Proc. of CASCON (Centre for Advanced Studies Conf.), Toronto, Canada, Oct. 1997, pp. 144-154.

An Approach to Software Architecture Analysis for
Evolution and Reusability

Chung-Horng Lung, Sonia Bot, Kalai Kalaichelvan Rick Kaziman
Software Engineering Analysis Lab. Department of Computer Science
Nortel University of Waterloo
Ottawa, Ontario, Canada K1Y 4H7 Waterloo, Ontario, Canada N2L 3G1
{lung | sdbot | kalai}@nortel.ca rnkazman@cgl.uwaterloo.ca
Abstract concept of a system and its final executable imple-

))) mentation” (p. 136). Software architectures are criti-
Software evolution and reuse is more likely tqg| artifacts in bridging the gap between the initial

receive higher payoff if high-level artifacts—such aggncept of a system and the system’s implementa-
architectures and designs—can be reused and G@h; its low-level software components.

guide low-level component reuse. In practice, how-
ever, high-level artifacts are often not appropriatelyhis paper presents a framework and a set of archi-
captured. This paper presents an approach to captt@ctural views that were developed to assess soft-
ing and assessing software architectures for evolware architectures for evolution and reuse built upon
tion and reuse. The approach consists of @ scenario-based approach [7]. This framework is
framework for modeling various types of relevanused to model different types of information,
information and a set of architectural views for renamely, stakeholder information [2,4], architecture
engineering, analyzing, and comparing softwaréformation, quality information, and scenarios.
architectures. We have applied this approach tStakeholders can include, for example, designers,
large-scale telecommunications systems, where theanagers, and end-users. The information for stake-
approach is useful to reveal areas for improvemetiolders describes their objectives. Architecture
and the potential for reuse. information deals with the critical design principles
. . or architectural objectives. Quality information

Keywords Software architectures, product linéSyefers to the non-functional attributes such as perfor-

analysis, software evolution, software reusabilitymance, modifiability, availability, and integrability.

scenarios Scenarios are narratives that describe use cases of a
system. Scenarios can be used to capture the sys-
1. Introduction tem’s functionality. Scenarios that amet directly

supported by the current system can be used to
Software evolution and reuse are two critical topicéetect possible flaws or to assess the architecture’s
in industry, because of the huge expense involveslipport for potential enhancements. A set of scenar-
and because of global competition. However, sofios is derived from the stakeholder objectives, archi-
ware systems are becoming increasingly complexctural objectives, and desired system quality
further complicating the already difficult problem ofattributes or objectives. Section 2 will give a more
evolving or reusing software assets and products. Betailed discussion on this topic.

systematically support the process for the ever .))
growing complexity of software, higher levels of Objectives provide boundaries and drive the analy-

abstraction are needed. Kruchten [9] noted that “fc¥#S- Architectural views are important for evolution
a software reuse technique to be effective, it muéd reuse, because various views provide different

reduce the cognitive distance between the initial Perspectives, which are useful in understanding, re-
engineering, and analyzing systems. In addition,

LK © add Software Engineeri these architectural views support analysis of sys-
. Kazman’s current address: So are engineering . . .

Institute, Carnegie Mellon Univ., Pittsburgh, PA, tems deve|0ped PS'UQ different paradlgms. For
15213. E-mail: kazman@sei.cmu.edu example, one application that we have made of the

views is to compare systems developed using func- FIGURE 1.
tional decomposition and object-oriented design inFramework for Architecture Information

the same problem area. Gathering and Analysis

The main objective of the approach was to

assess an existing architecture for project [Stakenolddr [Architecturé | Quality]
evolution or reuse in a future project in the | Gahering | information | Information| | Informatior] | S¢enariop
same problem domain or product line. The # ‘ ‘
work reflects empirical experience gathered _ _

by an external review team to evaluate the | Modeling St%k,iﬂ;"der— Arcgfﬁtcymre ngr?tlilg — Scenario
sensitivity of an architecture to changes in

key customer value parameters. An example ¢

of a customer value is scalability. For , . . .
instance: what is the Sensitivity of an archi- Analyzing Architectural Analysis and Artifacts
tecture if the system is to be modified so that ‘

it supports fifteen features, instead of the pre-

vious ten, and at the same time the system is| Evalating Architectural Drivers

to be scaled from processing fifty calls to

eighty calls per minute?

The remainder of this paper is organized as follows:
Section 2 demonstrates the framework for analysis.

