

Compositional Layered Performance Modeling of Peer-to-Peer Routing Software

Pengfei Wu, Murray Woodside, Chung-Horng Lung
Department of Systems and Computer Engineering

Carleton University, Ottawa, Canada, K1S 5B6
E-mail: {pfwu, cmw, chlung}@sce.carleton.ca

Abstract
Models can help to understand the performance aspects of
a computer system from the software architecture and its
configurations, but ease of model creation is critical. A
compositional model-building approach is described here,
in which component submodels are generated from the
scenarios they participate in. Submodels classes are derived
from an analysis of behaviour patterns as the scenarios
traverse the software components. Then submodels are
instantiated and combined in the overall system model. The
approach is particularly effective in peer-to-peer systems in
which subsystems inherit most of their behaviour from a few
shared patterns, termed “Behaviour-Inheriting Peer” (BIP)
systems. A model-building algorithm is described, and is
demonstrated on a prototype emulator for a network of
routers. The emulator, called CGNet, can be configured for
its deployment and for traffic patterns and routes. An
automatic model-generator uses this information to build a
model which represents the overall system configuration.
The approach is quite general and can be used to model
component-based systems in which the components
themselves are created in many configurations.
Index Terms—Software performance engineering, Performance
modeling, Use Case Maps (UCM), Layered Queueing Network
(LQN), Component-path sub model, Path class, Generative
modeling, Component sub model, Peer-to-peer systems.

1. Introduction
There can be many advantages to modeling the

performance of a software system, as documented by Smith
[Smith90, Smith02] and others, however the process of
building models may be lengthy and expensive. The present
work sets out to automate the building of models, for a class
of systems that can be deployed in many different patterns
and at large or small scales.

The class of systems has sub-systems which are similar to
each other, with similar behaviour, such as peer-to-peer
systems or grid applications. An example which is studied
here is a network of routers. The class will be called
"Behaviour-Inheriting Peer" systems because the node
behaviours are inherited from a small set of behaviour
classes. Automation is essential for building models of large
scale systems, because the effort of creating a model
directly is prohibitive. Automation is valuable also for

smaller deployments if there are many instances to be
modeled and compared.

Performance models for computer system and networks,
and for software, can be built using various approaches, as
described in texts by Jain [Jain91], Bolch et al [Bolch98]
and others. They can be grouped into methods based on
queueing networks and their extensions, such as layered
queueing networks [Woodside95a] and methods based
directly on states and transitions (Markov models) and their
extensions such as stochastic Petri nets (e.g. SPNP
[Ciardo89]). They are solved by analytic techniques,
numerical methods or simulation. Direct simulation without
a formal modeling framework is a third category of tools.

Smith advocates an approach to building these models
based on system behaviour or scenarios, which she calls
execution graphs [Smith90, Smith02]; other approaches are
based on structural relationships and summary workload
statistics [Jain91]. Cortellessa and Mirandola [Cortellessa00]
describe how to use UML sequence diagrams to derive
execution graphs and then queueing models. This work
follows the scenario approach.

In this paper scenarios expressed by Use Case Maps
(UCMs) are used to generate Layered Queueing Network
(LQN) models [Rolia95] [Woodside95a]. Model-building
directly from UCMs to LQNs was described in [Petriu02],
however the present work avoids creating a complete UCM.
Instead it exploits repetitive common behaviours, and
generates component submodels based on object behaviours
in the software and local UCM sub-paths in a component. It
extracts advantages from the use of object-oriented design
and component-based software.

Innovations in software such as object-oriented design
make performance modeling more complex. The
interactions between objects are numerous and are obscured
by inheritance, polymorphism, and late binding, making
them difficult to trace. Also, distributed systems challenge
performance intuition by introducing middleware layers,
network latencies and message effects such as blocking
delays. All these make it difficult to construct performance
models especially for a large systems with lots of
interaction and communication. However the re-use of
behaviour patterns also provides opportunities.

