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Software architectures are often claimed to be robust. However, there is no explicit and
concrete definition of software architecture robustness. This paper gives a definition
of software architecture robustness and presents a set of architecture metrics that were
applied to real-time telecommunications software for the evaluation of robustness. The
purpose of this study is to provide a structured method to support software architecture
evaluations and downstream software implementations. The study also expands the
software architecture research to quantitative and measurable evaluations as opposed
to qualitative assessments. In addition, this paper presents an empirical case study of
applying the metrics. The approach and the metrics data provide insights into software
architecture sensitivity analysis on system qualities and trade-off analysis among a set
of design alternatives to support product evolution.

1. Introduction

Software architecture has drawn tremendous attention in the past several years

in both academia and industry. The main reasons are the increasing complexity of

software systems, the need to analyze and design systems at higher levels of abstrac-

tion and the demand to reduce maintenance costs for system evolution. However,

software architecture properties are usually claimed through abstract terms such

as “The architecture is robust”. Further, software architecture analyses are of-

ten conducted in an ad-hoc manner. This paper presents an approach to facilitate

structured evaluation of software architectures for product evolution and trade-off

analysis.

To evaluate an architecture in an objective and repeatable manner, and to es-

tablish a basis for effective communication within the software architecture commu-

nity, a definition of robustness is necessary. Kalaichelvan and Munikoti presented

the concept of software architecture robustness [10]. This paper follows their school

of thought and extends the work by identifying more concrete factors that impact

software architecture robustness.

Moreover, explicit evaluation is needed through measurable metrics. There are

numerous metrics available at the code level [14]. Some researchers have also worked

on the design metrics [1]. However, there is very little emphasis, if any, on the
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metrics of higher level of abstraction at the architectural stage. This paper is one of

the first to attempt to design various metrics for quantitative evaluation of software

architectures from the evolution perspective. It is demonstrated, in this paper, that

quantitative evaluation can be performed to support decision making process for

the software practitioner.

This paper is organized as follows. Section 2 presents a definition of software ar-

chitecture robustness. Section 3 describes a list of metrics at the architecture level

and presents an example. Section 4 discusses an approach to collect the metrics

data and explains how to quantitatively measure software architecture robustness

with two case studies. Section 5 shows some related research in software archi-

tecture trade-off analysis. Section 6 presents some lessons learned from empirical

studies. Finally, Sec. 7 shares the current status of this research and identifies future

directions in this area.

2. Software Architecture Robustness: A Definition

Software architecture robustness has been constantly addressed and recognized as

a critical issue. But what is software architecture robustness? There is no explicit

or concrete definition of robust software architecture. Here we propose a definition

of software architecture robustness and a set of metrics for making quantitative as

well as qualitative evaluations.

The definition is based on analyzing the sensitivity of a software architecture

to the changes in critical customer objectives. Specifically, software architecture

robustness is defined as the degree of sensitivity of the architecture to the effects

of change in stakeholder value parameters measured in terms of architecture at-

tributes. Figure 1 demonstrates the concepts and some example factors that affect

the robustness of a software architecture. Based on the definition, the robustness is

related to the objective of the stakeholder, customer value parameters, and archi-

tectural concerns and attributes. Typical stakeholders are customers, architectural

evolution strategists and chief architects of the organizations. Examples of cus-

tomer value parameters include quality attributes like scalability, performance, and

modifiability, and architectural concerns such as conformance to standards and con-

sistent interfaces. Key architecture attributes are the critical software architectural

elements, including components and connections.
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Fig. 1. Software architecture robustness analysis factors.
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In other words, if an architecture is designed to accommodate many changes,

then the architecture is robust. If some architectural elements that must be changed

do not have much impact on the architecture or the downstream implementation,

then the architecture is also robust, because the architecture is independent of,

or not sensitive to the changes. To support a quantitative analysis of sensitivity

or robustness, a set of metrics are needed to describe the magnitude or degree of

changes. The following section depicts a set of metrics for robustness or sensitivity

analysis.

3. Software Architecture Metrics

Perry and Wolf [21] presented a software architecture model, which consists of three

basic classes of architecture elements. These classes are processing element, data

element, and connecting element. Before presenting the metrics, we assume that

the software architecture is represented in such a way that components and links

are classified and/or generalized [7,11]. For example, the components could be clas-

sified into computational units, process units, threads, and data repositories. Links

between components could be classified into control links and data links. Moreover,

a number of components and links could be logically grouped to get a higher level of

abstraction or to form an architectural style [7]. Figure 2 presents a simplified call

processing software architecture which illustrates the concept of classification and

generalization of components and links. Processes represent independent threads

of control. A process may consist of a set of tasks that form an executable unit.

