
AGILE SOFTWARE ARCHITECTURE RECOVERY THROUGH
EXISTING SOLUTIONS AND DESIGN PATTERNS

Chung-Horng Lung

Department of Systems and Computer Engineering
Carleton University

Ottawa, K1S 5B6, Canada
Email: chlung@sce.carleton.ca

ABSTRACT

Software architectures evolve over time due to requirement
and technology changes. Hence, software architecture
recovery is often necessary to capture and document
existing systems to effectively support product evolution
and maintenance. Architectures of existing systems can be
recovered using reverse engineering techniques. Reverse
engineering deals with deriving higher-level descriptions
of a software system from existing software artifacts,
primarily source code. Reverse engineering of source code,
often, is a time consuming task. For reasons of limited
resources or competition, software architectures could be
recovered more efficiently by studying solutions from
similar systems. This paper presents an approach for rapid
and agile software architecture recovery in a mature
domain, network applications. We demonstrate a case
study for software architecture recovery by examining an
existing architecture in the same domain. The existing
architecture help derive a conceptual description for the
target system. Meanwhile, some well-known design
patterns in the similar domain are used to compare with the
target system. The knowledge gained from design patterns
provides more detailed information. The process is
coupled with iterative reviews of the source code to refine
the recovered software architecture.

KEY WORDS
software architecture recovery, reverse engineering,
software evolution, design patterns, analogy

1. INTRODUCTION

 Software architecture recovery is empirically
important, because systems inevitably evolve over time
due to changes in requirements, techniques, and personnel.
Reverse engineering, hence, is a necessary means to
capture a high level representation describing components
and the structure of the components of the software. There
have been numerous reports on reverse engineering in
software engineering community, e.g. [20-22]. The
recovered representation is critical in understanding the
software. Understanding the software plays a crucial role
to effectively maintain and evolve the software.

An existing system that has an up-to-date and
complete documentation is rare in practice. Therefore,
reverse engineering often is based on the source code,
since it is the true description of the system. However,
reading thousands or more lines of code to learn about
various components and their relationships is very time-
consuming. This is also true even with the aid of reverse
engineering tools for complex applications. In addition,
resources may be limited. Organizations may be reluctant
to purchase a reverse engineering tool just for a short-
duration usage. Furthermore, overhead may be involved
in learning the tools, especially those tools that require re-
compilation of the source code together with the tools. In
such cases, based on practical experiences, just making
the tool work with the source code may take several
weeks even for a medium-size project.

On the other hand, it is not common to have a project
that is totally new either in the problem domain or the
solution domain. Indeed, there are new applications and
advanced techniques. But many underlying logical
concepts are similar to some existing systems, especially
at the architecture level. Particularly, for mature domains,
the concept usually is well studied and understood.
Hence, some existing solutions could be used to facilitate
the understanding of a new system.

This paper presents an agile approach to software
architecture recovery (ASAR) based on the concept of
analogy. Analogy is fundamental to reasoning. Analogy
has been studied by many researchers in cognitive
science, artificial intelligence, psychology, education, and
philosophy [10]. Analogy is the process of transferring
knowledge from an existing problem to a new problem
that shares significant similarities – and using the
transferred knowledge to construct solutions to the new
problem [4]. The existing problem is often called base,
while the new problem is referred to as target. The base is
usually well understood.

Following a formal process in analogical reasoning is
time-consuming. The approach presented in this paper,
however, is rapid and agile in that it does not require a
rigorous process as discussed in analogy. Analogy usually
consists of four main steps: identification, retrieval,
mapping, and evaluation. The main reason is that the
effort for those steps can be eliminated or significantly
reduced if the problem space is limited to a domain-
specific area. The ASAR approach, therefore, advocates

adopting either the reference architecture or an architecture
of a well-known or mature product in the same problem
domain as the base. The base is compared against the
target system. The source code of the target is then
iteratively reviewed for understanding and refinement to
reveal the actual software architecture. In addition, design
patterns can be used together in the process. Design
patterns provide recurring solutions and knowledge that
can be reused in other applications.