Component based software systems (e.g. [Szyperski98])

are designed to re-use software components, and provide an
opportunity to model the components and re-use these
performance sub-models. Strategies for doing this are
described in [Wu03a] [Bertolino03]. However in many
systems the components are configurable and do not have a
single structure or a single performance sub-model. To
build a performance model from components we must first
create suitable component submodels for the particular
application, and that is the role of this research. The
submodels can be re-used just as the corresponding
software components are re-used in the system.

In this paper we begin with the software architecture, and
we express the scenarios of the system in term of Use Case
Maps (UCMs) [Buhr96] that show paths and
responsibilities over components. Then we build sub-
models corresponding to scenario fragments. At last we use
the compositional strategy to assemble the sub-models into
a model for the entire system. A modest-sized deployment
of a system called CGNet [Hobbs01] is used as a case study
to demonstrate the compositional approach. It reduces the
complexity of building the performance model so that the
approach can be scaled up to virtually any size of system.

The compositional strategy is defined in Section 3 below,
following some background on the models and notation in
Section 2, and it is applied to CGNet in Sections 4 and 5.

2. Models and notation

This work uses Use Case Maps (UCMs) to describe
scenarios, and Layered Queueing Networks (LQNs) to
model performance. UCMs are a visual notation for use
cases [Jacobson92] with additional detail about
responsibilities and components. They can be used to
reason about architecture related to Use Cases [Buhr96],
and to create performance estimates [Petriu02]. An example
UCM is shown in Figure 1, with a scenario indicated as a
line from a start point (a filled circle) to an end point (a bar).
Responsibilities (crosses) indicate operations to be
performed, and can be refined by a submap.
Responsibilities are contained in and implemented by
components, shown as boxes. Components can represent
any structural unit, from a subsystem with many processors
down to an object or procedure. Components can be nested
and in the Figure the inner components with solid lines are
called “tasks” T1 to T5, and in this case represent processes,
while the outer components C-A, C-B, C-C are just called
“components”. Each of these outer components is loaded on
a different processor P-A, P-B, P-C respectively.

The performance model used here is a kind of extended
queueing network called a Layered Queueing Network
(LQN), with servers to represent processors and other
devices, and also servers to represent software tasks.
Layered queueing arises when a software server task has to
wait for service at its processor, or at another task. Figure 1
also shows the tasks and the requests for service that are
implied by the UCM, with one sub-model for each scenario.
Tasks are indicated by rectangles, divided into a field for
the task and its properties, and fields for entries which

provide classes of service. The entries have been named for
the first responsibility they perform. In S1, entry a makes a
request to entry b and waits for the reply; this kind of

 j

g
h

d

eb

c f

a
subcomponent
(task) T1

T2

T3

T4

T5

component
C-A
on processor
 P-A

scenario
S2

scenario
S1

C-B
on P-B

c T3

a T1

b T2

d T1

e T2

f T3

g,h T4

j T5

LQN
submodel for

scenario
S1

for S2

request-
reply
interaction

asynchronous
interaction
(after reply)

forwarding
interaction

C-C
on P-C

P-A

P-B
P-C

P-B

P-A

Figure 1. A Use Case Map with two scenarios,
and their LQN submodels

 “synchronous” request is indicated by an arrow style with a
filled head. Entry b then makes a similar request to entry c.
In scenario S2, entry d makes a synchronous request to e,
which forwards it for processing to f and g (the forwarding
task does not wait for a reply; the reply goes to the
originator). Forwarding request is indicated by a dashed
arrow. After the reply from T4, entry g does a further
operation for responsibility h (this kind of delayed operation
is called a “second phase”), and then a second phase request
to entry j. This final request is asynchronous, with no reply,
indicated by an arrow with an open arrowhead.

Tasks and processors are both resources; each resource
has a queue and a discipline, and may be multiple (that is, a
multiserver such as a multithreaded task or a
multiprocessor). Each task has a host processor, which
identifies the physical device that carries out its operations.
The processors for each of the dashed components in the
UCM are indicated by ovals attached to each task. The
LQN paradigm can model most of the features such as
multi-threaded processors, devices, locks, communication
and so on [Franks00]. LQN models can be solved to
determine throughputs and delays, and the contention for
software and hardware resources, and to identify
bottlenecks [Neilson95].

