Applications of Clustering to Early Software Life
Cycle Phases

Chung-Horng Lung
Department of Systemsand Computer Engineering
Carleton University
Mackenzie Building 4456
Ottawa, Ontario, K1S 5B6, Canada

Tel: (613) 520-2600 ext. 2642
Fax: (613) 520-5727

Email: chlung@sce.car leton.ca

Amit Nandi
Marzia Zaman
Nortel Networks
P.O. Box 3511, Station C
Ottawa, Ontario K1Y 4H7, Canada
anandi@nortelnetwor ks.com

Abstract

This paper presents empirica sudies of gpplying numerica taxonomy to component clustering and
software partitioning. The technique is based on cohesion and coupling information of a software system
as these two properties have great impact on other software qudity attributes such as maintainability,
portability, scaability and reusability. The technique has been successfully applied to severd real-time
software systems in telecommunications and computer networks at various levels of abdraction or

software life-cyde phases. Numericd taxonomy is mathematicaly smple and yet it provides a useful

mechanism for component clustering and software partitioning. This paper presents experiments of the
clustering techniques to various types of gpplication and demondrates a visudization tool that facilitates
the analysis process.

Keywords: dustering, software partitioning, use cases, requirements andyss, cohesion and coupling,
patterns, software architecture

1. Introduction

Alexander [64] podtulated that the mgor design principle which are common to dl engineering
disciplines is the rdative isolation of one component from other components. This idea has dso been a
topic of interest in software engineering. System partitioning plays a vitd role in overdl desgn, as it
greatly affects the downstream development phases. Clugtering techniques can be used to support
partitioning. Clustering and partitioning are considered as two sides of a coin in our view. Patitioning is
a top-down approach to divide a system into subsysems with an am of high coheson within a
subsystem and low coupling among subsystems. Cludering, on the other hand, is like a bottom-up
approach to group smilar components as clusters. Callection of cugers form a subsystem or a
sysem.

Software engineering is a reaively new area compared to other well established disciplines, such as
mechanicad engineering and manufacturing. Effective partitioning is dso a paramount god in those
disciplines. Clugtering techniques have been successfully used in many areas to assst grouping of amilar
components and effective partitioning of a system. In fact, classfication or clustering andysis has been of
long-standing interest and is one of the most fundamental nethods used in science and engineering to
facilitate better underdanding of the observaions and the subsequent condruction of complex
knowledge structures from features and component clusters. For instance, the technique has been used
to classfy botanica species and mechanicd parts. The key concept of clustering is to group smilar
things together to form a st of clugters, such that intrae duser amilarity is high and inter-cluster
amilarity islow. As mentioned earlier, an effective software partitioning technique aso ams for the same
criteriai.e. high cohesion and low coupling.

Vaious clugering techniques have been sudied in software engineering, particularly in the area of
reverse engineering [ICSM, IWCRE, IWPC]. In this paper, we borrow ideas of cudering techniques
from other established disciplines and tailor them to early softwar life phases, e.g., use cases andyss
and requirements andysis.

The clustering techniques adopted in this paper are based on numerica taxonomy. Numerica taxonomy
uses numerical methods to make classfications of components. The main reason that we adopt
numerica taxonomy is its conceptua and mathematical smplicity, as will be demondrated in Section 2.
However, no scientific sudy has shown that numerica taxonomy is inferior to other more complex
multiversity methods. Because each method has potentia for reveding indgght that may be lacking in
other methods [Romesburg9Q].

The objective of this paper is to examine exising numerica clugtering techniques used in other well
established disciplines and gpply the techniques to software engineering requirements and use cases
andysis phase. The main idea is to better support system partitioning a the early stage. The paper is
organized as follows: Section 2 includes a brief overview of the cdustering technique adopted for this
research. Section 3 highlights some related work in the area of software engineering. Section 4
demondtrates severd practica applications of the clustering techniques. Findly, Section 6 presents sum-

mary and future directions.