Section 3 describes the context of architecturiglyjojing once it is gathered, the information is then
views and various architectural views adopted fgj;

) i iigned across information categories. The focus here
the analysis of software architectures. Examples;of,, mapping stakeholder, architecture, quality, and

the views are also demonstrated in this section. Sggsnario information into usable artifacts. This infor-
tion 4 highlights some example scenarios and parfightion is used to direct the capture of the architecture
analysis results. Section 5 presents some importgnf js not already recorded in a usable form) and to
lessons learned from applying the approach to sefive the analysis. It is also a critical vehicle in pro-

eral telecommunications systems. Finally, Sectiongjing feedback in the latter phases.
gives our concluding remarks.
Modeling is a critical phase, since if it is not done

. correctly, it can mislead and skew the rest of the anal-
2. Framework for Information ysis. In the modeling phase both the breadth and
Gathering and Analysis depth of the analysis are taken into account. The
] breadth aspect describes the relationships between:
To ensure that the software architecture analygigkenolders objectives, architectural objectives,
process is organized and scientific (and henGgyajity attributes, and scenarios. For example, it is
repeatable), a framework for architecture informgefyl to form a matrix of quality attributes and
tion gathering and analysis was formulated, @gakeholders, to ensure that each attribute is at least

described in Figure 1. The activities described in thgnsidered from the perspective of each stakeholder.
framework are performed iteratively instead of in a
strict sequential manner. The depth aspect deals with the levels of abstraction

at which the stakeholder objectives are represented
Gathering. This phase focuses on becoming awaind hence analyzed). A single stakeholder objective
of the available and required information to do thér an architectural objective could be represented by
analysis, and then to collect and compile it. Cugeveral quality attributes or scenarios, each describ-
rently four categories of information are beinghg one aspect of the objective. The depth at which
addressed: stakeholder, architecture, quality, angrious types of information are represented will
scenarios or use cases. In the future, the informatisffiect the accuracy (and cost) of the analysis. Model-
categories may be extended, to include for exampirg of the depth aspect is supported by adopting soft-
competitive analysis. ware QFD (quality function deployment) [2], where

relational matrices are used to prioritize high-level

objectives and the results are fed into correspondirexample of scenarios will be presented in Section 4.
objectives at the next level. The objectives also are important factors in deter-

. . . mining when to stop generating more scenarios.
Analyzmg This pha§e focuses on 'specmc S,Oﬁwar%'his concept will be addressed in Section 4 as well.
architecture analysis and generation of artifacts to
do the analysis. Examples of artifacts include:
domain models (which help in comparing compet3. Architectural Views for Evolution and
ing architectures within the same functional area Reusability Analysis
[6]); relevant architectural views; scenarios; envi:
ronmental assumptions and constraints; and trad.ghe development of a Comp'@F software system
off rationale. SAAM (Software Architecture Analy- involves various stakeholders. Diverse stakeholders

sis Method) [7] is adopted and extended for th ave different neEdS and perspectiyes of thg §ystem.
analysis. Explicit scenarios are mapped onto a ach perspective represents a partial description of a

architecture for analysis of quality attributes. systgm. A complete descrlpFlon of a system requires
multiple viewpoints. In addition, various viewpoints

Evaluating This phase focuses on drivers for archimay be needed at various stages in the life cycle. An
tectural development. In this phase recommenda+chitectural view, in this context, is a perspective
tions are made, “hot spots” in the architecture (aredlsat satisfies the expressed needs of a stakeholder.
of high predicted complexity, large numbers ofS
changes, performance bottlenecks, etc.) are locat
and strategies for their mitigation are enumerateé

AL has adopted various architectural views that
critical for software architecture analysis. The

; .~ set of views includes: a static view, a map view, a
common reference models (independent of arCh'teﬁynamic view, and a resource view [11]. Each view

ture capture) are identified. It is important that this,anol some commonly used methods are briefly
phase ties back to the stakeholders’ values, as th(%scribed below

are the drivers of the analysis in the first place. . o
* Static view The static view shows the overall

2.1 Example of Modeling of Objectives topology. The methods that can be used for this
view include logical diagram, structure dia-

Having described the framework, we now give an gram, object diagram, and module diagram.
example in the domain of telecommunication ¢ Map view. The map view identifies the style,
switching software. In this example we show a cou- design violations, and the mapping between
ple of stakeholder objectives, architectural objec- components and functions or features. An
tives, and quality objectives, and the alignment of ~example will be presented in the next section.

these three types of objective in Table 1. * Dynamic view The dynamic view addresses
the behavioral aspects of a system. This view
Table 1: Stakeholder-Architectural-Quality can be supported by functional or operational
Objectives: An Example diagram, causal diagram, messaging diagram or
message sequence chart, object interaction dia-
Stakeholder Quality gram, state machine, and Petri net.
Objectives Architectural Objectives Attributes . . .
» Resource view The resource view deals with
Allow interworking Expose functionality Reliability the utilization aspect of the system resources.
with other products which provides the Modifiability Various techniqueg have been used in support of
and third. implementation of stan- | Portability this view, including the identification of the
parties dardized third party mapping of software onto hardware, queuing
application program- model, simulation and performance.
ming interfaces.
Allow independent Decouple functionalities Reliability The development of the views does not have be car-
development and and use of virtual inter- | Modifiability ried out in a strict sequential manner. Rather, the
incremental deliv- faces. Integrability process is iterative in nature. Further, not all the
ery of new features. views may be needed for each evaluation and each

igw is not constrained by a particular method or

A set of scenarios are then developed based on tHeW . . : .
otation. Selection of appropriate views and suitable

stakeholder and architectural objectives. Eacll

objective may consist of a set of scenarios or ch]ethods depend on the specific application environ-