Computational units only exist within a a process or within another computational

unit. An active data repository consists of both data and methods that manipulate

the data. Passive data repositories represent only data, e.g., traditional files. A

persistent component statically stays in the system, whereas non-persistent compo-

nents are instantiated dynamically at run-time. The description here only provides

a guideline, as the classification of the components and connections is application-

specific. There are many metrics developed for the code level. Generally speaking,

the code metrics can be categorized into measurements of

• Size (lines of code, number of functions, number of classes)

• Structure (cyclomatic number, fan-in and fan-out)

• Usage (local variable vs. global variable) [6]

• Levels of abstraction (procedure or class level vs. file level)

Although many of the code metrics, such as lines of code, will not be applicable

at the architecture level directly, the categories of measurements are useful for

higher level as well, such as architecture. A set of metrics for software architecture

is developed based on these categories. Counting of components is related to “size”.

Computational units and process units are, in general, more complicated than data

repositories. This feature indicates the complexity of the internal “structure” of a

component, which shares similarity with the cyclomatic metric at the code level. In
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addition, the overall topological “structure” of an architecture bears the information

of fan-in and fan-out of components and subsystems. Different components and

links may have different “usages”. For instance, components could be persistent or

non-persistent, and links could be control or data. For “levels of abstraction”, the

components could be logically grouped to demonstrate the system at a higher-level

of detail, i.e., logical grouping or architectural style. The concept is used for both

procedural languages (procedure level vs. file level or file level vs. module level) and

object-oriented languages (class level vs. file level).
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Fig. 2. Structural view for a simplified call processing system.

Table 1 presents a set of metrics for software architecture analysis. The entities

and values shown in the table are extracted from the example illustrated in Fig. 2.

The metrics of CL (coupling link) type deals with the coupling aspect for each

component. There is a value associated with each individual component of type CL,

as shown in the Entity column. The ratio of function/component shows the mapping

between functions and components. A function which involves many components

may be a sign that the particular function is complicated, the set of components

are highly coupled, or some of the components are at a fine-grained level. Higher
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Table 1. Metrics for measuring software architecture.

Name Type Metric Entity Value

NCU C # of computational units Dial Plan, Service Base, Service

Plan, Translation, Selector,

Connection, Update Account

7

NPU C # of process units Line Interface, Service Handler 2

NADR C # of active data repositories Service Source 1

NPDR C # of passive data repositories Service Directory, Account

Information

2

NPC C # of persistent components Line Interface, Service Base 2

NNPC C # of non-persistent components the rest, excluding regular files 9

RPC C ratio of persistent components/total

# of units

2/11

RNPC C ratio of non-persistent

components/total # of units

9/11

RCP C ratio of (computational +

process)/total # of units

9/11

NCL DCL # of control links 9

NDL DCL # of data links 11

NSL DCL # of synchronization links 2

NASL DCL # of asynchronization links 0

NTCM DCL # of type of communication

mechanisms

memory read/write, CORBA,

TCP/IP(not shown in Fig. 2)

3

NFOP CL # of fan-out of process units Line Interface (6), Service Handler

(10)

16b

NFIP CL # of fan-in of process units Line Interface (4), Service Handler

(8)

12b

NFOC CL # of fan-out of computational units Service Base (2), Dial Plan (3),

Service Plan (7), Translation (1),

Selector (1), Connection (2),

Update Account (1)

17b

NFIC CL # of fan-in of computational units Service Base (2), Dial Plan (2),

Service Plan (8), Translation (2),

Selector (2), Connection (2),

Update Account (4)

23b

MAXRFC F max. ratio of function/components Function Digit Collection (Dial

Plan and Line Interface)

1/2

MINRFC F min. ratio of function/components Function Physical Connection

(Line Interface, Service Source,

Service Plan, Selector, Connection)

1/5

ANFC F average # of function/components 1/3

NLG AL # of logical grouping (cluster) Service Initiator, Service Handler,

Resource Handler, Digit Analyzer,

Physical Connection, Billing

Handler

6

NAS AL # of architectural styles or patterns blackboard 1

NVAS AL # of violations to architectural styles Line Interface to Connection 1

SC AL Structure complexity [5] 16.8

SCC AL System cohesion & coupling [8] 0.56
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aC: Component; DCL: Data or Control Link; CL: Coupling Link; F: Function; AL: Architecture
Level

bA value for each individual component is identified.

coupling may be necessary for some components due to their specific functionalities,

such as shared utilities. For these type of components, decoupling may not be

necessary. However, the point is to capture those features explicitly for better

understanding.