2. Overview of Clustering

Applications of dugtering analys's can be found in many disciplines. Many clustering methods have been
presented [Anderberg73, Everitt80, Romesburg90], but they comprises the following three common
key steps:

* Obtain the data set.

o Compute the resemblance coefficients for the data .
* Execute the clustering method.

An input data set is an component-attribute data matrix. Components are the entities that we want to
group based on their amilarities. Attributes are the properties of the components.

A resemblance coefficient for a given pair of components shows the degree of smilarity or dissmilarity
between these two components, depending on the way the data represents. A resemblance coefficient
could be qudlitative or quantitative. A qualitative vaue is a binary representation, eg., the value is ether
0 or 1. A quantitative coefficient measures the literd distance between two components when they are
viewed as pointsin atwo-dimensiond array formed by the input attributes.

There are various methods for caculaing the resemblance coefficients. This paper does not discuss
those in detail. The interested reader can refer to [Romesburg90]. Instead, we briefly illustrate one
agorithm adopted in this paper. In generd, there are two types of dgorithmsfor caculating resemblance
coefficients based on the scdes of measurement used for the attributes. One type of resemblance
coefficients can be computed based on qudlitative input data or nomind scaes for attributes, the other
one is based on quantitative input data or the attributes are measured on ordind, interva, or ratio scaes.

This paragraph explains how one agorithm based on binary relaions or normina scalesworks. Let a, b,
¢, and d represent number of the pair of 1-1, 1-0, 0-1, and 0-0 matches between two components and
assume the following component- attribute input data set for an eight- attribute case.

i={1,0,1,1,0,0,0, 1}
i={1,1,1,0,0,0, 1, 0}
k={0,1,1,0,1,0,1, 0}

A 1-1 match between two components indicates that they share this specific attribute. Based on the
definition, we can obtain for componentsi and j that a=2, b =2, ¢ =2, and d = 2. The Sorenson
coefficient is adopted in this research and is defined as follows.

c;=2al(2a+b+c)

where g; is resemblance coefficient for components i and j. Selection of this particular agorithm is
discussed in [Lung02]. By applying the Sorenson matching coefficient wecangetc; = (2x2) / (2x 2 +
2+2)=12 Smilaly,c,=(2x1)/(2x1+3+3)=V4andc,=(2x3)/(2x3+1+1)=3/4.The

0-0 match, d, is not usad in this particular dgorithm. This procedure is repeated for each component
pair to obtain the resemblance matrix. For this method, the higher a coefficient, the more smilar the two
corresponding components represent. Components j and k in this example are more smilar, ance the
resemblance coefficient ¢, isthe largest.

Given aresemblance matrix, a clustering method is then used to group smilar components. Basicaly, a
clustering method is a sequence of operations that incrementaly group Smilar components into clugters.
It starts with each component being in a separate cluster. Each step, two clusters that are closest to
each other (either the largest or the smadlest coefficient, depending on the way you look &t it) are
merged and the number of clusters is reduced by one. After these two clusters are merged, the
resemblance coefficients between the newly formed cluster and the rest of the clusters are updated to
reflect the closeness to the new clugter. A commonly used dgorithm caled UPGMA (unweighted pair-
group method using arithmetic averages) [Romesburg90] is adopted to find the average of the
resemblance coefficients when two clusters are merged. For the above example, after component j and
component k are formed as a new cluster, the resemblance coefficient between the new cluster (j,k) and
component or cluster i is the average of ¢; and G,, which is (1/2+1/4) / 2 = 3/8. The process repeats
until al clusters are exhausted, or a pre-defined threshold valueis reached.

A tree or a dendrogram is commonly used to indicate the clustering process. Figure 1 illudtrates the
concept. In this example, the clustering steps are (a, ¢), (b, d), ((a ¢), €), and findly ((a, ¢, €), (b, d)).
The dendrogram grasps the rdative degree of smilarity among components or clugters. In generd, the
lower the level, the more Smilar the components or clusters are.