The paper also presents a case study of the ASAR in
network applications. The study consists of two systems,
base and target. The target system had been developed to
some point but later was suspended due to marketing
reasons. The system became alive again several months
later. But there were no documents for the target and the
original designers had left. There was a need to recover the
architecture of the system for new designers in a short
period of time. However, the available resources, both time
and human, were limited. The ASAR approach meets the
requirements and effectively supports the recovery and
revolution of the target.

The intent of the paper is not to downgrade the value
of the conventional reverse engineering effort from source
code. Rather, the main purpose of this effort is to present
an alternative to support rapid and agile software
architecture recovery under the constraints of limited
resources and demands of time-to-market. Moreover, the
goal is to recover the architecture approximately instead of
exactly to help new designers better understand the system
and start working on the system.

The rest of this paper is organized as follows. Section
2 briefly describes the target system. Section 3 presents a
base architecture obtained from a conceptually similar
product and illustrates the recovery of the software
architecture of the target system by using the existing base
architecture and some well-known design patterns. Section
3 also describes a generalized form derived from the base
and the target. Section 4 discusses some related work.
Finally, section 5 is the conclusion.

2. BACKGROUND OF THE TARGET
PROBLEM

The target system is for network traffic engineering

based on CR-LDP (Constraint-based Routing Label
Distribution Protocols) and MPLS (Multiprotocol Label
Switching) protocols [5]. MPLS is regarded as a
fundamentally important technology for the next-
generation internet.

The software is not very large in size. It consists of
about 30,000 lines of code. However, the software contains
complicated operations, algorithms, and domain
knowledge in networks and traffic management. The bulk
of the software was primarily written in a short time to
showcase in an international convention. Some parts of the
software were better written in object-oriented style, but
many parts still followed the C style. Figure 1 shows the

high level view of the design derived from the executable
software processes.

As shown in Figure 1, the router processes are
symmetrical and identical. The four router processes
depicted in Figure 1 are the same, except possibly that the
number of connections to other routers may be different.
Those router processes can be run on the same machine
concurrently or on separate machines. A generator
process randomly generates data packets that will be
forwarded to other router processes and a sink process
consumes data packets received from other router.

 router

Figure 1. Software Process View of the
Target System

There was no design documentation for the software,

except the user’s guide. Although the project is not very
large, it is still challenging. A person’s “span of
understanding” of software is only 7000 to 15,000 lines of
code; and to understand this amount of code requires
about three to six months of time [18]. There was a need
to capture the architecture in a limited time without any
reverse engineering tools or many resources available.

The architecture recovery process started with
reading the directory structure of the target system. But it
didn’t go far. All the files actually were in one directory.
And the size of the files or classes varied dramatically,
raging from just several lines of code to over ten thousand
lines of code. Instead of browsing through the source
code, we turned the effort to look at a conceptually
similar and mature product in the same problem family to
obtain a mental model. The mental model is used to
understand the main components, their relationships, and
applications. The next section describes the approach.

topology

MPLS

 sink
controller

node

GUI

traffic
controller

bi-directional link, control and data

control process
external connection

generator

 router

 router

 router

data data
source/sink

active data store

3. AGILE SOFTWARE ARCHITECTURE
RECOVERY APPROACH

In analogy community, researchers emphasize three

types of information: syntactic, semantic, and pragmatic.
Maiden and Sutcliffe [17,24] and Lung, et al [14-16] apply
some crucial ideas in analogy to software reuse and
domain analysis. Those papers [14-17,24] and articles in
analogy community show that analogy may support
knowledge transfer across problem domains. The main
idea of those techniques is to identify main components,
their relations, major functionalities, higher-order relations
(relations of relations), and system dynamics. The artifacts
are then used for identifying a similar base problem and
mapping to the target problem.

The ASAR approach is based on the concept of
analogy, but is simplified. ASAR is an informal and
iterative process consisting of the following steps:

1. Retrieve the reference architecture or an existing
architecture from another product in the same or
similar problem domain to serve as the base.