. . . . __ment and stakeholder values.
nario classes. Each scenario class in turn consists'Bf

various number of scenarios or sub-classes. Afigure 2 demonstrates a real usage of these

views for a project. The structural view correspondss simple but useful. In our experience it is par-
to the static view. The functional flow and theticularly useful for an object-oriented system

causal diagram belong to the dynamic view. Thavhere frequently only the modelled real-world

map view consists of three items as just describe@ntities are described rather than showing how
The resource view was not incorporated for thighe system actually functions.

exercise primarily because the main ObjeCtiVel’o return to our telecommunications example, there
focused on evolution and reuse perspective, and a pie,

separate team was working on the performanc re Iargg n?mber Oft feattarei |ntand§dv?rr]1ced t:ale-
issues. The views and their relationships argommunications system. nderstanding the system

described next. as a whole is an enormous and daunting task. So, a
typical scenario for beginning to understand such a
system would be to model a normal telephone call.
A simplified functional flow for a normal phone call

FIGURE 2. An Example of the in a call processing system is shown in Figure 3.

Usage of Architectural Views ,)
FIGURE 3. Functional View for a

Functionality and Hypothetical System
Scenarios| non-functional aspects
create handle
process answer
Process 0 Funci * *
. unctiona Structural i
critical flow [P “yiew (.(Z&olri?]pkcsment, provide connect
functions prompt call
/ \ collect p| analyze
digit digit
MaoDi . o Identification
aDng? <> Causal Identlflcatlon<= of design
functionalit diagram of styles violations
& componept
ﬁtatic reIa;tions_hipsDynamicreIationshipsArchitecture E_Xll)"t‘?it e Structural View. Existing legacy systems
etween functionshetween componentsfeatures and violations i icti
and components and systems ,?ehavior&n;‘istency rationales usually do not have appropriate pre-existing
architectural representations. Consequently, to

analyze a software architecture, a

representation is needed that shows the overall
Scenarios. In this study, scenarios are the main system topology. This view integrates and
driver for the capture of other architectural views and extends two methods presented in [5] and [6] to
for the analysis of an architecture. To begin the address the classification and generalization of
analysis process, a few scenarios are typically a system’s components and functions, and the
selected to identify and understand the system’s connections between components.

critical functionality. o o
y The classification and generalization of components

Functional Flow. The functional (sometimes calledand connections also facilitates the estimation of
operationa) flow, in this context, refers to the cost or effort required for changes to be made. For
sequence of functions that are identified based onirstance, the cost for a change to be made to a pro-
set of scenarios. This view reveals how the systesgssing unit normally would be higher than a
works to realize particular scenarios. change to be made to a data repository. Such early

. . . andintentionallycrude) estimates help in determin-
Most architectural representations emphasize onqlg(Y) P

. o o R g where to place more effort in an architectural
static entities: the system’s “boxes (componentsg .
.) : nalysis.
and “links” (connectors). A high-level functional
flow view aids understanding by showing the criticaMapping between Functions and Components.
system functions and the processing of these funthe mapping between functions and components
tions: anoperationalview of the system. This view provides a view that supports traceability analysis,

FIGURE 4. Structural View for a Hypothetical Call Processing System

Service Initiator

Service Service
Directory Supplier
Blackboard

Service Handler

glg}:t Dial Service Seryice
ollector Plan Source Events

Service Digit Analyzer
Control

Servu:e

Resource Line PI
an

Handler Interface

D|g|t
Translator
Selector Route
Selector
Update N
AcF():ount Connection) Physical
Connection
Billing Account
Handler Information
—— Process —® Control Flow
& Computation Data Flow
@ Active Data Repository — = Synchronization
[Passive Data Repository

Logical Grouping

especially if there is any modification to be made to
the system. Two different representations are used _ _
for the mapping. Table 2 shows the mapping of the Table 2: Mapping of Functions to

system’s main functions or features to components, Components: An Example
whereas Table 3 demonstrates an example of the _
mapping of components to functions or features, Function Components Involved

The components involved are tied back to those
shown in the structural view as shown in Figure 4
The table helps locate all components involved for

Digit Dial Plan, Line Interface, Service Handler,
Collection Service Initiator

particular function. The book-keeping effort in cre-| Call Service Handler, Line Interface, Billing
ating and maintaining such views, and the links Connection | Handler

between them, is crucial to supporting analysis| Ansuer Service Handler. Line Interface. Connection
Humans can not be expected to keep all the detail swe ervice Randler, Line fneriace, Lonnectio
. . . andling
in their heads, all the time.