3. Scenario-based generation and composition
of submodels

The model-building approach is based on the distributed
software objects and on overall scenarios (that is, UCMs)
describing the end-to-end system behaviour for different
inputs. Scenarios can be constructed based on the system
requirements and design. The types of requests can be
described as Use Cases, and the processing of each is traced
as a sequence of high-level operations, identified in the
UCM as its responsibilities. The operations are allocated to

software task components, and other resources required are
also identified as UCM components (the path enters the
component to obtain the resource, and leaves to release it).
For early analysis, the scenarios can be based on the
documentation and the expertise of the developers
[Smith90]; later, they can be based on tracing the execution
of the code.

We assume that the system is divided into a set of large
grain subsystems, and from here on the term “component”
will be reserved for these; each of them will generate a
component submodel in the overall performance model.
They may be subsystems with internal concurrency. The
approach is particularly suitable when the system has many
of these components and each one includes several tasks
and a large number of responsibilities. It is particularly
simple and efficient when each component is assembled
from tasks and operations which are variations on a small
number of basic tasks and operations, as in the router
example later.

Object-oriented design promotes re-use not only of data
structures, but also of behaviour. This is particularly marked
in systems with peer components based on the same set of
classes, and with strongly similar functionality; their
behaviour is inherited from the common classes. We will
call these “Behaviour-Inheriting Peer” (BIP) systems. A set
of internet routers with identical code is an example. The
objects in each router may be instantiated differently to
conform to its configuration, but their behaviour comes
from common classes.

Strategy A, for a system defined explicitly by a set of
scenarios:
Strategy A does not make any assumption about similar
behaviour in different components.
1. Optionally define the system-wide scenario for each

request, as just discussed;
2. Decompose each scenario into fragments at the

component boundaries, so there is a set of “component-
path” scenario fragments in each component. For a
system with many components, it may be preferable to
begin with this step, and avoid creating the very large
UCM of step 1.

3. Map each fragment into a partial LQN model called a
“component-path submodel”, representing the system
behaviour for that fragment.

4. For each component, create a component sub-model, as
follows:
4.1 Collect the component-path sub-models into one

sub-model with all the tasks together, ignoring the
fact that a task may be represented more than once;

4.2 Where a task is represented more than once, unify
the instances into a single task with all the entries;

4.3 In a single task, if there are two entries that make the
same demands, and have the same interactions with
other entries, these entries can be merged into one
entry handling the requests of both. This rule may
have to be applied recursively, because when entries
are merged then other mergings may become

possible.
5. Compose the component sub-models into the system

model, connecting them by calls (asynchronous by
default) where a scenario crosses from one component
to another. This gives the performance model for the
system.
5.1 If the system-wide analysis shows that the transfer

of control from one component to another is by a
synchronous call, then the call between components
is synchronous instead. This is the case in Figure 1,
for the calls between component C-A and C-B. It
must be inferred from the UCM; automated analysis
can be applied to the system-wide UCM [Petriu02].

The assembling and composition in steps 4 and 5 can, in
principle, be applied recursively at multiple levels of
component decomposition.
In the BIP-type systems described above, the components
are all closely related to each other and their local
component-path scenarios are all variations inherited from a
relatively small number of scenario classes. In BIP systems
a library of sub-model classes can be created with one for
each scenario class. The component-path sub-models then
instantiate these classes.

Strategy B, for Behaviour-Inheriting Peer (BIP) systems:
In Strategy A, replace steps 1,2,3 by
1. Analyze the software objects and their behaviour

within each component to identify the types of
component-path scenarios, and define them as classes
of scenarios. For each one, create an LQN sub-model
class. Identify parameters that may be different in
different instantiations of a component-path scenario.
Parameters may include the identity of software
elements and system nodes.

2. From the system specification and the role and
workload of each component, identify its component-
path scenarios by class, and their parameters if any.

3. Generate the set of component sub-models as instances
from the sub-model classes.

Then follow steps 4 and 5 for Strategy A.
The case study which follows will be modeled using

strategy A for a particular configuration, to explain the
ideas, and also discusses how the library of sub-model
classes is created. Then the tool created for modeling the
family of systems uses Strategy B, to cover the wide range
of variations that are possible.

