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Abstract: Software evolves as requirements or 
technologies change. Tremendous efforts are often needed 
to support software evolution as evolution may involve 
reverse engineering and subsequent restructuring or 
forward engineering. Design patterns have captured great 
attentions as they provide rapid transfer of proven 
solutions. The paper presents an experimental study of 
applying design patterns to restructuring in 
communications software. The restructured software not 
only satisfies the new functional requirements, but also 
increases the performance. The paper demonstrates the 
benefit by showing concrete performance results to 
support the improvement.  
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1. Introduction 
Software architecture has become both a theoretically and 
practically important topic recently because of the 
increasing complexity of software systems. Software 
architectures also play a critical role for change impact 
analysis  [1]. It is common in practice to reconstruct 
architecture from the existing design or implementation, 
and modify or restructure the system to meet new 
changing needs. The process is referred to as 
reengineering. The need for software reengineering has 
increased significantly, as heritage software systems have 
become obsolescent in terms of their architecture, the 
platforms on which they run, or their suitability and 
stability to support evolution.  

The new changing needs that trigger reengineering can be 
either functional or non-functional requirements [5]. 
Examples of non-functional requirements include 
performance and maintainability. Performance is  critical 
for computer systems and networks, as it affects real-time 
accuracy and system scalability. Computer systems and 
networks are crucial in today’s technologies, because 
many applications are dependent on computer systems 
and networks in the Internet age. Evaluation of computer 
systems and networks is needed at every stage in the life 
cycle of the product including design, implementation, 
marketing, use, upgrade, tuning, and etc. 

 
MPLS (Multiprotocol Label Switching) has been 
recognized as a fundamentally important technology in 
networks [3]. MPLS has the potential to bring benefits to 
IP-based networks, including traffic engineering and 
quality of service (QoS). cgNet is a traffic controller 
based on MPLS. It was developed as a prototype 
software-based router to test the feasibility of real-time 
traffic engineering based on MPLS, but could also be 
used as a general-purpose test network. Later, there is a 
need to improve the performance and to support new QoS 
features for further research. Hence, the first objective of 
this paper is to reengineer cgNet to satisfy both the 
functional and non-functional requirements. 
 
In addition to the traffic engineering, cgNet involves 
distributed computing and protocols . The areas related to 
protocols and traffic engineering are relatively new. 
However, from the software architecture perspective, 
cgNet shares commonalities with many systems in 
distributed computing and concurrent systems . Many 
critical concepts in this area have been captured and 
documented with design patterns [14]. 
 
Design patterns capture recurring structures and dynamics 
among software participants to facilitate reuse of 
successful designs. Patterns, generally, codify expert 
knowledge of design constraints and “best practices”. 
Pattern languages  define a vocabulary for talking about 
software development problems, provide a process for the 
orderly resolution of these problems, and help to generate 
and reuse software architectures [2,4,14]. 
 
Design patterns can be used to support software 
development, reuse, and maintenance. However, can 
design patterns improve or degrade performance? 
Performance, in general, is  not directly dependent on 
design patterns. In other words, the answer is largely 
depends on where the performance bottlenecks are and 
how patterns are actually implemented.  However, 
performance can benefit from patterns is concurrency and 
locking patterns [13]. These patterns tend to have a broad 
influence on application performance.  
 
The second objective of this paper is to study those well 
known design patterns in concurrent and networked 
domain and apply them to cgNet for restructuring. The 



restructured system needs to support QoS requirements 
and to have better system performance. 
 
The remaining of the paper is organized as follows. 
Section 2 provides a brief overview and the original 
structure of cgNet. Section 3 demonstrates the 
restructured cgNet based on design patterns. The 
enhanced system supports additional QoS requirements. 
Section 4 presents performance evaluation of the 
restructured system. Section 5 presents lessons learned 
from reengineering of software with patterns. Finally, 
Section 6 is the summary of this paper. 
 
2. Overview of cgNet 
Figure 1 demonstrates the software structure of cgNet. 
cgNet is composed of a network of software -based 
routers, each consisting of the following main 
components:  
• Node: A node process represents a router or a switch. 

It forwards traffic to another node or to its associated 
sink. Each node can also distribute flows across 
multiple paths based on the bandwidth ratio. 

• Generator: A generator is a payload traffic source. It 
generates data packets to various destinations based on 
pre-configured distribution.   