Figure 1. An Example of a Dendrogram

acebd

We use the clugtering technique in two different ways. We talor the technique based on component-
component independencies. In this case, the data set now represents the interdependencies or
interconnections among components instead of component-attribute relationships. For example, in Table
1, the 1 entries show that the corresponding components are interdependent or interrelated.

Table 1. Matrix Representation for Component | nter dependency

Bl 2| EBB|HA| B |BE|E/| B|E
eEf1({0)j]21)0|0f1(0]O0]1
E2|jof1(1y1}12(0]0] 10O
EB(1(1)]1|J]0|0[1|0]O0]O0
|02 0]1]2(1]0]1(0O0
B({o0f1)jJ0)1|1f(1(1]0]1

(10|21 |1(1|0]0]|O0
EffOfO)jJO)JO|1f[O0Of1]O0]1
eB|{o|1)]0|]1|0[0|0]12]0O0
eBf1({0)j0)jJ0|1f(O0Of1]0]1

By gpplying the Sorenson clugteirng technique to the problem displayed in Table 1, we can obtain the
system paritioning shown in Figure 2. The partitioning, however, for the same problem could look like
Figure 3, if it is not well designed [Heyliger94]. Evidently, the inter-subsystem connection or coupling is
sgnificantly reduced from Figure 2 to Figure 3.

Figure 2. Grouping Based on Clustering of Components

3. Reated Work

Applications of the clustering concept specific to the software partitioning have been studied. Andreu
[77] applied the partitioning concept to a data base management sysem to minimumize coupling.
Requirements and their interdependencies were first identified and were converted to a graph problem.

Various dternatives for partitioning were examined and a quantitative metric was caculated for each
dterndive. The dternative with the lowest vaue of coupling was chosen as the optimd partitioning. The
process istime-consuming.

Heyliger [94], on the other hand, has proposed to use N square charts to partition a large system into
subsystems. For an N square chart, the rectangles on the main diagona represent the system partition.
Figure 4 shows an example of an N square chart with three subsystems, S1, S2, and S3. The 1'swithin
a subsystem indicate interna strength or cohesion. The 1's outside the partitions or clusters represent
coupling among subsystems. Table 1 conveys Smilar idea

Figure4. N-SquareChart Representation: An Illustration (adapted from [Heyliger 94])

El 1
2|1 1 Area of possible
s1 coupling between
1 E3 1 1 S1 and
E4
E5 1 1
S2 1 1 E6 1 1

S3
1 1| B

Area of possible
coupling between
S1and

The objective of Heylinger's approach was to incrementally refine the design to maximize cohesion and
minimize coupling. Heylinger has identified a set of patterns that characterize specific interfaces among
system elements. These patterns provide mechanisms for system structura reorganization and refinement
for low inter-subsystem couplings. This process, as depicted by the author, is labor intensve and the
rearrangement of the lementsis amgor problem even for smal or modest systems.

Both of these two papers share a common god, which is to minimize the interconnectivity among
components. Selby and Reimer [Selby95] presented an andysis on the interconnections of a software
and system errors. They aso discussed various approaches to clustering software based on component
interconnections. Lakhotia [97] has dso conducted a survey on different subsystem classfication
techniques that have been proposed to classify software into a particular subsystem. The main objective
of this paper isto present a unified framework for expressng subsystem classfication techniques.

Clugtering techniques have aso been applied to other software engineering areas. Lung et a. [92, 9]
present an gpplication of the clustering technique to domain modeling. Numerious papers discuss
software architecture recovery and re-engineering usng dudering techniques [ICSM, IWCPC,

IWCRE]. Other areas include process management and planning [Raz95].

4. Applicationsto Early Software Life Cycle Phases

This section presents gpplications of the clustering method to show how it can be used to support the
early software life cycle phases. The objective is to partition the system to obtain high cohesion within
subsystems and low coupling among subsystems.