4. Case study on CGNet
In this section we illustrate the approach described above

by applying it to CGNet, which is an example of a BIP
system. CGNet [Hobbs01] is a network emulator which
includes routers (nodes), sources (generators) and
destinations (sinks) for the traffic, and is configured with a
connection topology with stated link capacities. There is a
generator for each node, which sends it packets for different

destinations at pre-configured rates. The packets traverse
the path specified in the routing table to a traffic sink, which
consumes the packets.

Here we treat a router node as a component; the generator
is modeled as an arrival process and the sink is modeled by
a dummy “user” task.

Every node has the same operations: the main thread
receives packets from the incoming sockets, parses packets
and switches them to the outgoing queues. The sending or
sinking thread sends packets to outgoing sockets; the
sending thread also emulates the network interface delay for
the link.

chny

chicago newyork

chda chwa

dawa

atwaatda

dallas

atlanta

washington
gch1

sch1

gda1
gwa1

gny1

sny1

swa1sda1

Node(Router)

Traffic sink

Traffic generator

nywa

Bi-directional traffic link

Uni-directional traffic link

gat1 sat1

Figure 2. Topology for one configuration with 5 nodes
The case study will consider a configuration of CGNet

with five nodes to explain the compositional model-
building approach. The topology is shown in Figure 2. Data
packets start from a generator (triangle) and end at a sink
(square). They traverse the routers (circles) along the paths
defined in the routing table.

The traffic is made up of classes, according to the route
followed. For the packet class named as (XX, ZZ), node XX
is the source router that is connected to its generator; node
ZZ is the destination router that is connected to the traffic
sink. XX and ZZ will be replaced by the two-letter names of
the router nodes shown in Figure 2. There may also be
forwarding routers along the path between XX and ZZ; we
will designate such a router YY. Each packet class has its
own scenario; Figure 3 shows the path view [Woodside95b]
of the scenario for class (AT, CH), showing the path and
responsibilities described above overlaid on the components
shown in Figure 2.

chny

CH NY

chda chwa

dawa

atwaatda

DA

AT

WA

gda1

gat1

gwa1

gny1

sny1

swa1

sat1

sda1

nywagch1

sch1

Figure 3. Path of scenario for packet class (AT, CH)
The components in the analysis are the router nodes, and

the path fragments will describe the handling of each packet
class (with a different fragment for each packet class
traversing the node). Figure 4 shows the three fragments of
the system-wide scenario for packet class (CH, AT), as it
traverses nodes CH, WA and AT. It also shows the
responsibilities receive, switch, send (or send-to-sink) and
delay (for emulating network delay) within each scenario
fragment. They are labelled rcv, sw, snd, del respectively.

chny
CH

NY

chda chwa

dawa

atwaatda

DA

AT

WAgda1

gat1

gwa1

gny1

sny1

swa1

sat1

sda1

nywagch1

sch1

rcv

rcv

rcv
sw

sw

sw

snd

snd

snd
del

del

Figure 4. Scenario fragments for packet class (AT, CH)
For further analysis we have defined three different roles

for the component-path scenario fragments. They are source,
forwarding, and destination roles. The role will affect
which sub-model class is instantiated, for the component
sub-path.

Every component sub-path does the same overall
operation, to handle a packet. There are three variations,
which we will call handleXX, handleYY and handleZZ, for
the handling done by a source, forwarding and destination
node respectively. Each of these is a component-path class,
and they give the sub-model classes smXX, smYY, and smZZ.

They can be instantiated by providing node names to
replace XX, YY and ZZ. As a first example, Figure 5 shows
handleXX as a UCM fragment and smXX as a LQN
submodel. This class has a parameter YY, which is the
name of the next node in the route followed by packet class
(XX, ZZ) from node XX. Notice that one node has
component-path fragments with different roles, for classes
that are originated, forwarded or have their final destination
at that node.

RCV_XX_ZZ XX_RCV

SW_XX_ZZ XX_SW

XX_SEND_YYSEND_XX_ZZ

XXYYDELAYXXYYDELzz

(a) Scenario Fragment
handleXX for a source

fragment

RCV_XX_ZZ XX_RCV

SW_XX_ZZ XX_SW

XX_SEND_YYSEND_XX_ZZ

XXYYDELAYXXYYDELzz

(b) Component path sub
model class smXX

Figure 5. Scenario fragment and sub-model class for a
source node XX and a packet class with next node YY.