2. Evaluate and understand the base system.
3. Identify key components and relations in the target

system.
4. Map the structure of the base to the target system

to obtain a conceptual model for the target.
5. Compare design patterns with the target system to

fill in the gap between the conceptual model and
the source code, and refine the architecture of the
target system.

The following paragraphs discuss each step in more
detail. First, we start with examining systems in a similar
domain. The effort of identifying an analogous problem
and mapping of knowledge from the base to the target can
be reduced. The reason is that for similar or mature
domains, main components, their relations, major
functionalities are well understood and similar. For mature
domains, design patterns also have been extensively
studied and documented [9].

Evaluating and understanding the base is necessary
before mapping the architecture to the target. The reason is
trivial. This step can be skipped if the analyst is already
familiar with the base. Another step that is useful before
mapping is to identify the key components in the target.
The key components and their relations are then used to
compare with those of the base. This step usually can
establish partial mapping between the two problems.

Based on the knowledge of the base system and the
partial mapping of components and relationships, the third
step deals with further mapping between the two problems.
The emphasis is on the structure of the problems. The idea
follows the structure-mapping principle [8], which is
considered as one of the most important analogy theories
[10]. Structure-mapping depicts that analogy is a mapping
of systems of relations governed by higher-order relations.
A high-order relation captures the relation of relations

rather than relations of components. Some isolated
features usually are not adopted for mapping.

Design patterns also can serve as reference entities.
The idea is similar to that of reference architectures, but
the scope is smaller. Here we assume that some design
concepts of the problem are similar to that of some design
patterns. The theory is that the domain is stable and those
patterns are identified as a result of repeated usages.
Similar to step 1, the patterns are used to help understand
the target. The purpose of this step is not the other way
around, meaning detecting the patterns in the target
system. Knowing some patterns and then reviewing the
source code from the perspective of patterns facilitates
better understanding of the target system.

3.1 The Architecture of the Base

The target software is an application of network traffic

engineering. It is a very new area – new protocols, new
switched techniques, and new traffic engineering
concepts. On the other hand, the system was not totally
new from a higher-level perspective. If we hide some
technology details, the system actually shares some
critical commonalities with other network systems.

Network software has been developed and studied
extensively. Many solid conceptual foundations have
been captured and documented. This motivates us to start
with looking around to find a mature product and then to
read relevant design patterns [23] from the open literature
for better understanding of network computing.

Despite the sheer diversity of networks, protocols,
standards, and applications, there are common conceptual
similarities. We know the application area and the
relevant protocols of the target. So, we can abstract out
those specific areas and identify generic features to help
us understand the overall structure of a network system.

A subsystem of the product that is related to the target
is used as the base for understanding and comparisons.
The base was developed by a different product group in a
large company and has been used for several years. The
base was well documented via a thorough reverse
engineering effort. The reverse engineering involved three
people (one designer and two co-op students) without
much prior knowledge of the system and the problem
domain for four to five months. Designers of the base
were solicited for support if necessary during the process.

The main objective is to help us understand the target
system by learning from a mature product. The base
system is much larger than the target system. It has more
than 100 KLOC. Figure 2 highlights the architecture,
including the main components and their
interconnections.

Bejar et al. [2] postulate that both similarity and
difference are crucial in analogical reasoning. We follow
the idea to examine both similarities and differences
between the based and the target. The base system in fact
is very different from the target system in many aspects if
we get into more details. Here are some examples. The
first obvious difference is in the area of protocols. The

target system uses CR-LDP and MPLS, which do not exist
in the base. The base contains a Protocol Framework that
is designed to inter-work with a number of standards and
network protocols. However, those protocols are very
different from CR-LSP and MPLS that the target system is
dealing with. Secondly, the base has a very high demand in
performance and throughput. Hence, shared memory is
adopted as the inter-process communications mechanism
to improve performance. As a result, the base has
complicated synchronization methods between software
processes. In addition, the base has a gigantic third party
real-time database management system (RDBMS), which
contains millions of subscriber records, and there are
sophisticated operations associated with the RDBMS.