Table 3: Mapping of Components to
Functions: An Example

quickly generated based on a user’s needs. The
tables can also be used as a quick-and-dirty analysis
of functional cohesion and coupling. If a function

Component Functions Involved . ; .

involves too many components, this function may
Dial Plan Digit Collection need to be decomposed further into several sub-
Service Digit Collection, Call Connection, functions. In addition, the information could be used
Handler Answer Handling to cluster components based on the cooperations and

dependencies of components. For instance, the com-
ponents Service Handler and Line Interface pre-
sented in Table 3 show higher functional cohesion as
both components are related to a set of common
Table 3 shows the mapping of components to fundunctions.

tions for a particular scenario. The mapping sup-

ports the identification of the functions that a

component contributes. The functions identified fofcausal Diagram. Architectural representations
the mapp|ng do not have to be Specific to a Systerﬁ]_ost Commonly describe static features, thlngs like:
In other words, these functions could also be geneff®mponents, the relationship between components,
to a app”cation area such as a set of reference fur{&Qh-lEVEl fUnCtionality, and allocation to hardware.
tions for the purpose of Comparing different SySIhebehavioralaSpect of the system is important for
tems. When sets of functions are broadly agredtigh-level understanding, communication among

upon and re-used, we have a reference model. ~ stakeholders, —architecture evolution, and re-
, engineering. This view also supports the
The tables, though conceptually simple, are usefiyeopment of an accurate static view and helps

in demonstrating different aspects of functions angyjigate the consistency of the other representations.
components. The concept is similar to spreadsheet

software where diverse representations can be

Line Interface | Digit Collection, Call Connection,

Answer Handling

FIGURE 5. Dynamic View: An lllustration of “Create Process” for the
Hypothetical Call Processing System

0.S
r— - — — — —|
| Interrupt handler |
| f:éz it/he? ;joefault- Object1 initiates b g
A an event Object5 sends
Receiver \ : L N .
| | Object1 1 Objects gg':(\:/;nt to Object2 sends
Receiver creates J a command
| component sends | Object2 to Objects
| original message
to Objectl
| | Object5
creates .
Lo — |) ; Object5 - -
Object2 Object? - ates (' Function3
corgatetz Object6 ~_ 7
jec
Object5 sends Object5 sends
a reference a reference
' to Object6 so to Object1,
Object3 the_u Objectﬁ_ so that Objectl
cc)rg;;\tes1 points to Object? points to Object6
jec
¢ Function 2
~ —~

Various methods could be used to model the beh: ~ Table 1: Features to Focus on for the

ioral aspect of a system. Examples include sta Analysis of the Blackboard Model
machines, message sequence charts, and Petri r

A generic causal representation is presented in F + When the blackboard wants to send a
ure 5 as an illustration [10]. The tail of an arrov message to some units, does it
reveals the cause, while the head of an arrow depi broadcast the message to all the units

or simply send the message to the

the effect. For each function in the functional flow registered units?

there is a corresponding causal diagram to reveal { Control/
behavioral aspect. Figure 5 is an example of “crea| Registration
process” demonstrated in the functional flow (aj mechanism

+ Does the model support independent
control or broadcast control?

shown in Figure 3. + Is the control single-threaded or multi-
g) threaded?
The behavioral aspect is important to understand t Is the message control, data, or both?

system before reuse occurs. In addition, the dynan
view also supports maintainability as a syster Communicatio | < Isthere a specific point of contact or
evolves. For instance, if modifications are made tt| N mechanism E‘I“":(Fl’)'e pgmts dthCO”taCt be“"’eerl‘ the

. . ’ - ackboard and the computationa
static architectural representations may stay tl P

its?
same, but some of the system’s behaviors may s’
modified. The modification of behaviors should be| Violations * Are there any links that violate the
but typically can not be, explicitly represented b control or communication policy?
static architectural views. Another example is that Integrability « If new components are added to the
personnel changes or the architect leaves, there n| 4,4 system, will they be integrated into the
be different interpretations for the static view by modifiability blackboard the same way as existing
other designers or new employees. components?

Identification of Architectural Styles. An architec-
ture can be classified into more than one style and
architecture allows coexistence of multiple style
[5,8]. The primary purposes of the style or pattern
to impose an overall structural interpretation on
software system or subsystem for consistency chec
ing, and to support human to human communicatiol
of the software.

In addition, the analysis can support the decision-
making process in choosing an appropriate style for
the target domain or trade-off analysis. The appro-
priate style can then be reused for the target domain,
even if the architecture itself is evaluated to be risky
to be directly reused for the target. For large systems
where multiple styles may exist, analysis of style
interoperability is important. Style interoperability
For the example shown in Figure 4, the behavior is directly related to system integritymaintainability.
the architecture is similar to a blackboard [3,5], sinclt is important to identify and analyze how one par-
the system has a centralized control, called a servticular style communicates with other styles [1].
handler, to coordinate a group of components. Ti
identification of an architectural style help focus ol
critical features such as the control mechanism of
style, the communication mechanism between cor

Identification of Design Violations This view
deals with the components or links that are missing
or are not represented properly, and the control or
. . communication mechanisms that violate the policy
ponents, .a.md"Fhe mtegrgb!hty of new component, ‘of the identified architectural style. The architec-
f[he modifiability of existing components. Thesetural style may only reveal an “idealized” or “as-
!mpo.rt.ant features for t.h e blackboard quel Aintended” software architecture initially developed
identified for more detailed analyses as listed 'by a group of software designers. This view, on the
Table 4. other hand, recovers the “as-built” aspect of an
architecture supported by the causal representations.
For instance, the blackboard’s control mechanism
requires a single point of contact between the cen-
tral control unit and the other cooperative compo-
nents, but the architecture that follows the style, in
fact, has multiple points of contact under certain cir-

circumstances. is needed to perform the analysis.