4.1 Application to Use Case

We have used the clustering method in an enterprise development project. Use cases were identified
and andyzed to determine development priorities, plan the project, and determine architectura fit
between a third party tool and the software system as shown in Figure 5. Each of these steps will be
described below:

I dentifying Use Cases & Related Information
Jacobson [92] defines use cases as a set of behavioraly related sequence of transactions in a dialogue
with the system. For our system, each use case was identified by a short descriptive name and given a

unique use case identification number. After dl of the use cases were identified, the priority of each was
determined dong with the dependencies between that use case and the other use cases.

Figureb5. Process of Using Cluster Analysiswith Use Cases

| Identify Use Cases |

Assess Use Case Identify Relationships
Priority between Use Cases

\ / Schedule Deliverables

According to High Priority

Capture Use Cases Clusters

in Structured Documentation /
Use Clustering Analysis Identify High

to Identify Cohesive Sets of Priority Clusters

Use Cases

Cluster Analysis of Use Cases

Since dl use cases, use case dependencies and priority information were captured. The coupling
information between use cases was then used to create a dependency graph that was clustered to give
ingght into use cases that were functiondly related. The idea is described in Section 2. The coupling
information is then covered to a table of Is and 0s, as shown in Table 1. This informetion is not
necessarily obvious from the use case descriptions.

Applicationsto the System

The next step required to move forward in the design of the system was to divide the work in a logica
way - both in terms of overdl functiondity and in terms of time on a project schedule. Each cluster of

use cases condsts of one or more use cases with individud priorities. Two forces are considered in
determining the priority of each clugter. Fird force is the leval and number of highest priority use cases
within a cduger. The other one is the average priority of dl the use cases within a cluster. These two
forces determine the order and grouping of the use cases in the cluster for the schedule. This was a
useful method for scheduling that reduced the problem of mismatch between the project plan and the
technica details of functiona dependencies. Figure 6 demonstrates a dendrogram of the use cases along
with ther corresponding clusters.

Figure6. Dendrogram Showing System Use Case Cluster and Priority

Usecase D & JZ 13 8—! 3’{4 10 11 6] 14 1] 16 1

Priority HHLMHL HHML LLLHH H M

~

Group & Priority 1 4 3 5 5

The system in Fgure 6 shows the logica partitions or groups of use cases that were prioritized
according to the individua priorities of the use cases within each cluster. For this example, the
development priorities of the use cases will be (1, 2), (14, 15, 16), (3, 5, 4, 10), (12, 13, 8, 9), (17),
and findly (11, 6, 7).

-16-

4.1.1 Application to Requirement Analysis

Alexander [64] presented an approach for sysem partitioning in building a community village. The
goproach firg outlined a number of criticad requirements and identified the interdependencies among
those requirements. Given the information, these requirements were then grouped into severa clugers.
An gppropriate form or style was then chosen for each cluster. The syntheses of these styles in turn
formed avillage.

Andreu [77] applied Alexander’s partitioning concept to the a data base management system. Figure
8 shows the requirements and their interdependencies for the DBM S example. Table 2 depicts the N-
suare representation as aresult of the clustering process. The table shows five clusters highlighted with
bold rectangles. The clusters were then evauated againgt the corresponding requirements. Each cluster
actudly represented a subsystem. A high-level layered architecture was developed based on the
andyssreault.

Figure 8. Requirementsand Their Interdependenciesfor aDBM S (from Andreu [77])

The clustering method presented in this paper was dso gpplied to Andreu’s data base management
system a the requirement level. The result was exactly the same as that described in the article.
However, the response time is ingartaneous and is much fagter, because we don't need to identify dl
possible partitions and calculate the strength for each one of them and sdlect the highest one. Thisis a
time-consuming process, especidly if the number of entities is high. Likewise, it is difficult to find the
optimal partitions with the N-Square chart approach [Heyligerd4].