Note that these values are raw metrics. The values listed in Table 1 at this stage

do not indicate the robustness of an architecture nor are intended to be used for

comparing different architectures directly. Moreover, these metrics are highly multi-

colinear. In other words, trying to change one value of a metric through architectural

modifications will affect other metrics. Instead, we are more concerned with the

magnitude of changes or delta values of the metrics for the sensitivity analysis rather

than the raw values. The delta analysis is used for evolution planning or comparing

different software architectures in the same problem domain. The following section

describes how to collect and make use of these metrics to measure the sensitivity,

and hence robustness.

4. Software Architecture Robustness Analysis

The metrics shown in the previous section presents a “static” view of a software

architecture. These metrics were developed based on studies of large-scale real time

telecommunications systems. However, the metrics are applicable to other appli-

cation domains. A software architecture robustness analysis was performed using

these metrics. In order to measure the sensitivity or robustness of a software archi-

tecture with the metrics, we adopt and expand a scenario based approach [11,12,18]

to collect and process the data. The approach extends the Goal/Question/Metric

paradigm [2] by considering a wider range of stakeholders and their objectives. A

number of use cases or explicit scenarios are derived from the key stakeholder ob-

jectives or customer value parameters. A use case is a category of transactions per-

formed by a system, describing a particular purpose of using the system or yielding

an observable result from the actor’s point of view [9]. A scenario is a use case in-

stance. In addition, a set of architectural views were adopted to support the analysis

[15–18]. By walking through the architecture with explicit scenarios derived from

the key stakeholder objectives or customer value parameters, we can identify the

changes required due to new, modified, or missing requirements. The information

is then mapped to the set of metrics to get qualitative or even quantitative re-

sults. To highlight, the approach iteratively applies the Objective/Scenario/Metric

paradigm, which is described as below.

• Objective. This phase gathers and analyzes different types of information,

namely, stakeholder objectives, architectural objectives, and non-functional qual-

ity objectives such as maintainability, reliability and performance [3,18].
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• Scenario. A set of scenarios or use cases are derived from the stakeholder objec-

tives, architectural objectives, and desired system quality attributes. The scenar-

ios cover both the expected usages of a system, predicted management, system

behaviors for abnormal conditions, and potential future changes to a system. A

use case or scenario classes could be further refined into more concrete or more

detailed scenarios.

• Metric. A set of metric values is identified based on the scenario analysis to

provide quantitative answers. The metrics are primarily used to evaluate the

effort required for system evolution or the sensitivity of an architecture based on

the analysis.

4.1. Case Study 1

Table 2 illustrates the concept and presents an example on the kinds of information

that is gathered for a large telephone switching system. Three objectives are listed

to depict some anticipated future usages. For each objective, a set of scenarios

are developed. Table 3 highlights some example scenarios developed based on the

stakeholder and architectural objectives. Elicitation questions are prepared for each

objective and are used in interviewing domain subject experts. These interviews

are used to better understand systems and to develop scenarios for analysis.

Table 2. Stakeholder – Architectural – Quality objectives: An example.

Stakeholder objectives Architectural objectives Quality impact

Support terminal, user,
and session mobility

Decouple and encapsulate all terminal,
user, and session data, and permit the
transport of data.
Allow terminal, user, and session data
to be configured dynamically.

Reliability
Interoperability

Portability
Scalability

Support multimedia
simultaneously within
the same session.

Provide consistent common interfaces
to all media.
Provide scalable communication
media.
Separate product functionality from
hardware constraints.

Reliability
Modifiability

Interoperability
Performance

Provide flexibility to
port to a
multi-processor
environment.

Decouple functionalities.
Use common interfaces among
components.
Encapsulate the transport of data and
make no assumption of explicit
physical information.

Reliability
Modifiability

Interoperability
Performance

Each objective may consist of a set of scenarios. Moreover, the scenarios de-

veloped for each objective could be categorized for complex applications, creating

a reusable checklist of architectural concerns. In telecommunications systems, for



104 C.-H. Lung & K. Kalaichelvan

instance, interactions of complex services or features need to be validated. Those

feature interactions are grouped into different classes to have better scenario cover-

age and to facilitate evaluations. Another important example is fault management.

There are many possible types of faults. The category is useful for scenario gen-

eration, validation, and coverage analysis [4,18]. By working with the stakeholders

closely, we can also prioritize scenarios, especially when there is a timing or resource

constraint.

Table 3. Scenarios: An illustration.

Stakeholder objectives Scenarios

Support terminal, user, and
session mobility

• Terminal mobility. A person needs to access a non-fixed link
to the network. Examples include cellular phones or mobile
computer connections to the network.

• User mobility. A user can use another user’s terminal device
as his/her own. This requires that the user is identified and
functionalities, including billing policy, can support it.