Some reasons for the violations could be legacy sy$he following highlights a couple of scenarios and
tems, modifications for performance, understandpartial analysis results for the objectives shown in
ability, and discrepancies in the levels ofTable 1. The analysis is based on the hypothetical
abstraction. The violations must be explicitly docu-architecture depicted in Figure 4.

mented to reduce potential problems caused tgcenario 1A third party develops a new feature to

ambiguity or |nconS|stency. T.he d_qcumentguon Ca’ﬁterwork with the architecture.
also support system maintainability. Architectural

violations are as important as normal architecturghrchitecture Impactinterfaces for third party have

features and must be identified before reuse occur®t been implemented. Proxies are needed to com-

to reduce unnecessary maintenance effort. municate with third party applications. Further, new
features need to added to the service source and ser-
vice plan shown in the structural view in Figure 4.

4. Examples of Scenarios and Analyses More explicit information on new features need to
be identified for further analysis, however.

To make a concrete evaluation for the architecture, a) .) .)
number of explicit scenarios are developed based &fenario 2The system will be delivered with basic
stakeholder and architectural objectives. Elicitatiog@Pabilities. New features for complex call process-
questions are prepared for each objective and af@ Will be incrementally introduced.

used in interviewing domain subject experts. Thes&rchitecture Impact The architecture supports
interviews are used to better understand systems andremental development because of the separation
to develop scenarios for analysis. of concerns, decoupling of functionality through the

Each objective may consist of a set of scenarioQ.IaCkboard' the controlled mechanism for service

Moreover, the scenarios developed for each ObjeE]teractlons, and a mechanism used specifically for

tive could be categorized for complex application |'ncremental delivery. Further analysis on perfor-

creating a reusable checklist of architectural coffnance and memory capacity needs to be conducted.
cerns. In telecommunications systems, for instanc&cenarios could be described in different levels of

interactions of complex services or features need tfetail. Based on the stakeholder objectives and pre-
be validated. Those feature interactions are groupdi¢hinary analysis results, some scenarios may be
into different classes to have better scenario covefurther refined or other scenarios in the same cate-
age and to facilitate evaluations. gory may need to be developed. For an application,

In addition to the scenarios developed directly fron’lUSt a flew S,Chenﬁr'os V\r’f}re 'n'g\?"y dﬁvelopTd pollalzj-
objectives, a group of scenarios for basic uses of tf?éat've y with the architect. After the analysis an

system may need to be generated. Often, analys%@cuss'on with the architect, a lot more scenarios

will focus on potential future changes to a syste yvere generated for further evaluation.

Basic needs are thus usually neglected. Basic needs

are not and product differentiators, yet one cannot

have a product without the basic functionality. Fo5. Lessons Learned

example, a basic call service T““St exist no matt'%e have applied this framework and set of views to

how complex the communications may be. Basic . o T
- : . several projects within Nortel. The analysis is

needs are thus critical for architectural analysis, blfl{[

L eavily based on stakeholder objectives. For exam-
often are not explicitly expressed by stakeholders. : .
ple, in one project we grouped the stakeholder

For each scenario, the effect on the architecture @bjectives into five categories and added additional

identified. Typically, there is either no effect (notwo to cover as many areas as possible. One was for
change to the architecture required) since the scleasic needs, the other one was for potential future

nario is directly supported by the architecture, ochanges that were not described in the stakeholder
changes in the architecture are required to satisfbjectives. Over thirty scenarios were then devel-

the scenario. In addition, the effort required to makeped and classified based on the objectives for this
the necessary changes is also estimated based ondkercise. For another much smaller project, we

types of changes and components. Issues for furthemded up with more scenarios than the previous

analysis are addressed if more specific informatioexample for deeper analysis.

We adopted and extended SAAM [7] by not onlyffor adaptive and preventive maintenance activities
identifying, for each scenario, required changes, b{it3], but are less effective in corrective and perfec-
also estimating the effort required (low, medium, otive maintenance activities. Other architectural
high) to make the changes based on the requireiews must be used to support the analysis.

changes and domain experts experiences. These t%’r instance, analysis of scenario interaction is a
types of information together gave us a better idea.,. ! y . :
of how the system could support each of the objeg-”t'calI §tep n SAAM A high degree of scenario
tives or the risk levels for system evolution or reusgﬂeracnon may indicate that a component is poorly

across applications than just counting the number bzgla.ted' [7]. However, the style view may show that
changes. this is just the nature of a particular architectural