Table 2. N-Squar e Representation for the DBM S Partitioning

112 (3569 (218]10)11(12(19]|20| 7 |13(14|15)|4 |16(17(18 |22

1 p pppl{ p

2 1 1 |1

-17 -

|l o| O] W

10 1 1 1 [

11 1 1

12 1 1

19

(=3 BN = =

20

13 1 1

14 1]l 1

15 1 1

16 1 1 1

17 1 1 1

18 1 1 [1

22 1 1 1 11 1

Determining Potential Architectural Fit

After the the grouping of requirements, Alexander identified an appropriate style for each group. With
the increasing applications and experience built with various paiterns [Buschmann9e, Schmidt00], smilar
idea to this may be applied to some software applications. We may identify a suitable pattern for each
group obtained from the clustering method.

For ingtance, in concurrent or network applications, requirements may indude

= connections setup

= demultiplex and digpatch service requests
= geparation of connection and processing of peer services
= decouple processing of incoming and outgoing messages

Those and other relevant requirements can lead to the identification of some design patterns. Some
examplesinclude Reactor, Acceptor-Connector, Active Object, and Half- Sync/Hdf-Reactive. This will
improve software design quaity and development time.

5. Summary and Future Work
This paper presented an approach for software partitioning based on a numerica taxonomy clustering

method. The key value of this gpproach isthat it can support rapid and effective partitioning of a sysem
based on the relationships between components and features or component interdependencies at

-18-

various levels of abgraction. System partitioning is usudly performed by experienced designers in an
ad-hoc manner. The method can help designers quickly obtain an outline of the architecture or design.
More evauations could then be conducted to identify potentid problems early in the development
process.

Further, the method could be used to together as a generative approach to identify appropriate styles or
patterns as described by Alexander [64]. As we understand more about architectura styles or patterns
[Buchmann96, Shaw96], and the interoperability issues of various syles, the method could support
systemetic partitioning of software architectures and identification of appropriate patterns, as have
practiced by other mature disciplines.

Some other areas are Hill in progress. We are dso working on tools integration. There are various
viewpoints that various stakeholders may need. Tools that allow the user to select aview and generate it
accordingly will have a lot of vaues. The other area is to compare various clustering techniques. We
a0 tried to cdculate the Eudidean distance coefficients [Romesburg90] which are derived from
numeric vaues rather than binary vaues as demondrated in this paper. The clustering method is then
applied to the set of resemblance coefficients.

References
[Alexander64] C. Alexander, Notes on the Synthesis of Form, Harvard University Press, Cambridge, MA, 1964.
[Anderberg73] M.R. Anderberg, Cluster Analysis for Applications Academic Press, New Y ork, 1973.

[Andreu77] R.C. Andreu and S.E. Madnick, A Systematic Approach to the Design of Complex Systems: Application
to DBMSDesign and Evaluation, Technical Report CISR 32, MIT Sloan School of Management, 1977.

[Buschmann96] F. Buschmann, et al., Pattern-Oriented Software Architecture, Wiley, 1996.
[Card90] D.N. Card and R.L. Glass, Measuring Software Design Quality, Prentice Hall, 1990.

[Dhama95] H. Dhama, “ Quantitative Models of Cohesion and Coupling in Software”, J. of Systems and Software, vol.
29, 1995, pp. 65-74.

[Dobbing98] T. Dobbing, “Initial Set of Structured Documentation and Review Templates for the Various
Development Phases from which Metrics are Automatically Extracted”, Proc. of SRE’ 98, July 1998.

[Dromey96] R.G. Dromey, “ Cornering the Chimera’, |EEE Software, Jan. 1996, pp. 33-43.
[Everitt80] B. Everitt, Cluster Analysis, Heinermann Educational Books, Ltd., London, 1980.
[Heyliger94] G. Heyliger, “Coupling”, Encyclopedia of Software Engineering, J. Marciniak (ed.), 1994.