Nevertheless, the abstraction of the base still serves as a
useful vehicle to help understand the basic concept and
devise the overall structure. For our purpose, the
complicated shared memory and database are not our main
concerns, because the target system doesn’t have a real
database and the inter-process communication method is
primarily sockets. These two areas are not difficult to find
in the target system. Hence, we can hide the relevant
detailed design and implementation information. Another
example is the protocol framework and the service
framework shown in Figure 2. As stated earlier, the target
system uses completely different protocols and services.
But again, the abstraction layer is similar because the
target system also needs to deal with protocols and
services. The Protocol Framework in the base system also
demonstrates how it interacts with other components,
particularly Message Processor and Request Handler. The
interrelationships among those components are valuable in
understanding the target system.

Another source that helps us better understand the
target system is design patterns. Many design patterns
have been identified and documented; including the area
of distributed and network computing [Schmidt00]. We
assume that the target system, although not written based
on design patterns, contains some similar concepts, since
it belongs to the same problem domain and the domain is
stable. Thus, the next step is to compare some design
patterns with the target system.

The approach does not suggest reading the code and
identifying various patterns. Detecting patterns in existing
software may not be trivial and usually is time
consuming. Rather, we choose design patterns first in
some specific areas and then review the code based on the
concept of those patterns. For this study, we start with
patterns for concurrent and networked objects. That way,
we have more concrete goals derived from specific
patterns to look for and the person performing the
analysis does not need to be very experienced in patterns.
It is not difficult to identify some areas in the target
system that shares commonalities with patterns because
the target is in the area of communications.

For example, the Wrapper Façade pattern deals with
the communications setup. We then check the source code
to see how this part was realized in the target. The pattern
is close to the way the connections are set up in the target
system. Similarly, the dispatch service in the target
system is relevant to the Reactor pattern that integrates
the synchronous demultiplexing of events and the
dispatching of their corresponding event handlers. The
Acceptor-Connector pattern is almost identical to the way
the routers connect to each other during system startup.

Application

Base

Management

Request
Handler

Connection
Manager

Protocol
Handler

type 1
….

Transaction
Manager

Message
Processor

type 1 ….

Protocol Framework

Network
Interface

Databases

Subscriber
Record

State
Manager

Operation
Admin, &
Management

Provision

Service
Library

Service
Framework

Figure 2. Software Architecture of the Base Problem

For some areas, it takes deeper analysis and code
review to identify patterns that serve similar purposes. An
example is the relationship between the node process and
the traffic controller process illustrated in Figure 1. The
traffic controller may send commands or queries to node.
When the traffic controller invokes asynchronous
commands on the node process, it stores information that
later will be used to identify the command’s completion.
This is similar to the Asynchronous Completion Token.

The target system is designed with multiple treads,
which requires synchronization techniques in concurrent
processing. There are several relevant patterns for
concurrent processing and fundamental synchronization.
Among them, Active Object pattern and Half-Sync/Half-
Async patterns are relevant and provide useful insights for
further understanding the design.

For instance, the Active Object design pattern
decouples method execution from method invocation to
improve concurrency and simplify synchronization. The
idea is also adopted in the target system. There is a thread
that handles method execution based on the incoming
messages from other routers. Multiple threads are used to
send outgoing messages to various destinations. In
addition, the traffic controller process is also tightly
coupled with the Strategy pattern [7]. The traffic controller
process was designed to encompass various algorithms for
load balancing and route calculation. The Strategy pattern
fits the objective very well.

3.2 Recovered Software Architecture

By studying an existing architecture, reviewing well

known relevant design patterns in the same area, and
iteratively checking related source code, the architecture of
the target is recovered in 2-3 weeks by one person without
rigorous software reverse engineering tools and process.
The person was knowledgeable of the base, but was not
familiar with the relevant patterns at that time. The
recovered architecture, as shown in Figure 3, is then used
for the new designers to continually work on the system.
The node class is conceptually decoupled into several
more independent units, which paves the way for future re-
engineering.