• Sink: A sink is a destination for generated traffic. 
• Statistics (Stats) sink: A statistics sink is the 

destination for those statistic reports that are generated 
periodically by its associated node process. This 
information is then made available to the traffic 
controller to manage traffic. 

• Traffic controller, ONC: ONC is used to manage local 
traffic. It periodically interprets network status from 
network statistics and formulates the necessary 
changes required to improve network performance. 

 
Figure 1. S oftware structure of cgNet 

 

 
 
The main routing or switching functionalities are realized 
in the node process. Figure 2 illustrates the structure of 
the original node process. The node process contains 
multiple threads: a main thread, a stats thread, and a 
thread for each destination. The node process 
communicates with other nodes. The Reactor design 
pattern is used to demultiplex multiple incoming sources.  

Figure 2. Recovered structure of the Node process 

 
 

Figure 3 depicts the collaboration diagram. The 
collaboration diagram demonstrates detailed interactions 
for the ma in components. 
 
To improve software performance, we adopt the software 
performance engineering approach [7,15]. The next step 
after we identify the software structure is to identify 
frequent workload scenarios and their execution paths. 
The most critical scenario from the performance 
perspective is data forwarding. Hence, we focus on it for 
performance evaluations. 
 

Figure 3. Partial collaboration diagram of 
cgNet components  

For the original design, the processing of the incoming 
messages requires several steps. In the mean time, there 
are still many messages that are waiting in the socket 
queue to be read. The main thread, hence, is a 
performance bottleneck. Intutively, if there is a thread that 
reads messages from the queue and another thread that 
does the processing concurrently, the performance should 
be improved. The next section discusses the restructuring 
effort for performance enhancement of the design. 
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3. Restructuring with Design Patterns  
This section presents the restructuring effort of cgNet 
based on design patterns. Design patterns have drawn a 
lot of attentions lately. Concurrent and networked 
applications have been studied intensively. Recurring 
structures and dynamics among software components for 
this area have been captured and documented. Schmidt at 
al. [14] give an in-depth treatment of how to deal with 
those systems design issues in a systematic way.  
 
Instead of starting from scratch to find solutions, we reuse 
some well-known patterns to begin with. We adopt the 
Half-Sync/Half-Async pattern as the overall architectural 
structure for the node process. Half-Sync/Half-Async 
pattern separates asynchronous and synchronous service 
processing by introducing layers in the structure. 
Asynchronous programs are generally more efficient, 
especially in globally distributed computing. Synchronous 
processing, on the other hand, is  usually less complex, 
since services can be locally constrained to follow a 
sequence of operations. Queuing layer is used in between 
these two layers to mediate the communication [14]. 
 
The main reason is its resemblance to the original design 
and its features  just described. Figure 4 demonstrates the 
restructured view of the node process. In the new design, 
the original main thread is divided into three main layers: 
asynchronous, queuing, and synchronous, as documented 
in the pattern. An input thread will read incoming 
messages into a queue, from which the worker threads can 
take and process them concurrently. This way, the 
messages will not need to wait in the socket queue until a 
message is done processing. 
 

Figure 4. Restructured view of the Node process 

 
 
Figure 5 demonstrates the collaboration diagram for the 
new design to support QoS. New components are added. 
A Scheduler class is added to support QoS with multiple 
queues. There could be multiple schedulers with different 
number of queues. For this project, three schedulers were 
experimented: Schedulers 0-2. These scheduler classes 
were inherited from the abstract Scheduler class. 

Figure 5.  Partial collaboration diagram of cgNet 
components after restructuring 

Each scheduler can have different scheduling algorithm. 
Scheduler 2 is designed with four queues  to support QoS 
with packets of four different priorities: command, gold, 
silver, and bronze. Since the queue is implemented in 
each scheduler, Monitor Object is utilized to control the 
concurrent operations by threads. 
 
Each scheduling algorithm has its own policy for adding, 
dropping, and sending packets depending on the priority 
of incoming packets and traffic workload.  
If a high priority packet arrives and the total queue 

capacity is full, then the scheduler checks 
the lower priority queue and drops the last 
packet in that queue. For instance, if a 
silver packet arrives and the total queue 
length is  full, then Scheduler 2 checks the 
bronze queue and drops the last packet in 
that queue. Detailed discussion of the 
scheduling algorithm is beyond the scope 
of this paper. However, different 
scheduling algorithms can be 
implemented for specific needs. 