• Session mobility. A user may move a particular call from
one terminal device to another. For instance, a person using
a celluar phone wants to transfer the call to another terminal
device and continue the call.

Support multimedia simul-
taneously within the same
session.

• Two persons can establish a call to talk, send a fax, and
discuss some thing displayed on a computer screen
simultaneously within the same session.

Provide flexibility to port to
a multi-processor environment.

• The called party and the calling party are to be handled by
separate processors.

In addition to the scenarios developed directly from objectives, a group of sce-

narios for basic uses of the system may need to be generated. Often, analyses will

focus on potential future changes to a system. Basic needs are thus usually ne-

glected. Basic needs usually are not product differentiators, yet one cannot have a

product without the basic functionality. For example, a basic call service must exist

no matter how complex the communications may be. Basic needs are thus critical

for architectural analysis, but often are not explicitly expressed by stakeholders.

For each scenario, the effect on the architecture is identified. Typically, there is

either no effect (no change to the architecture required) since the scenario is directly

supported by the architecture, or changes in the architecture are required to satisfy

the scenario. In addition, the effort required to make the necessary changes is also

estimated based on the types of changes and components. Issues for further analysis

are addressed if more specific information is needed to perform the analysis.

Table 4 demonstrates an example of partial analysis results. The existing system

serves as a reference architecture. Having a reference architecture is critical to

make more concrete or meaningful comparisons among alternatives. The numbers

shown in the table indicate the effects for the potential changes with respect to

the reference architecture in order to meet the objectives. The approach coupled
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with the metrics support architecture-driven evolution, especially when the table

gets populated. The structured method of identifying information and gathering

metric data provides insights into change impact analysis and system evolution.

For each objective, the changes that need to be made are captured and classified.

Combination of objectives can reveal frequency of change for components or links.

The recurrence of some architectural elements in the table is a sign of change prone

areas, which usually require more maintenance than other areas.

The information may also provide positive side effects. The results could indi-

cate weaknesses of a product or the process. For instance, many links need to be

modified may mean that the communication mechanism needs to be simplified or re-

examined. If many changes point to the same source (e.g., requirements gathering

or design), this information may support the improvement of process.

Table 4. Changes1 required to support scenarios derived from business objectives: An illustration.

Metric Objective #1 Objective #2 Objective #3

support mobility support multimedia support multiprocessing

# of

computational

units

+2: Medium (Service Plan,

Connection)

+1: Low (Update Account)

+1: High (Connection)

+1 Low: (Service Base)

+2: High (Service Plan,

Connection)

+2 Medium (Translation,

Selector)

# of process

units

+1: High (Line Interface)

+1 Low: (Service Handler)

+1: High (Service

Handler)

+2: High (Line Interface,

Service Handler)

# of active

data

repositories

0 +1: High (Service Source) 0

# of control

links

+1: Medium (Line Interface

to Dial Plan)

+1: Medium (Line Interface

to Service Plan)

+1: Medium (Selector to

Connection)

+2: High (Line Interface

to Service Handler (2)

+2: Medium (Service

Plan to Connection,

Service Plan to

Translation)

# of types of

communication

mechanisms

−1 (CORBA) −1 (CORBA) −1 (CORBA)

# of violations

to architectural

style

+1: Low (Selector

to Connection)

+1: Medium (Dial Plan

to Translation)

0

Structure

complexity [5]

0 (same) −1 (from 16.8 to 18.5) −2 (from 16.8 to 22.3)

System

strength [8]

0 (same) 0 (from 0.58 to 0.55) −1 (from 0.58 to 0.65)

1A positive number indicates the number of changes (modifications or additions) needed. A
negative number indicates the number of removal of components or links. 0 means no evident
changes required. High, Medium, and Low represent the level of estimated effort necessary to
make the particular change.
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Other information may be derived from the matrix. For instance, we could

easily obtain the ratio of components that need to be modified to the total num-

ber of components for each stakeholder objective. The information could also be

divided into categories according to the level of estimated effort required to make

the changes. If the matrix (Table 4) is highly sparse, then the architecture is not

sensitive, and hence robust according to the definition of robustness, for a given set

of objectives. If the matrix is highly populated or the number of changes is large,

then the architecture is not robust with respect to the objectives. The analysis

should be performed by walking through the architecture with a wide range of sce-

narios, which in turn are developed to evaluate against the stakeholder objectives.

Modeling of stakeholder objectives and generating scenarios can be found in [4,18].