pattern. For instance, the blackboard in the black-
Further, the analysis could qualitatively reveal thé@oard model highly interacts with other compo-
reusability aspect of an architecture. By identifyingients. In this case, the focus is shifted from scenario
and analyzing areas that are reusable, tailorable, ioteraction to consistency checking of the architec-
not reusable based on explicit scenarios and variotige and its style. The dynamic view may then be
insight views, rather than design from scratch, theppropriate to examine the behavioral aspect to vali-
development time for the architecture and high-levelate that the control and communication are handled
design for a new one project in the same produat an expected manner. Another example is that an
line was reduced. For instance, the service handlitentified violation or shortcut in the existing sys-
and service initiator in Figure 4 are highly reusableiem for performance purposes may not be needed in
and are easy to modify or enhance based on the cthre future if the system is ported to a faster platform.
rent control and communication mechanisms. OAnother possible reason for violations could be leg-
the contrary, the risk level of reusing the existingicy systems. A project that we dealt with overhauled
resource handler shown in Figure 4 could be higa legacy system. In this case, some known violations
due to its idiosyncratic implementation. Similarwere not carried into the new design. Hence, the
results were obtained for a real project, where partsaintainability of the system could be improved by
of the architecture got reused and some areas weenoving the violation. Violations were also used to
overhauled for a new project. validate the conformance of the implementation to

Three diff t tabul tai | the architecture. Similarly, the mapping between
ree ditierent tabular representations are aiso Usg mponents and functions can reveal the cohesion

to summarize the results. One representation shogﬁd coupling aspects of the system. This view is

the analysis results based on objectives. A SUMMNar il for system partitioning and maintenance
is also attached for each objective to address iden%'épecially for “ripple effect” analysis ’

fied changes and overall effort required or risk leve
involved for the required changes for evolution, oScenario generation Another often asked question
suitability of the architecture for another projectabout scenario-based analysis is “When to stop gen-
The second representation demonstrates scenagi@ting scenarios?” [7]. Two approaches were used
interactions. For each component, the list of scenan our study in SEAL. First, scenario generation is
ios that cause changes to it are listed. The third replosely tied to various types of objectives: stake-
resentation is a summary based on quality attributdsolder, architectural, and quality. We spent a lot of
Similar to the previous representation, the scenari@ifort in identifying the information up front. Based
that have significant impact on the qualities aren the objectives, we worked with domain experts
listed. We found these representations highly usefalosely and iteratively to identify scenarios and clus-
devices for communicating with stakeholders. ter these scenarios to make sure each objective is

. . . . well covered.
The role of views The scenarios are the main driv-

ers to evaluate various areas of an architecture. TQED (Quality Function Deployment) was then used
architectural views can reveal deeper informatiorip validate the balance of scenarios with respect to
however. Scenarios describe important functionathe objectives. A cascade of matrices are generated
ity that the system must support or identifies wher® show the relational strengths from stakeholder
the system may need to be changed over time. Saibjectives, architectural objectives, to quality
narios and the structural view are effective in identiattributes [2]. Priorities are calculated for each
fying components that need to be modified. Fronobjective. Finally, quality attributes are translated to
the maintenance perspective, scenarios are usefgenarios to reveal the coverage of each quality

attribute. An imbalance factor is then calculated fosites of complexity. Furthermore, the technique even
each quality attribute by dividing coverage by qualhelped the senior designers better understand archi-
ity priority. If the imbalance factor is less than 1, weectural issues in their own systems. The capture of
may need to develop more scenarios to address tehitectural views and mapping of various objec-
quality attribute in accord with stakeholder, architives also were useful information for existing sys-
tectural, and quality importances. For instance, tems, especially personnel changes are practical and
the relative priority of performance is 18 and thdraining for new employee is important.

coverage of performance by the scenarios is 9, trl'ﬁ SEAL, we have other teams that are working on

imbalance factor is 0.5. This suggests that more S= complexity measurement of high-level design

narios need to be developed to address performangﬁd code. This measurement provides insights of
complicated components for detailed analysis and
more accurate estimation of the effort required for

6. Summary the changes. In other words, life cycle end-to-end

This paper presented a framework and a set of arcjbalysis is supported for various software products.
tectural views for the analysis of software architec/Vé are also developing and validating of a set of
ture for evolution and reusability. The approach wagetrics for quantitative assessment of software
developed from empirical studies on large-scal@rchitectures [12].

telecommunications systems for the assessment qf
reuse across applications and for system evolutiol%eferenCeS

The scenarios are aligned with stakeholder obje¢t] D. Belanger, et al., Architecture Styles and Ser-

tives, architectural objectives, and quality attributes.
The scenarios can also be reused across applica-
tions. More importantly, the analysis reveals the
sensitivity of a system due to the change in or the
importance of objectives, and future requirements. 2]

The method also could facilitate the comparison of
different architectures developed in the same
domain using different paradigms (e.g. OO vs. func-
tional decomposition) by using concrete scenarios
aligned with the other views. In Section 5, analysi§3]
results for one architecture were illustrated. Should
another architecture developed in different paradigm
be in place for comparison, the comparison would
be performed by identifying components that nee b
to be modified, added, or removed based on scenar-
ios mapped onto the other architectural views. The
effort required to make the modifications for differ-
ent architectures could also be estimated based on
complexity information, architectural views, and[5]
historical data for comparison.