 
4. Performance Evaluation 

This section presents some evaluation 
results from the performance and QoS 
perspectives. The evaluations are 
conducted on a five-node network, shown 
in Figure 6, based on actual network data. 

 The numbers represent the base traffic rate in bits per 
second (bps) or the link bandwidth (bps). The evaluations 
are conducted on a Pentium (R) IV machine with 1.7 GHz 
CPU and 256 MB of memory. The operating system is 
Linux Red Hat 6.0 kernel 2.4.18-3. 
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Figure 6. A Five-Node Evaluation Network 

 
4.1 Evaluation Plan 
cgNet consists of various types of configuration data. To 
evaluate the performance of the restructured cgNet, we 
need to consider three main areas: traffic 
generation rate, test duration, and technology type. 
 
The traffic generation rate is specified as a 
percentage of the base engineered traffic rate. The 
test duration is  the length of the test run. There are 
three different scenarios in terms of technology 
that need to be tested.  
• OSPF only. Packets are strictly routed based 

OSPF protocol. No LSPs will be created. 
• MPLS only. Packets are forwarded based on 

statically created LSPs. There are two diverse 
LSPs between each source and destination pair. 

• Traffic controller (ONC) based on MPLS.  LSPs are 
established just as the previous case. However, ONC 
may automatically control the LSPs (increase or 
decrease bandwidth capacity, reroute or delete LSPs) 
based on the traffic status. 

 
The initial test plan is to go through all the combinations 
of various values. Each type has its own set of values.  
The following lists all the potential parameter 
values for the evaluation:  
• Technology type: OSPF, MPLS, ONC 
• Rate: 100, 130, 150, 155, 160, 170, 200, 225, 

250 
• Run Duration: 20 minutes 
• Number of worker threads: 1, 2, 4, 6 
• Number of queues:2, 3, 4 
 
Therefore we need to run the restructured cgNet 
for 3 × 9 × 1 × 4  = 108 times to compare the 
performance with the original design. And each 
time the program lasts 20 minutes. We also need 
to include and configure the number of worker 
threads and queues for QoS verification. For 
comparison, we also need to run the original cgNet with 
the same set of parameter values as listed above (except 
for worker number parameters). 

4.2 Performance Improvement 
The data that we are interested in include total number of 
packets processed, discarded on links and on MPLS paths. 
For QoS, we need to measure the delay for each packet 
class. A tremendous amount of effort is needed for 
verification. The following highlights partial results to 
demonstrate the performance improvement and support of 
additional QoS requirements using the design patterns. 
Detailed results can be found in [11,16] 
 
Table 1 demonstrates the results for OSPF only 
technology. The point to take from this table is that the 
number of worker threads does not have much impact on 
performance. The results from MPLS and ONC, not 
presented due to page limits, also concur this point. 
Therefore, we just use the restructured cgNet with one 
worker thread in our later performance comparison. 

 
Table 1. Evaluation results for OSPF 

 

 
The original cgNet and the restructured cgNet are 
compared to evaluate the improvement of performance in 
this section. We run the original cgNet with exactly the 
same configurations.  Table 2 shows the evaluation results 
for all three types of technology using one worker thread. 

Table 2. Evaluation Results for the Original cgNet 

 

 
 
 

 1 worker thread 2 worker threads  4 worker threads  6 worker threads
Base 

Engineered 
Rate 

multiplier 

Packets 
processed

Link  
Loss 

Packets 
processed

Link 
Loss 

Packets  
processed

Link 
Loss 

Packets  
processed

Link 
Loss 

1 1209947 0 1241876 0 1241453 0 1241764 0 
1.3 1609670 0 1610087 0 1610126 0 1610131 0 
1.5 1855030 0 1855127 0 1854781 0 1854861 0 
1.55 1908934 0 1916162 0 1893297 14047 1916658 0 
1.6 1978136 0 1947201 22736 1946140 22794 1978152 0 
1.7 2100449 0 2100809 0 2100674 0 2091853 0 
2 2377809 90126 2393399 72989 2443909 13679 2468678 0 

2.25 2774561 0 2773407 0 2774619 0 2708108 38425
2.5 2993370 61806 2967616 100373 2945209 137932 2939605 83954