As presented in Figure 3, the basic structure of the
target is similar to the base system. There are four main
components: node, management, data stores, and
application. With the exception of data stores, the other
three units are connected using TCP or UDP socket
utilities. In other words, those components talk to each
other through network messages. There are multiple
instances of node, each running on a separate thread.
Those threads share data stores, stats, and queues (not
shown in the diagram) connecting to the Message
Processor. The Request Handler is closely related to the
Reactor design pattern. The connections are primarily
handled by routines grouped in the Connection Manager.
Connection Manager is similar to the Acceptor-Connector.
Another routine, utility (not shown in the diagram)

provides the wrapper-like function as described in the
Wrapper Façade pattern.

The Protocol Handler is much simpler than the one
implemented in the base problem, since there is only one
protocol adopted for the problem. After a message is
decoded, the Message Processor invokes appropriate
handlers to perform the action. Likewise, messages could
come from those handlers to the Message Processor and
be encoded by the Protocol Handler, and then be sent to
the network.

The traffic controller class contains several sub-
classes for various platforms. The traffic controller also
was designed to accommodate different algorithms for
traffic management. As stated earlier, this part is directly
related to the Strategy design pattern.

3.3 A Generalized Form of Network Applications

A generalized architecture for network applications

can be derived from the two cases studied. The idea is
similar to the reference architecture. Modifications may
be needed if more cases are studied.

The generalized form consists of the following main
components:

Connection Manager (CM). The CM deals with the
connections setup, teardown with other network elements.
Messages are transmitted through the CM.

Request Handler (RH). When a router receives a
message from other network elements, the message
actually is a request which will be handled by the RH.

Protocol Handler (PH). PH encodes and decodes
messages.

Message Processor (MP). After a message is
decoded by the PH, MP reacts to the message. MP
interacts closely with the PH.

Transaction Manager (TM). TM is used to keep
track of transactions. A transaction may involve multiple
messages.

Data Base (DB). One or more DBs usually are
required for information lookups and updates.

Services or Applications. This is the application
layer. Once the message is properly processed, this layer
provides actual services.

System Management (SM). This component mainly
deals with provision, operation, and administration
supports.

4. Related Work

Obviously, the paper is directly related to reverse

engineering. Numerous papers have been published in this
area [20-22]. Most of these papers deal with the
transformation from a lower-level representation, usually
source code, to a higher-level abstraction. As depicted in
the introduction, this approach is appropriate in many
cases where resources are not an inhibiting factor. Here,
we will not discuss further in this topic. Rather, other
disciplines that share similar ideas are briefly mentioned.

This main idea of this paper is similar to the concept

of the reference architecture [3,9]. The reference
architecture for a domain defines the fundamental
components of the domain and their relations. The
reference architecture enables reuse, reduces development
cost, and improves communications among various
groups. This paper does not address reference architecture
specifically. However, for mature domains, a base system
could be used as the “reference architecture”.

This study is also similar to the concept of case-based
reasoning. Case-based reasoning means reasoning based
on previous cases or experiences. Kolodner and Leake [12]
point out that case-based reasoning provides a wide range
of advantages. Two of them are directly relevant to this
article:

• Case-based reasoning helps propose solutions
quickly rather than derive the answers from scratch.

• Case-based reasoning helps propose solutions in
domains that aren’t well understood.

Another related topic is analogy. As stated in section

1, analogy has been studied in cognitive science, artificial
intelligence, psychology, and philosophy [2,10]. Analogy
is the process of transferring knowledge from an existing
problem to a new problem that shares significant
similarities – and using the transferred knowledge to
construct solutions to the target problem. Analogy has also
been applied to software engineering [14-17,24]. Readers
can refer to these papers for details.