The analysis results described in Table 4 show the number of modifications that

need to be made and the estimated effort necessary to make the changes. Further,

some changes may be independent or dependent on other changes. The approach

also indicates volatile areas (components, links, or mechanisms) where changes are

likely to occur. The approach and metrics together with other application-specific

information support the identification of change interdependencies, which could

provide insight into prioritizing and scheduling activities in a release cycle.

Another often encountered problem is possible conflicts that will be introduced

when making changes. For instance, we may add a link between two components to

improve performance. But this modification often has negative impact on maintain-

ability. Table 4 shows some potential risks from the stakeholder objectives point

of view. The analysis we propose also extends to evaluate the system based on

non-functional attributes by identifying the impact on qualities for each change

or change class. Table 5 demonstrates the concept with an example. The first

three columns represent three instances of change for either a component or a link,

whereas the last column shows a change for one type to another. Impact values are

in the range of −2 to +2 for the proposed changes. The values are obtained by a

team of domain experts. As shown in Table 5, the proposed change ‘add services

to existing Line Interface to support mobility’ has a great deal of negative impact

on qualities. As a result, further investigation should be conducted to explore other

means to support mobility or restructure exising software architecture. The impact

analysis based on the structured process has been empirically validated as an effec-

tive vehicle for communications between stakeholders, which is critical in product

evolution planing.

The approach is further used to support trade-off analyses among design alterna-

tives or support concept selection for better decision-making. For instance, if there

are several candidates for a proposed change, we could evaluate these candidates

by applying the approach and compare the candidates against a set of selection

criteria that are critical to the stakeholders. This method is adapted from Ulrich

and Eppinger [22]. An example is depicted in Table 6 for illustration.

The example takes the previous identified risk area described in the last para-

graph one step further by examining other possible ways to modify the Line Inter-
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face to support mobility. The first method, ‘add services to existing Line Interface’,

is taken from the previous step for comparison purpose. Another method is ‘de-

couple Line Interface from protocol handling’ and develop a separate component

for this feature. The third one is an extension of the second one by introducing an

additional component to handle user profiles. Based on the reference architecture,

the team then rates these three alternatives against the selection criteria. Note

that the criterion Time to Market is evaluated relatively rather than based on the

common reference architecture. If the system starts from scratch, one of the design

options can be chosen as the reference architecture.

Table 5. Trade-off analysis for quality impact: An illustration.

Quality Add services to Divide Service Add a control link Replace CORBA

impact existing Line Interface Handler into two from Selector with Memory

to support mobility for both parties to Connection Read/Write

Reliability 0 +1 0 +1

Maintainability −1 +1 −1 +1

Interoperability −1 +2 −1 −1

Portability −2 +1 −1 −1

Scalability −1 +1 −1 −1

Performance 0 −1 +2 +1

Table 6. Evaluation of architectural alternatives.

Selection Add services to Decouple Line Decouple Line Interface

Criteria existing Line Interface Interface plus add user profile

Reliability 0 +1 +1

Maintainability −1 +1 +1

Interoperability −1 +1 +2

Portability −1 +1 +2

Scalability −1 +1 +1

Performance 0 −1 −1

Time to Market +1 0 −1

Sum +’s 1 5 7

Sum 0’s 2 1 0

Sum −’s 4 1 2

Net Score −3 4 5

Rank 3 2 1

Continue? No Yes Yes

The last row in Table 6 shows a net score for each alternative by subtracting

‘−’ ratings from the ‘+’ ratings. At this stage, the team could eliminate some

alternatives to simplify the trade-off analyses. The remaining options are due for

more detailed analyses. A weighted scoring scheme could also be adopted to support
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the detailed analyses. The team assigns a weight to each criterion and rates each

design alternative. Finally, the team ranks the alternatives by calculating a total

score for each alternative. See [22] for detailed discussion. The approach provides

a structured way for robustness or sensitivity analysis. Usually at this stage, the

criteria that seem to differentiate the alternatives can be identified, which is critical

in a trade-off analysis.

4.2. Case Study 2

This section briefly discusses another example where the approach has been applied.

The example involved two subsystems of an AIN (Advanced Intelligent Network)

product. The problem occurred for the deployment of new services. The devel-

opment time was longer than planned. Two primary problems with the software

architecture were identified. First, the Service Framework and the Platform were

tightly coupled. As a result, the service designers, while developing new services or

modifying existing services, often had to work on not only the Service Framework,

but also the Platform. The second issue was that the service messages encoded with

protocols were deciphered twice and the access of decoded messages by services was

indirect. In other words, there was an extra level for both message decoding and

accessing of the decoded messages by services.

Therefore, the three main objectives of this project are summarized as follows.