 OSPF MPLS ONC 
Base 

Engineered 
Rate 

multiplier 

Packets 
processed 

Link 
Loss 

Packets 
processed 

Link 
Loss 

Mpls 
Loss 

Packets 
processed 

Link 
Loss 

Mpls 
Loss 

1 1208861 0 1655413 0 13 1655480 0 26 
1.3 1560857 37564 2142797 0 2051 2143763 0 129 
1.5 1718044 108042 2429156 0 25079 2472751 0 276 
1.55 1757378 125842 2475511 0 40605 2524556 0 741 
1.6 1796612 143357 2534343 0 61821 2625639 737 987 
1.7 1874747 178745 2599230 0 121021 2707464 27586 2696 
2 2090450 293299 2660470 14892 367662 2788632 231517 55271 

2.25 2247254 400069 2669410 36928 591021 2795026 364158160011 

2.5 2371229 531188 2669986 60480 818940 2812510 424317334219 



The evaluation results for the restructured cgNet with one 
worker thread are demonstrated in Table 3. 
 

Table 3. Results for the Restructured cgNet 

 
 
By comparing the data from Tables 2 and 3, we see that 
the total number of packets processed in the restructured 
cgNet is slightly larger than the number in the original 
cgNet. But the differences are not significant. On the 
other hand, the packet loss ratios are greatly reduced in 
the restructured cgNet. From Tables 2 and 3, the packet 
loss ratios are calculated respectively and shown in Tables 
4 and 5. It can be seen that the packet loss ratios are 
significantly reduced for the OSPF and ONC scenarios for 
the new design using the design patterns for this particular 
system. 

Table 4. Packet loss ratios for the original cgNet 

Base Engineered 
Rate multiplier 

OSPF packet 
loss 

 MPLS Packet 
loss 

ONC Packet 
Loss 

1 0.0% 0.0% 0.0% 
1.3 2.4% 0.1% 0.0% 
1.5 6.3% 1.0% 0.0% 
1.55 7.2% 1.6% 0.0% 
1.6 8.0% 2.4% 0.1% 
1.7 9.5% 4.7% 1.1% 
2 14.0% 14.4% 10.3% 

2.25 17.8% 23.5% 18.8% 

2.5 22.4% 32.9% 27.0% 

Table 5. Packet loss ratios for the restructured cgNet 

Base Engineered 
Rate multiplier 

OSPF packet 
loss 

MPLS Packet 
loss 

ONC Packet 
Loss 

1 0.0% 0.0% 0.0% 
1.3 0.0% 0.1% 0.0% 
1.5 0.0% 1.0% 0.0% 
1.55 0.0% 1.6% 0.1% 
1.6 0.0% 2.4% 0.0% 
1.7 0.0% 4.6% 0.3% 
2 3.8% 14.0% 2.9% 

2.25 0.0% 21.7% 9.0% 
2.5 2.1% 29.5% 17.5% 

 
4.3 Addition of QoS Requirements  

From the QoS point of view, Figure 9 illustrates the 
number of packets received versus the average delay. 
There are eight different lines in Figure 9. Each line 
represents a set of statistics. The leftmost line of the graph 
represents the first set of statistical data, which was taken 

in 15 minutes after the emulation. On this line, gold 
series packets can be spotted at the bottom of the 
line. While middle empty circle represents the silver 
and the top diamond represents the bronze series 
packets. The rest of the lines follow the same 
sequence. From Figure 9, it can be seen that the 
numbers of gold packets are received relatively 
higher than other two, at the same time it has lower 
delay than others. On the other hand, bronze packets 
are the fewest in numbers, but they have the highest 
delay.  So, Figure 9 clearly shows how average delay 
varies in QoS.  
 

Figure 9. QoS results: number of received packets vs . 
average delay 

Numbers of Packet Vs Average Delay

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 200 400 600 800 1000 1200 1400 1600

Numbers of Packet Received

A
ve

ra
g

e 
D

el
ay

      
          Bronze
          Silver
          Gold  

 
 
5. Lessons Learned 
This section presents several lessons that we have learned 
from this study. They are listed and discussed as follows. 
• Design patterns. As reported by practitioners in 
patterns community, design patterns effectively capture 
design rational and provide a standardized design 
vocabulary. For a well studied problem, design patterns 
are more effective. This point is generally accepted. For 
this study, design patterns help us reuse existing proven 
technique and facilitate knowledge extraction and transfer 
[9,12]. Furthermore, in this particular case, patterns also 
help in the design recovery process. We assume that the 
target system, although not written based on design 
patterns, contains some similar concepts, since it belongs 
to the same problem domain and the domain is stable, and 
the designers are experienced in this area. 
 
