a particular scenario. The mapping suppo...
	The tables, though conceptually simple, are useful in demonstrating different aspects of function...
	Various methods could be used to model the behavioral aspect of a system. Examples include state ...
	The behavioral aspect is important to understand the system before reuse occurs. In addition, the...
	Identification of Architectural Styles. An architecture can be classified into more than one styl...
	For the example shown in Figure 4, the behavior of the architecture is similar to a blackboard [3...
	circumstances.
	Some reasons for the violations could be legacy systems, modifications for performance, understan...
	4. Examples of Scenarios and Analyses
	To make a concrete evaluation for the architecture, a number of explicit scenarios are developed ...
	Each objective may consist of a set of scenarios. Moreover, the scenarios developed for each obje...
	In addition to the scenarios developed directly from objectives, a group of scenarios for basic u...
	For each scenario, the effect on the architecture is identified. Typically, there is either no ef...
	The following highlights a couple of scenarios and partial analysis results for the objectives sh...
	Scenario 1: A third party develops a new feature to interwork with the architecture.
	Architecture Impact: Interfaces for third party have not been implemented. Proxies are needed to ...
	Scenario 2: The system will be delivered with basic capabilities. New features for complex call p...
	Architecture Impact: The architecture supports incremental development because of the separation ...
	Scenarios could be described in different levels of detail. Based on the stakeholder objectives a...
	5. Lessons Learned
	We have applied this framework and set of views to several projects within Nortel. The analysis i...
	We adopted and extended SAAM [7] by not only identifying, for each scenario, required changes, bu...
	Further, the analysis could qualitatively reveal the reusability aspect of an architecture. By id...
	Three different tabular representations are also used to summarize the results. One representatio...
	The role of views. The scenarios are the main drivers to evaluate various areas of an architectur...
	For instance, analysis of scenario interaction is a critical step in SAAM. A high degree of scena...
	Scenario generation. Another often asked question about scenario-based analysis is “When to stop ...
	QFD (Quality Function Deployment) was then used to validate the balance of scenarios with respect...
	6. Summary
	This paper presented a framework and a set of architectural views for the analysis of software ar...
	The method also could facilitate the comparison of different architectures developed in the same ...
	Due to proprietary reasons, detailed architectural and analysis results could not be presented. I...
	In SEAL, we have other teams that are working on the complexity measurement of high-level design ...