Due to proprietary reasons, detailed architectural
and analysis results could not be presented. In
SEAL, we have used this technique to analyze a sy;
tem for better understanding and project evolution.
The technique was also used to compare two com-
plex call processing systems with respect to their fit-
ness for a new project. The critical successes of
using the technique included better understanding of
target systems, better communications among vaifi#]
ous stakeholders, identification of development of
reusable assets, and extraction of problem areas or

-10 -

vices: An Experiment Involving the Signal Op-
erations Platforms-Provisioning Operations
SystemAT&T Technical JournalJan/Feb
1996, pp. 54-63.

S. Bot, C.-H. Lung, and M. Farrell, A Stake-
holder-Centric Software Architecture Analysis
Approach, inProc. ISAW 2 - Int'l Software Ar-
chitecture Workshql996.

F. Buschmann, R. Meunier, H. Rohnert, P. Som-
merlad, and M. StaRattern-Oriented Software
Architecture: A System of Patterd®hn Wiley

& Sons, 1996.

C. Gacek, A. Abd-Allah, B. Clark, B. Boehm.
On the Definition of Software System Architec-
ture, inProc. of ICSE 17 Software Architecture
Workshop April 1995.

D. Garlan and M. Shaw. An Introduction to
Software Architectureidvances in Software
Engineering and Knowledge Engineeringl.
1, 1993.

R. Kazman, G. Abowd, L. Bass, M. Webb,
SAAM: A Method for Analyzing the Properties
of Software Architectures, iRroceedings of

the 16th International Conference on Software
Engineering May 1994, pp. 81-90.

R. Kazman, G. Abowd, L. Bass, P. Clements.
Scenario-Based Analysis of Software Architec-
ture, IEEE SoftwareNov 1996.

[8] P.B. Kruchten. The 4+1 View Model of Archi- of COMPSACpp. 164-165, 1997.
tecture |JEEE SoftwareNov 1995, pp. 42-50.))
[12] C.-H. Lung and K. Kalaichelvan, Metrics for

[9] C. Krueger, Software Reus&CM Computing Software Architecture Robustness Analysis,
Surveys24(2), 1992, pp. 131-183. submitted for publication

[10] C.-H. Lung and J. Urban. An Expanded View of[13] S. Wage, Preventive Software Maintenance:
Domain Modeling for Software Analogyroc. Prevention is Better Than Curiech. Report
19th Annual Int'l Comp Software & Applica- School of Info. Science and Technology, Liver-
tions Conf - COMPSAGp.77-82, 1995. pool Polytechnic, 1988.

[11] C.-H. Lung, Empirical Experiences in Analyz-
ing Software Architecture Sensitivity, Proc.

-11 -

	FIGURE 5. Dynamic View: An Illustration of “Create Process” for the Hypothetical Call Processing ...
	An Approach to Software Architecture Analysis for Evolution and Reusability
	Chung-Horng Lung, Sonia Bot, Kalai Kalaichelvan Rick Kazman1
	Software Engineering Analysis Lab. Department of Computer Science

	Nortel University of Waterloo
	Ottawa, Ontario, Canada K1Y 4H7 Waterloo, Ontario, Canada N2L 3G1

	{lung | sdbot | kalai}@nortel.ca rnkazman@cgl.uwaterloo.ca
	Table 1: Features to Focus on for the Analysis of the Blackboard Model

	Control/ Registration mechanism
	Communicatio n mechanism
	Violations
	Integrability and modifiability
	In addition, the analysis can support the decision- making process in choosing an appropriate sty...
	Identification of Design Violations. This view deals with the components or links that are missin...
	Some reasons for the violations could be legacy systems, modifications for performance, understan...
	4. Examples of Scenarios and Analyses
	To make a concrete evaluation for the architecture, a number of explicit scenarios are developed ...
	Each objective may consist of a set of scenarios. Moreover, the scenarios developed for each obje...
	In addition to the scenarios developed directly from objectives, a group of scenarios for basic u...
	Abstract
	Software evolution and reuse is more likely to receive higher payoff if high-level artifacts—such...
	Keywords: Software architectures, product lines, analysis, software evolution, software reusabili...
	1. Introduction

	Software evolution and reuse are two critical topics in industry, because of the huge expense inv...
	1. Kazman’s current address: Software Engineering Institute, Carnegie Mellon Univ., Pittsburgh, P...
	concept of a system and its final executable implementation” (p. 136). Software architectures are...
	This paper presents a framework and a set of architectural views that were developed to assess so...
	Objectives provide boundaries and drive the analysis. Architectural views are important for evolu...
	The main objective of the approach was to assess an existing architecture for project evolution o...
	The remainder of this paper is organized as follows: Section 2 demonstrates the framework for ana...
	2. Framework for Information Gathering and Analysis

	To ensure that the software architecture analysis process is organized and scientific (and hence,...
	Gathering. This phase focuses on becoming aware of the available and required information to do t...
	FIGURE 1. Framework for Architecture Information Gathering and Analysis