Knowledge management is also relevant to this area
[25]. Knowledge management addresses the way of
capturing, organizing, retrieving, using, and learning the
knowledge. The Experience Factory [1] is an infrastructure
for organizational reuse and learning. One issue is the
identification and retrieval of a similar system.

Identification of reusable components is also an issue

that has been discussed in software reuse [13] or domain
engineering [19]. In general, this may be a difficult
question and may involve technical, organizational, and
management issues. Furthermore, there may be high cost
overhead. Although this area has been intensively
investigated, formal and systematic reuse in practice is
difficult to achieve and often is ineffective [6].

Our case study dealt with a simpler problem. A base
case in the similar application domain was selected to
facilitate this exercise. How do we know which system to
choose as the base? In theory, this is a difficult. In our
case, it may seem opportunistic. In practice, however, a
partial mapping between the base and the target is
necessary for the retrieval of the base. The partial
mapping is primarily based on problem domain and
domain knowledge. The case study was performed on a
mature domain. This was the main reason that the base
problem was selected. Domain knowledge is one of the
most important success factors in reuse and knowledge
transfer.

5. Conclusion

This paper described an approach to software

architecture recovery based on an existing product in the
same area and design patterns under the resource
constraint. The main objective was to get a mental
structure of the system, and to support the new designers
to understand and evolve the system in a short period of
time. The approach first selects the reference architecture
or an existing system in the same problem domain to
serve as the base. The base system usually is well known
and is used to support understanding of the target
problem. Iteratively, the base is compared with the target

generator

Network
Interface

 sink

controller

GUI

node

stats

topology

MPLS

 Traffic
Controller

Algorithm
Engine

c1 …cn

a1 … an

CR-LDP MPLS

command

query

data

update

Protocol
Handler

Message
Processor

Transaction
Manager

mpls

ospf

Request
Handler

Connection
Manager

Data stores

topology

MPLS

Management

Figure 3. Recovered Software Architecture

Applications

to identify similarities and differences. The derived
knowledge can then be tailored to construct a high-level
software architecture of the target system. Design patterns
provide more detailed information, which fills in the gap
between the conceptual architecture and the source code.

The approach was not meant to replace the
conventional reverse engineering wisdom for software
architecture recovery; instead, the article presented an
empirical study and an alternative way for rapid
architecture recovery.

The approach was successful in terms of meeting our
objectives – rapid architecture recovery and capture of
critical design knowledge. There are some factors for the
success. First, the problem is in a mature domain. In other
words, the target system shares many domain specific
features with other similar systems. The fact that some
areas of the system are closely related to the concept of
some design patterns also speaks for this fact. This point
also concurs with the belief that domain analysis is more
effective in a well-scoped and stable application domain.

Next, a system, which shares similar high-level
features, is available to server as the base. The base system
is well understood and documented. There was little search
time needed for the base problem. The reference
architecture, if available, also can be used for this purpose.
Retrieval of the base, in general, is a difficult task. The
problem can be simplified, as advocated in this paper, by
focusing on the same or similar problem domain.

Another point is that the size of the base is larger than
that of the target. In this case, the base contains more
features that help understand the target. If the base is
smaller and simpler, it may not provide as valuable
information or knowledge to comprehend a more complex
target system. Thirdly, the size of the target is small. On
the other hand, a large system may be divided into smaller
sub-systems for design recovery.

On the other hand, this approach might not work well
for an application where similar solutions or the reference
architecture are difficult to find or do not exist. Another
assumption for this approach is that the base case is
relatively well understood. If not, even if the base and the
target are very similar, the approach may not reduce or
simplify the reverse engineering process and time.

Another issue is what if the base chosen does not
match well with the target. This is still a research area in
analogy and domain analysis. This is beyond the scope of
this paper. Classification of domain models [14], facet
classification scheme, and library-based approach [19]
have been proposed. However, cost overhead and
ineffectiveness are still main barriers [6] for those
approaches. This paper, on the other hand, advocates an
approach based on better-known applications, which in
general will be more effective.