The sub-model structure is obtained partly from analysis

of the code. There is a thread for receiving packets, and a
thread for each outgoing interface, and these threads are
modeled by LQN tasks. The switching and routing is also
modeled by a task, which later will be aggregated into
Receive. When it receives a packet the software reads it
from a socket, so in smXX, the receiving task responds to an
asynchronous call. Once the packets are received to the
workspace, the switching procedure performs
switching/routing according to the routing table before
another packet can be received. Thus the call from receiving
task to the switching task in smXX is synchronous. Once the
packet is stored in the outgoing queue, the receiving and
switching tasks are no longer blocked, so the entry in the
switching task makes an asynchronous call to the entry of
the sending task. In the program, the sending thread triggers
an emulation of the network delay and is blocked during
this time, so a synchronous call is used from the sending
task to the delay task, which represents an operating system
timer. The sending thread writes the packets to the outgoing
socket and does not wait for a reply from the next hop. So
from the network delay task to the receiving task of the next
component the call is asynchronous. Thus the requests
between components (nodes) are all asynchronous.

For a component-path fragment with a forwarding role
the operations are identical, as shown in Figure 6 for
operations at node YY to forward packet class (XX, ZZ).
The only difference is that on instantiation, the input is
bound to a predecessor node in the path instead of to the
local packet generator. For a destination role, there is a

difference shown in Figure 7. The call from Switch goes to
Sink rather than to Send, and there is no network delay
emulation.
Applying the steps for node AT

Consider the node Atlanta (AT) and the steps for deriving
its component sub-model from the LQN submodel classes.
Necessary information is retrieved from the routing tables
in node AT and connected nodes DA and WA.

XXYY_RCVXXYY_YY_ZZ

YY_SWSW_YY_ZZ

YY_SEND_ZZSEND_YY_ZZ

YYZZDELAYYYZZDELzz

(a) Scenario Fragment

handleYY for a
forwarding fragment

XXYY_RCVXXYY_YY_ZZ

YY_SWSW_YY_ZZ

YY_SEND_ZZSEND_YY_ZZ

YYZZDELAYYYZZDELzz

(b) Component path sub

model class smYY

Figure 6. Scenario fragment and sub-model class for a
forwarding node YY and a packet class with next node ZZ

YYZZ_RCVYYZZ_ZZ_SE

ZZ_SWSW_ZZ_SE

ZZ_SINKD_ZZ_SINK

(a) Scenario Fragment
handleZZ for a

destination fragment

YYZZ_RCVYYZZ_ZZ_SE

ZZ_SWSW_ZZ_SE

ZZ_SINKD_ZZ_SINK

(b) Component path sub
model class smZZ

Figure 7. Scenario fragment sub-model class for a
destination node ZZ and packet class with previous node YY.

First we consider packet classes that originate at AT.

From the routing table in node AT we find it is the source
of 4 packet classes (AT, CH), (AT, DA), (AT, NY) and (AT,
WA). Class (AT, DA) chooses node DA as its next hop,
while all the others choose node WA as next hop. We create
four instances of the component-path sub-model class smXX
in Figure 5, replacing XX by AT, ZZ by the destination of
the class, and YY by the node which is next in each route.
This gives four component-path sub-models for AT.

Second, we consider packet classes that terminate at AT.
The nodes connected to AT are DA and WA. From the
handleZZ and smZZ class definitions in Figure 7 it is clear
that the source of the packet class has no effect on the
processing of a packet coming from either one, so just two

RCV_AT_CH AT_RCVRCV_AT_WARCV_AT_NYRCV_AT_DA

ATUserTATUser

DAAT_RCVDAAT_AT_SE WAAT_RCVWAAT_AT_SE

SW_AT_CH AT_SWSW_AT_WASW_AT_NYSW_AT_DA SW_AT_SE

AT_SINKD_AT_SINK

AT_SEND_DASEND_AT_DA AT_SEND_WASEND_AT_NYSEND_AT_CH SEND_AT_WA

ATDADELAYATDADELda ATWADELAYATWADELnyATWADELch ATWADELwa

ATUserProc

ATServer

ARRIVAL RATE
From Dallas From Washington

To Dallas To Washington

Network
(i)

Network
(i)

Figure 8. The component sub-model nodeAT for node Atlanta

component-path submodels are created from the class in
Figure 7, one with YY replaced by DA, and one with YY
replaced by WA.