	Modeling. Once it is gathered, the information is then aligned across information categories. The...
	Modeling is a critical phase, since if it is not done correctly, it can mislead and skew the rest...
	The depth aspect deals with the levels of abstraction at which the stakeholder objectives are rep...
	objectives and the results are fed into corresponding objectives at the next level.
	Analyzing. This phase focuses on specific software architecture analysis and generation of artifa...
	Evaluating. This phase focuses on drivers for architectural development. In this phase recommenda...
	2.1 Example of Modeling of Objectives
	Having described the framework, we now give an example in the domain of telecommunication switchi...
	Table 1: Stakeholder-Architectural-Quality Objectives: An Example

	Stakeholder Objectives
	Architectural Objectives
	Quality Attributes
	Allow interworking with other products and third. parties
	Expose functionality which provides the implementation of standardized third party application pr...
	Reliability Modifiability Portability
	Allow independent development and incremental delivery of new features.
	Decouple functionalities and use of virtual interfaces.
	Reliability Modifiability Integrability
	A set of scenarios are then developed based on the stakeholder and architectural objectives. Each...
	3. Architectural Views for Evolution and Reusability Analysis

	The development of a complex software system involves various stakeholders. Diverse stakeholders ...
	SEAL has adopted various architectural views that are critical for software architecture analysis...
	• Static view. The static view shows the overall topology. The methods that can be used for this ...
	• Map view. The map view identifies the style, design violations, and the mapping between compone...
	• Dynamic view. The dynamic view addresses the behavioral aspects of a system. This view can be s...
	• Resource view. The resource view deals with the utilization aspect of the system resources. Var...
	The development of the views does not have be carried out in a strict sequential manner. Rather, ...
	Figure 2 demonstrates a real usage of these views for a project. The structural view corresponds ...
	FIGURE 2. An Example of the Usage of Architectural Views

	Functional Flow. The functional (sometimes called operational) flow, in this context, refers to t...
	Most architectural representations emphasize only static entities: the system’s “boxes” (componen...
	To return to our telecommunications example, there are large number of features in an advanced te...
	FIGURE 3. Functional View for a Hypothetical System

	The classification and generalization of components and connections also facilitates the estimati...
	Mapping between Functions and Components. The mapping between functions and components provides a...
	Table 2: Mapping of Functions to Components: An Example

	Function
	Components Involved
	Digit Collection
	Dial Plan, Line Interface, Service Handler, Service Initiator
	Call Connection
	Service Handler, Line Interface, Billing Handler
	Answer Handling
	Service Handler, Line Interface, Connection
	Table 3: Mapping of Components to Functions: An Example

	Component
	Functions Involved
	Dial Plan
	Digit Collection
	Service Handler
	Digit Collection, Call Connection, Answer Handling
	Line Interface
	Digit Collection, Call Connection, Answer Handling
	Table 3 shows the mapping of components to functions for a particular scenario. The mapping suppo...
	The tables, though conceptually simple, are useful in demonstrating different aspects of function...
	Various methods could be used to model the behavioral aspect of a system. Examples include state ...
	The behavioral aspect is important to understand the system before reuse occurs. In addition, the...
	Identification of Architectural Styles. An architecture can be classified into more than one styl...
	For the example shown in Figure 4, the behavior of the architecture is similar to a blackboard [3...
	circumstances.
	Some reasons for the violations could be legacy systems, modifications for performance, understan...
	4. Examples of Scenarios and Analyses
	To make a concrete evaluation for the architecture, a number of explicit scenarios are developed ...
	Each objective may consist of a set of scenarios. Moreover, the scenarios developed for each obje...
	In addition to the scenarios developed directly from objectives, a group of scenarios for basic u...
	For each scenario, the effect on the architecture is identified. Typically, there is either no ef...
	The following highlights a couple of scenarios and partial analysis results for the objectives sh...
	Scenario 1: A third party develops a new feature to interwork with the architecture.
	Architecture Impact: Interfaces for third party have not been implemented. Proxies are needed to ...
	Scenario 2: The system will be delivered with basic capabilities. New features for complex call p...
	Architecture Impact: The architecture supports incremental development because of the separation ...
	Scenarios could be described in different levels of detail. Based on the stakeholder objectives a...
	5. Lessons Learned
	We have applied this framework and set of views to several projects within Nortel. The analysis i...
	We adopted and extended SAAM [7] by not only identifying, for each scenario, required changes, bu...
	Further, the analysis could qualitatively reveal the reusability aspect of an architecture. By id...
	Three different tabular representations are also used to summarize the results. One representatio...
	The role of views. The scenarios are the main drivers to evaluate various areas of an architectur...
	For instance, analysis of scenario interaction is a critical step in SAAM. A high degree of scena...
	Scenario generation. Another often asked question about scenario-based analysis is “When to stop ...
	QFD (Quality Function Deployment) was then used to validate the balance of scenarios with respect...
	6. Summary
	This paper presented a framework and a set of architectural views for the analysis of software ar...
	The method also could facilitate the comparison of different architectures developed in the same ...
	Due to proprietary reasons, detailed architectural and analysis results could not be presented. I...
	In SEAL, we have other teams that are working on the complexity measurement of high-level design ...