We first chose design patterns in some specific areas and 
then reviewed the code based on the concept of those 
patterns. For this study, we started with patterns for 
concurrent and networked objects. That way, we had 
more concrete goals derived from specific patterns to look 
for and the person performing the analysis did not need to 
be very experienced in patterns. It is not difficult to 

 OSPF MPLS ONC 
Base 

Engineered 
Rate 

multiplier 

Packets 
processed 

Link 
 Loss 

Packets 
processed

Link  
Loss 

Mpls  
Loss 

Packets 
processed 

Link 
Loss 

Mpls 
Loss 

1 1209947 0 1655697 0 8 1656043 0 37 
1.3 1609670 0 2144027 0 2127 2146929 0 91 
1.5 1855030 0 2430515 0 25369 2462772 0 433 
1.55 1908934 0 2487619 0 40732 2506863 0 1875 
1.6 1978136 0 2534074 0 61647 2599288 0 762 
1.7 2100449 0 2589669 0 119527 2771384 6024 2820 
2 2377809 90126 2664349 8328 365847 3113868 36727 54209 

2.25 2774561 0 2724666 0 591390 3117574 41357 238529
2.5 2993370 61806 2748549 0 809794 3184967 173817383859



identify some areas in the target system that shares 
commonalities with patterns because the target is  also in 
the area of communications. More detailed discussion can 
be found in [10]. The description of the patterns also 
helps us better understand the original design. 
 
The effort to select an appropriate pattern for restructuring 
for this project is insignificant mainly due to two factors. 
The first one is that the area is specific and well 
documented. Secondly, the original design shares some 
similarities with the Half-Sync/Half-Async pattern. 
However, this may not be true for other cases. 
 
Strictly speaking, design patterns do not have direct 
impact on performance, as performance is dependent on 
specific implementation. However, performance often can 
benefit from patterns is concurrency and locking patterns 
[13]. These patterns tend to have a broad influence on 
application performance. For this particular study, design 
patterns not only satisfy the new functional requirement, 
but also improve the performance. 
 
• Software architecture. Software architecture inevitably 
evolves. For this project, considerable amount of effort 
was spent on reverse engineering and subsequent 
restructuring. Verification of the system was also 
extremely time consuming. To mitigate the evolution 
effort, architecture should be built to accommodate 
anticipated changes  or evaluated for sensitivity due to 
changes  [8]. For example, had the architecture considered 
the QoS requirements to incorporate multiple queues, the 
verification effort would not need to be duplicated. 
 
• Software performance engineering. If a software 
performance bottleneck is identified, increasing the 
number of threads for the bottleneck, generally, will result 
in better system performance. It is easy to configure the 
number of threads or queues if the original design had put 
it into the consideration. However, if the system is 
originally designed with only a single thread or a single 
queue, it may be difficult or time consuming to restructure 
the system into a multi-threaded application. The 
restructured system also requires tremendous amount of 
effort in testing and evaluation. This study illustrates the 
importance of conducting software performance 
engineering [15] at the early stage to mitigate effort for 
performance enhancement later in the life cycle phases. 
 
• Tools and aspect-oriented programming. As stated 
earlier, a tremendous amount of effort was spent on issues 
related to concurrency and synchronization. 
Synchronization is tedious, but is well understood. Tools 
can be developed to support translating a single threaded 
program to multi-threaded. The concept of aspect-
oriented programming [6] can be applied to this area. 
 
6. Summary and Future Directions  
This paper presented an experimental study on software 
restructuring with design patterns. With patterns, we 

modified the system to meet new functional requirements 
as well as non-functional performance attribute. Software 
evolution is common. Software evolution with proven 
design patterns will likely improve the quality of the 
system. For specific areas, such as concurrency and 
synchronization, patterns often can result in better 
performance. 
 
The translation of a single-threaded program to a multi-
threaded program is tedious.  Many parts involved are 
mechanical. Tools can be developed to support this 
process to mitigate human errors. We are working on 
tools  to support this process. 
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