Third, we can consider classes which are forwarded by
AT, however in this configuration there are none. If there
were, the LQN sub-model class in Figure 6 would be
instantiated.

The resulting collection of sub-models are then merged
together using step 4 of Strategy A, to give the component
sub-model for the Atlanta node shown in Figure 8. The
merging of tasks and entries is done as follows. (1) All
packet classes coming from the generator wait in a queue
located in the same incoming socket. Step 4.2 merges all
the entries of the receiving task coming from the generator.
(2) One switching task is created for each incoming socket,
combining the entries that handle its packet classes, in step
4.2. (3) Because node AT does not take account of the
source node origins of packet classes (XX, AT), the entries
for all classes ending at AT are merged into one entry in
the switching task by step 4.3. The same reason gives one
entry in the sinking task that sends them to the sink at AT.
(4) The routing table in AT indicates that packet classes
with the destinations CH, NY, and WA should go through
the link ATWA. All these packet classes should wait in the
same outgoing queue for the outgoing socket. Step 4.2
creates one sending and network delay task for these
classes.

This gives the sub-model nodeAT for the Atlanta node,
shown in Figure 8. The complete network node includes
the router node component nodeAT, the processor
ATServer and a user pseudo task ATuserTask to receive
packets from local generator. The next step is to combine
the node sub-models into a system model.

To create a complete system model, the component sub-
models for the nodes must be joined together. For this step
it is useful to define a high-level view of the components
seen from outside, showing their interfaces. Figure 9
shows nodeAT as a box with plug-in points (circles in
boxes) for the interfaces (input interfaces at the top, and
output at the bottom). The interfaces are labelled as <link,
list of classes>, where the link is named for the two nodes
that it connects, in the order source-destination. The link
gAT is the link from the generator to the node, and its
classes are all traffic originating at AT. The input and
output interfaces connected to another node are shown
separately, even though they are provided by the same
socket in the prototype.

<gAT, ATUser> <DA-AT, (XX, AT)> <WA-AT, (XX, AT)>

<AT-WA, (XX, CH),(XX, NY), (XX, WA)><AT-DA, (XX, DA)>

Atlanta

Figure 9. The labeled high-level component for

nodeAT for performance model

By the same procedures we can obtain component sub-

models for all nodes, and they can be shown in the same
way. Then their interconnection is illustrated in Figure 10.

To construct the overall LQN model, calls are inserted
between the component sub-models. Where an output
interface is connected to an input interface, the call made
from the sending object is merged with the call received by
the receiving object. The interactions that are merged must

be of the same type (here, we have seen that they are all
asynchronous). The system-wide LQN model is too
complex to show here.

Chicago

Atlanta

Washington

Dallas

New York

CHWA
CHDA

CHNY

DAWA
NYWA

ATWAATDA

CHWA

ATDA
ATWA

CHDA
CHNY

DAWA
NYWA Local Generator <AT-WA, (AT, CH),(AT, NY), (AT, WA)>

<AT-WA, (AT, CH),(AT, NY), (AT, WA)>
<gAT, ATUser>

Figure 10. A high-level model for the network

An LQN model is incomplete without processor

execution demand parameters, giving the demand for each
call to an entry. In this case we used the fact that each
entry call is associated with operations on one data packet.
It is straightforward to measure the total execution demand
at a node and allocate it per packet. However each packet
is handled by two concurrent threads, one to receive and
switch, and one to send and emulate network delay. It
would be better to estimate these separately, to see if the
nodes are bottlenecked at receive or at send; this can affect
the location of buffer overflow.