REFERENCES:
[1] V.R. Basili, G. Caldiera, and H. D. Rombach, Experience
Factory, in J. J. Marciniak, ed., Encyclopedia of Software
Engineering, vol. 1, John Wiley & Sons, 1994, 469-476.
[2] I.I. Bejar, R. Chaffin, S. Embretson, Cognitive and
Psychometric analysis of analogical problem solving, Springer-
Verlag, 1991.
[3] J. Bergey, G. Campbell, P. Clements, S. Cohen, L. Jones, R.
Krut, L. Northrop, and D. Smith, Second DoD Product Line
Practice Workshop Report. Technical Report CMU/SEI-99-TR-
015, Carnegie Mellon University, Oct. 1999.
[4] J.G. Carbonell, Learning by Analogy: Formalizing and
Generalising Plans from Past Experience, in Machine Learning:
An Artificial Intelligence Approach, Springer-Verlag, 1983.
[5] B. Davie and Y. Rekhter, MPLS Technology and
Applications, Morgan Kaufmann Publishers, 2000.
[6] R.G. Fichman and G.F. Kemerer, Incentive Compatibility
and Systematic Software Reuse, J. of Sys & Sw, 57, 2001, 45-60.
[7] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns Elements of Reusable Object-Oriented Software,
Addison Wesley, 1995.
[8] D. Gentner, Structure-Mapping: a Theoretical Framework
for Analogy, Cognitive Science 7(2), 1983, 155-170.
[9] A.E. Hassan and R. Holt, A Reference Architecture for Web
Servers, Proc. of the Working Conf. on Reverse Eng, 2000.
[10] D. Helman, ed., Analogical Reasoning, Kluwer Academic
Publishers, 1988.
[11] R. Holt, Software Architecture as a Shared Mental Model,
Proc. of the Int’l Workshop on Program Comprehension, 2002.
[12] J. L. Kolodner and D. B. Leake, A Tutorial Introduction to
Case-Base Reasoning, in Case-Base Reasoning Experiences,
Lessons, and Future Directions, The MIT Press, 1996, 31-66.
[13] C.W. Krueger, Software Reuse, ACM Computing Surveys
24(2), 1992, 131-183.
[14] C.-H. Lung and J.E. Urban, An Approach to the
Classification of Domain Models in Support of Analogical
Reuse, Proc. of Symp. on Software Reusability, 1994, 169-178.
[15] C.-H. Lung and J.E. Urban, An Expanded View of Domain
Modeling for Software Analogy, Proc. of Int’l Computer
Software & Applications Conf, 1995, 77-82.
[16] C.-H. Lung, G. Mackulak, and J. Urban, Software Reuse
and Knowledge Transfer through Analogy and Design Patterns,
Proc. of the Int’l Con. on Sw Eng Research & Practice, 2002.
[17] N.A.M. Maiden and A.G. Sutcliffe, Exploiting Reusable
Specifications through Analogy, Commu. of the ACM 35(4), 55-
64, April 1992.
[18] C. McClure, The three Rs of software automation: re-
engineering, repository,reusability, Prentice Hall, 1992.
[19] R. Prieto-Diaz and G. Arango, Introduction and Overview:
Domain Analysis Concepts and Research Directions, in Domain
Analysis and Software System Modeling, IEEE Computer
Society Press, 1991, 9-32.
[20] Proc. of the International Conf. on Software Maintenance.
[21] Proc. of the Int’l Workshop on Program Comprehension.
[22] Proc. of the Working Conference on Reverse Engineering.
[23] D. Schmidt, M. Stal, H. Rohnert, and R. Buschmann,
Pattern-Oriented Software Architecture Vol 2: Patterns for
Concurrent and Networked Objects, Wiley, 2000.
[24] A.G. Sutcliffe and N.A.M. Maiden, Analogical Retrieval in
Reuse Oriented Requirements Engineering, Sw Eng J., 9, 1996.
[25] K.M. Wijg, Knowledge Management: Where did it come
from and where will it go?, Expert Sys with Applications 13,
1997, 1-14.