• Shorter time to market for new service deployment

• Better performance for service execution

• Lower coupling for evolution cost

We identified several alternatives and evaluated them against the reference ar-

chitecture, i.e., the existing design. For brevity, the collection of metric data is not

presented. Instead, Table 7 briefly summarizse the evaluation of three architectural

alternatives.

5. Related Works

There is not much research reported in the literature on software architecture met-

rics. To the best of our knowledge, this article is an initial effort in developing a

comprehensive list of architectural metrics and applying them to real projects based

on a structured analytical methodology.

There are research efforts related to the evaluation of software architectural

alternatives [13,15]. These two approaches share commonalities with ours. That is,

they describe a structured method for making informed trade-off analysis. Making

trade-offs is not a new concept. In fact, all design involves trade-off analysis. We

also have borrowed the idea of concept selection from mechanical engineering [22].

Many trade-off analyses are performed in the “black-box” fashion. In this fash-

ion, components usually are at a coarse level of abstraction or the components

are treated as black-box. Evaluation, therefore, focuses more on the high level
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Table 7. Evaluation of architectural alternatives selection criteria.

Selection

Alternative 1 Alternative 2 Alternative 3

criteria

• No change of message

decoding, i.e., convert

service messages to in-

termediate level, then

to the internal target

format.

• Re-partition existing

system components,

functions. Decouple

service-specific compo-

nents from Platform.

• No change to message

decoding.

• Decouple service-specific

components from Plat-

form and allow services to

directly access variables in

shared memory block.

• Dynamically allocate

shared memory block tai-

lored to suitable service

size.

• Convert service mes-

sages to target format,

no intermediate level.

Maintainability +1 +2 +1

Portability 0 0 −1

Performance 0 +2 +1

Scalability 0 +1 0

Time to

Market

−1 −2 −1

Backward +2 −2 0

compatibility (yes) (no) (side effect on other parts)

Sum +’s 3 5 2

Sum 0’s 3 1 2

Sum −’s 1 4 2

Net Score 2 1 0

Rank 1 2 3

Summary • Less modification ef-

fort (4 components and

7 links). Effort required

is small.

• Backward compatible.

• Problem occurs only at

initialization/registra-

tion stage, but more ver-

ification needed.

• The coupling problem

between two subsystems

is reduced.

• It would be much easier to

maintain, but high modifi-

cation effort is needed.

• High performance gain

and reduction of mem-

ory usage is expected, but

quantitative measurement

not available.

• Long development time is

needed.

• Not backward compatible.

• Moderate modifications

(2 components and 2

links). Effort is medium.

• Performance gain not

significant (∼2%) based

on quantitative traffic

simulation & measure-

ment.

• No backward compata-

bility or service process-

ing problem. But the

intermediate format is

also tied up with other

traffic simulation.

Continue? Yes No No

• Quick solution, yet re-

solve the coupling prob-

lem between two subsys-

tems. Hence, deploy-

ment of new services is

faster.

• Due to time-to-market

and backward compatabil-

ity.

• May be long-term and

larger scale option.

• Not much gain in perfor-

mance or other values.

• Side effect on other

parts of the system.
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functional elements against a set of criteria, attributes, or high level requirements.

Our approach goes beyond this step by conducting the analysis in the “white-box”

manner. The level of abstraction coincides with the adopted metrics. This way,

the analysis would be more informed and objective since there is more concrete

information. Case study 1 shown in Sec. 4 is an example of “white-box” trade-

off analysis. On the other hand, case Study 2, without the description of metrics

collection and analysis, shows the trade-off analysis with the “black-box” flavor.

6. Lessons Learned

We have applied the approach to several projects. From the experience, we have

some observations that are interesting and worth noting. First, there is other infor-

mation that is beneficial to robustness analysis, particularly various architectural

views and application-specific data. It is a generally accepted idea that multiple

architectural views are needed [3,16]. The concept is also adopted in the recent

UML (Unified Modeling Language) for object-oriented modeling and analysis. The

architectural views used in our analysis include static view, dynamic view, resource

view, and map view [17-19].

The resource view deals with the utilization of system resources, execution envi-

ronments, and workload scenarios. Typical system resources are processors, mem-

ory, disks, and networks. The characteristics of the resources provide important

information from the execution point of view. Various techniques can be used, in-

cluding the identification of mapping of software onto hardware, performance mod-

eling, measurements, parallel or concurrent processing, and simulation. Detailed

discussion of the technique can be found in [19].

The map view is the principal difference between the approach and other tech-

niques in architectural views. The map view is useful in determining allocation of

functions to components or reducing system coupling. An example is illustrated

in Fig. 3. It is obvious that the coupling is significantly reduced from (a) to (b).