5. Experiments on the CGNet model
Experiments were performed with each node running on

a separate Unix workstation, all of the same type. The total
CPU time for all packets handled at each node was
recorded, and the number of packets that arrived and were
sent (they were not the same when buffers overflowed).
The CPU time for each node was split into amounts for
sending and receiving by fitting parameters, using least
squares regression (see e.g. [Scheaffer86] for a discussion
of regression, and [Wu03b] for details of its application).
The resulting execution demand of receiving and switching
is 0.0016 sec, and for sending or sinking it is 0.0018 sec.
The network delay emulation derived from configuration
files was taken to place execution demand on the network
processor. Overhead and message handling execution are
included in the two parameters.

When the model is compared to measurements, it gives
results for utilization shown in Figure 11(a) and for
throughput, shown in Figure 11(b). For the model the
confidence interval is plotted as (LCL, UCL) and all the
predicted values lies in this confidence limits. The
horizontal axis shows a multiplier on the workload
intensity, which was defined by a profile of arrival rates
for different classes. The agreement is good when the
workload is low (no packet loss), and less good for the

Node Atlanta Utilization

0%

10%

20%

30%

40%

0 0.2 0.4 0.6 0.8 1 1.2
Multiplier

U
til

iz
at

io
n

Tested Utilization

Predicted 95% LCL

Predicted 95% UCL

(a) Utilization of node Atlanta by prediction and

measurement against multiplier of workload

Node Atlanta Throughput

0

30

60

90

120

150

0 0.2 0.4 0.6 0.8 1 1.2
Multiplier

Th
ro

ug
hp

ut
 (p

ac
/s

ec
)

Tested Throughput

Predicted 95% LCL

Predicted 95% UCL

(b) Throughput of node Atlanta by prediction and

measurement against multiplier of workload

Figure 11. Predicted vs measured performance
for node AT

cases where there is packet loss. The model solutions
bysimulation appear to drop packets a bit differently from
the real system CGNet; this is being investigated. The full
results are beyond the scope of this paper, but this sample
indicates that (with this limitation in representing loss) the
strategy generates a realistic model. Also, in cases that
were simple enough to generate models by hand, the
strategy gave the same model.

CGNet can be configured in many different ways, with
different numbers of nodes and different connections and
emulated link capacities. The configuration and its
workload and routing tables are all driven by data which
has been used as input to a Converter Tool, implemented
to automate the process of model generation. As illustrated
in Figure 12, it uses the configuration data to create the
model structure with the compositional approach, and then
adds the (assumed) known parameters for the execution
demands.

Converter Tool

Configuration

[Network Description Files]

Parameter

[Execution Demand] LQN model
[SPEX]

Figure 12. The overall approach to building the

LQN model from the CGNet configuration

6. Conclusions
An approach has been defined for building performance

models of complex systems with non-repetitive structure,
but with components based on the same software objects
and executing a few strongly related behaviours. These
were called BIP (Behaviour-Inheriting Peer) systems. The
model is created by instantiating sub-models that represent
classes of behaviour, and then by composing them in two
stages, first to create a submodel for each component, and
then to create the overall system model. This approach can
model arbitrarily large configurations without the need to
program the simulations. For CGNet, a prototype tool to
emulate a network of routers, a Converter tool was
developed to automate this process. From the data required
to configure CGNet, a performance model can be created
also. The accuracy of the CGNet model appears to be good,
except when it is limited by the modeling platform’s
handling of packet losses.

The Converter tool has achieved, for models of systems
generated from CGNet, the goal of configuration-driven
modeling described in [Wu03a] [Bertolino03]. The
Converter tool can build a performance model for a CGNet
configuration of any size, for essentially zero additional
effort by the analyst. The effort necessary to support this
capability is to create the behaviour and path sub-model
classes, and to calibrate the demand parameters. If the
software evolves, these model aspects must be maintained.

The same strategy should apply equally well to model
other kinds of systems with strongly related components,
such as peer-to-peer application systems, and grid systems.
Submodels created by the BIP strategy described here can
be freely combined with other submodels that are created
by other means, to give a powerful and unconstrained
modeling capability.

Acknowledgement
This research was supported by NSERC, the Natural

Sciences and Engineering Research Council of Canada,
and Nortel Networks, through the OCRI-NSERC Industrial
Research Chair in Performance of Real-time Software.