[Hutchens85] D. Hutchens and V.R. Basili, “ System Structure Analysis: Clustering with Data Bindings’, |IEEE Trans.
on Software Eng., vol. SE-11, no. 8, Aug. 1985, pp. 749-757.

[ICSM] Proceedings of Int’'l Conf. on Software Maintenance.

[TWCPC] Proceedings of Int’l Working Conf on Program Comprehension.

-31-

[IWCRE] Proceedings of Int’l Working Conf on Reverse Engineering.

[Jacobson92] I. Jacobson et al., Object-Oriented Software Engineering A Use Case Driven Approach, Addison-
Wesley, 1992.

[Kazman94] R. Kazman, L. Bass, G. Abowd, M. Webb, “SAAM: A Method for Analyzing the Properties of Software
Architecture”, Proc. of ICSE-16, 1994, pp. 81-90.

[Kazman98] R. Kazman and S.J. Carriere, “View Extraction and View Fusion in Architectural Understanding”, Proc. of
the 5th Int’| Conf on Software Reuse, April 1998.

[Lakhotia97] A. Lakhotia, “A Unified Framework for Expressing Software Subsystem Classification Techniques”, J. of
Systems and Software, val. 36, 1997, pp. 211-231.

[Lung92] C.-H. Lung, JK. Cochran, G.T. Mackulak, and J.E. Urban, “Empirically Analyzing Software Reuse in a
Simulation Environment”, Proc. of the Workshop on Software Reuse (WISR), Oct. 1992,

[Lung94] C.-H. Lung, JK. Cochran, G.T. Mackulak, and JE. Urban, “Computer Simulation Software Reuse by
Generic/Specific Domain Modeling Approach”, Int’'l Journal. of Software Eng. and Knowledge Eng., vol. 4, no. 1,
March 1994, pp. 81-102.

[Lung02] C.-H. Lung, M. Zaman, and A. Nandi, “Applying Numerical Taxonomy to Software Architecture
Partitioning, Recovery, and Restructuring”, submitted for publication.

[Monroe97] R. Monroe, A. Kompanek, R. Melton, and D. Garlan, “Architectural Styles, Design Patterns, and
Objects’, |IEEE Software, Jan. 1997, pp. 43-52.

[MurphyO1] G.C. Murphy, D. Notkin, and K.J. Sullivan, "Software Reflexion Models: Bridging the Gap between
Design and Implementation”. |EEE Trans. of Software Eng., vol. 27, no. 4, April, 2001, pp. 364-380.

[Neighbors96] J. Neighbors, “Finding Reusable Software Componentsin Large Systems’, Proc. of Working Conf. on
Reverse Engineering, 1996, pp. 2-10.

[Raz95] T. Raz and A.T. Yaung, “Application of Clustering Techniques to Information System Design”, Information
and Software Technology, vol. 37, no. 3, Mar, 1995, pp. 145-154.

[Romesburg90] H. C. Romesburg, Cluster Analysis for Researchers, Krieger, Malabar, Florida, 1990.

[Selby95] R.W. Selby and R.M. Reimer, Interconnectivity Analysis for Large Software Systems, Technical Report,
UCIrv-95-PROC-CSS-001, Univ. of Cdiforniaat Irvine, 1995.

[Shaw96] M. Shaw and D. Garlan, Software Architecture Perspectives on an Emerging Discipline, Prentice Hall,
199.

[SmidtO0] D. Schmidt, et al., Pattern-Oriented Software Architecture Patterns for Concurrent and Networked
Objects, John Wiley & Sons, 2000.

[Wiggerts97] T.A. Wiggerts, “Using Clustering Algorithms in Legacy Systems Modularization”, Proc. of the 4th
Working Conf. on Reverse Engineering, 1997, pp. 33-43.

-32-