Coupling has a tremendous impact on many other quality attributes such as main-

tainability, portability, scalability, reusability, and interoperability [6]. Based on

our experiences, sensitivity is usually highly correlated with coupling. This view is

useful in providing information for architecture restructuring [20].

Second, historical application-specific data will also help us to study the rela-

tionships between high-level architectural components and the components at the

code level in order to learn more on the robustness of software architectures, and to

help support the management and cost estimation for future changes. Application-

specific data include data on cost, defect, and code complexity. This type of infor-

mation is necessary to translate the degree of effort required (High, Medium, and

Low shown in Table 4) to product-specific cost adjustment factors.

Another often asked question about scenario-based analysis is “When do we

stop generating scenarios?” [12]. Two approaches were used in our study in SEAL.

First, scenario generation is closely tied to various types of objectives: stakeholder,
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architectural, and quality. Based on the objectives, we worked with domain experts

closely and iteratively to identify scenarios and cluster these scenarios to make sure

each objective is well covered. Much effort is spent in identifying the information

early to help make informed trade-offs and decisions.

E9

E5

E7E4E8

E2

E6E3

E1

S1

S2 S3

E9

E8

E7E6E5

E4

E3E2

E1

S1

S2 S3

  (a)

  (b)

Fig. 3. An example of restructuring components to reduce coupling.

QFD (Quality Function Deployment) was then used to validate the balance of

scenarios with respect to the objectives. A cascade of matrices are generated to

show the relational strengths from stakeholder objectives, architectural objectives,

to quality attributes [4]. Priorities are calculated for each objective. Finally, quality

attributes are translated to scenarios to reveal the coverage of each quality attribute.

An imbalance factor is then calculated for each quality attribute by dividing cov-

erage by quality priority. If the imbalance factor is less than 1, we may need to

develop more scenarios to address the quality attribute in accord with stakeholder,

architectural, and quality importances. For instance, if the relative priority of per-

formance is 18 and the coverage of performance by the scenarios is 9, the imbalance

factor is 0.5. This suggests that more scenarios need to be developed to address

performance.

Third, the area of of software architecture metrics is still in its infancy. Again,

it is not our intention to identify a list of metrics that are useful to all applications.

We do not even apply all the metrics listed in Sec. 3 to all the projects that we have
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worked on. Selection of the metrics is dependent on objectives, applications, and

projects.

The final note is that the approach presented in this paper does not make com-

plex decisions easy or completely objective. For some areas such as performance, it

is easy to obtain objective and quantitative measurements. Some commonly used

measurements include queries per second, execution time, and CPU utilization. On

the other hand, there are still difficult decisions to make and there is still subjec-

tiveness involved for other attributes.

Nevertheless, the value that this approach provides is a structured mechanism to

support the trade-off analysis early and explicitly. By applying the method early, the

potential problems can be solved at a lower cost. Having an explicit and structured

method forces you to consider thoroughly about the objectives, alternatives, trade-

offs, conflicts, and relevant resolutions or consequences in the decision process.

7. Summary and Future Research

This paper gave a concrete definition of software architecture robustness and a set of

metrics to support robustness analyses. The Objective/Scenario/Metric paradigm

was then introduced to support the measurement of sensitivity.

Sensitivity analysis is performed by going through the architecture with sce-

narios, identifying changes needed to meet stakeholder objectives, and classifying

the changes according to the metrics definition. This paper also addressed change

impact analysis from the perspectives of qualities, or architectural objectives and

concerns. Finally, this paper discussed a way to analyze trade-offs among a set of

design alternatives.

People use some methods for change impact analysis or trade-off analysis. How-

ever, this process is usually conducted implicitly or in an ad-hoc manner. The

approach presented in this paper is explicit and in a structured fashion. The ex-

plicitness of the process can ease the capture and transfer of domain knowledge.

The result could also reveal the potential reusability of a software product at the

architecture level. Moreover, the approach facilitates the comparison between two

architectures in the same problem domain from the evolution perspective. Two

architectures in the same domain may have different structural alternatives and al-

locations from function into the structure. By explicitly classifying and identifying

the types of changes, and performing the delta analysis, we can better estimate the

effort required for different systems. The methodology was applied to the analysis

of actual large-scale telecommunications software architectures.

At Nortel, we evaluate software architectures to identify quality aspects and ar-

chitectural concerns for their evolution or for another project in the same problem

domain. The metrics were extracted manually for this experiment. This process

may be automated or partially automated for systems that are specified in architec-

tural description languages (ADLs). Other metrics proposed for high-level design or
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object-oriented applications may be tailored and integrated into the methodology,

and some of the existing metrics listed in this paper may be modified or removed as

we learn more about them. We are currently pursuing research to apply Function

Points to support cost and effort estimation.