References
[Bertolino03] A. Bertolino and R. Mirandola "Towards

Component-Based Software Performance Engineering", Proc
CBSE6 - 6th Workshop on Component-Based Software
Engineering, part of the Int. Conf. on Software Engineering
(ICSE 2003), Portland, Oregon, May 3- 4, 2003.

[Bolch98] G. Bolch, S. Greiner, H. de Meer, K.S. Trivedi
“Queueing Networks and Markov Chains” Wiley, 1998.

[Buhr96] R. J. A. Buhr, R. S. Casselman “Use Case Maps for

Object-oriented Systems” Prentice Hall, 1996.
[Ciardo89] G. Ciardo, K. S. Trivedi, and J. Muppala, “SPNP:

stochastic Petri net package”, Proc. Third Int. Workshop on
Petri Nets and Performance Models (PNPM'89) Kyoto, Japan,
1989.

[Cortellessa00] V. Cortellessa and R. Mirandola, “Deriving a
Queueing Network Based Performance Model from UML
Diagrams” Proc. 2nd Int. Workshop on Software and
Performance (WOSP2000), Ottawa, Canada, 2000.

[Franks00] G. Franks, "Performance Analysis of Distributed
Server Systems", Report OCIEE-00-01, Ph. D. Thesis,
Carleton University, Ottawa, Canada, Jan 2000.

[Hobbs01] C. Hobbs, G. Young, “CGNet: A User’s guide &
designer’s manual”, Private communication, Jun 2001

[Jacobson92] I. Jacobson, M. Christerson, P. Jonsson, and G.
Övergaard. “Object-Oriented Software Engineering: A Use
Case Driven Approach” Addison-Wesley, 1993

[Jain91] R. Jain, “The Art of Computer Systems Performance
Modeling Analysis”, John wiley & Sons, 1991.

[Neilson95] J.E. Neilson, C.M. Woodside, D.C. Petriu and S.
Majumdar, “Software Bottlenecking in Client-Server Systems
and Rendezvous Networks”, IEEE Trans. on Software
Engineering, v. 21, n 9, Sep 1995.

[Petriu02] D. Petriu, M. Woodside, "Software Performance
Models from System Scenarios in Use Case Maps", Proc. 12
Int. Conf. on Modelling Tools and Techniques for Computer
and Communication System Performance Evaluation
(Performance TOOLS 2002), London, UK, April 2002

[Rolia95] J.A. Rolia, K.C. Sevcik,“The Method of Layers”, IEEE
Trans. on Software Engineering, Vol. 21 No. 8, Aug 1995

[Scheaffer86] R.L. Scheaffer, J.T. McClave “Probability and
Statistics for Engineers” 2nd Edition, Duxbury Press, 1986.

[Szyperski98] C. Szyperski, “Component Software; Beyond
Object-Oriented Programming”, Addison-Wesley, 1998

[Smith90] C.U. Smith, “Performance Engineering of Software
Systems”, Addison-Wesley, 1990.

[Smith02] C. U. Smith and L. G. Williams, “Performance
Solutions”, Addison-Wesley, 2002.

[Woodside95a] C.M. Woodside, J.E. Neilson, D.C. Petriu and S.
Majumdar, "The Stochastic Rendezvous Network Model for
Performance of Synchronous Client-Server-Like Distributed
Software", IEEE Trans. on Computers, v 44, n 1, Jan 1995

[Woodside95b] C.M. Woodside, "A Three-View Model for
Performance Engineering of Concurrent Software", IEEE
Trans. on Software Engineering, Vol. 21, No. 9, Sept. 1995.

[Wu03a] X. Wu, D. McMullan, M. Woodside, "Component
Based Performance Prediction", Proc CBSE6 - 6th
Workshop on Component-Based Software Engineering, part
of the Int. Conf. on Software Engineering (ICSE 2003),
Portland, Oregon, May 3- 4, 2003.

[Wu03b] P. Wu, “A Performance Model for a Network of
Prototype Software Routers”, Master’s Thesis, Carleton
University, Ottawa, Canada, August 2003.