An important factor that influences system evolution is the time interval al-

lowed for making the changes. If the time allowed to make a certain amount of

changes is short, the sensitivity usually is high. On the other hand, if the avail-

able period spans longer, the degree of impact becomes lower than that of a tight

schedule. Timing aspect itself is a function of project planning, scheduling, revo-

lution plan. We are working towards a mathematical definition of robustness by

integrating various factors, including customer objectives, product attributes, non-

functional qualities, and timing constraints. Further research needs to be conducted

to quantitatively characterize software architectures and support trade-off analysis

for evolution activities.

Acknowledgments

We are grateful to Sonia Bot and Rama Munikoti for their support.

References

1. V. Arora, Kalai Kalaichelvan, N. Goel, and R. Munikoti, “Measuring high-level design
complexity of real-time object-oriented systems”, Proc. Annual Oregon Workshop on
Software Metrics, 1995, pp. 91–94.

2. V. R. Basili, G. Caldiera, and H. D. Rombach, “The goal question metric approach”,
Encyclopedia of Software Engineering, ed. J. Marcinak (Wiley, 1994).

3. L. Bass, P. Clements, and R. Kazman, Software Archiecture in Practice (Addison-
Wesley, 1998).

4. S. Bot, C.-H. Lung, and M. Farrel, “A stakeholder-centric software architecture analy-
sis approach”, Proc. Int’l Software Architecture Workshop (ISAW ), 1996, pp. 152–154.

5. D. N. Card and R. L. Glass, Measuring Software Design Quality (Prentice-Hall, 1990).
6. H. Dhama, “Quantitative models of cohesion and coupling in software”, J. Systems &

Software 29 (1995) 65–74.
7. D. Garlan and M. Shaw, “An introduction to software architecture”, Advances in Sw.

Eng. and Knowledge Eng., vol. 1, 1993.
8. G. Heyliger, “Coupling”, Encyclopedia of Software Engineering, ed. J. Marcinak

(Wiley, 1994).
9. I. Jacobson, M. Griss, and P. Jonsson, Software Reuse: Architecture, Process, and

Organization for Business Success (ACM Press and Addison-Wesley, 1997).
10. K. Kalaichelvan and R. Munikoti, “Developing robust software architectures”, in

Workshop on Software Architecture Evaluation Best Practices (invited paper), Soft-
ware Engineering Institute, May 1996.

11. R. Kazman, L. Bass, G. Abowd, and M. Webb, “SAAM: A method for analyzing the
Properties Software Architectures”, Proc. ICSE 16 (1994) 81–90.

12. R. Kazman, G. Abowd, L. Bass, and P. Clements, “Scenario-based analysis of software
architecture”, IEEE Software 13, 6 (1996) 47–55.

13. R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere, “The ar-
chitecture tradeoff analysis method”, Proc. 4th Int’l Conf. on Engineering of Complex



114 C.-H. Lung & K. Kalaichelvan

Computer Systems, Aug. 1998, pp. 68–78.
14. T. Khoshkoftaar, E. Allen, K. Kalaichelvan, and N. Goel, “The impact of software

evolution and reuse on software quality”, Empirical Software Engineering 1, no. 1
(1997) 31-44.

15. V. D. Kirova and H. G. Kradjel, “The DirSA case study: an introduction to software
architecture technology”, Bells Labs Technical Journal, July–Sep. 1998, pp. 125–137.

16. P. B. Kruchten, “The 4+1 view model of architecture”, IEEE Software, Nov. 1995,
pp. 42–50.

17. C.-H. Lung, “Empirical experiences in analyzing software architecture sensitivity”,
Proc. COMPSAC, 1997, pp. 164–165.

18. C.-H. Lung, S. Bot, K. Kalaichelvan, and R. Kazman, “An approach to software
architecture analysis for revolution and reusability,” Proc. CASCON, 1997, pp. 144–
154.

19. C.-H. Lung, A. Jalnapurkar, and A. El-Rayess, “Performance-oriented software archi-
tecture analysis: an experience report”, Proc. 1st Int’l Workshop on Software Perfor-
mance (WOSP ), Oct. 1998, pp. 101-104.

20. C.-H. Lung, “Software architecture recovery and restructuring through clustering tech-
niques”, Proc. 3rd Int’l Software Architecture Workshop (ISAW ), Nov. 1998, pp. 191–
196.

21. D. E. Perry and A. L. Wolf, “Foundations for the study of software architecture”,
Software Engineering Notes 17, no. 4 (1992) 40–52.

22. K. T. Ulrich and S. D. Eppinger, Product Design and Development (McGraw-Hill,
1995).


