
EXPERIENCE OF COMMUNICATIONS SOFTWARE EVOLUTION
AND PERFORMANCE IMPROVEMENT WITH PATTERNS

Chung-Horng Lung, Qiang Zhao, Hui Xu, Heine Mar, Prem Kanagaratnam

Department of Systems and Computer Engineering
Carleton University

Ottawa, Ontario, Canada
chlung@sce.carleton.ca

Abstract: Software evolves as requirements or
technologies change. Tremendous efforts are often needed
to support software evolution as evolution may involve
reverse engineering and subsequent restructuring or
forward engineering. Design patterns have captured great
attentions as they provide rapid transfer of proven
solutions. The paper presents an experimental study of
applying design patterns to restructuring in
communications software. The restructured software not
only satisfies the new functional requirements, but also
increases the performance. The paper demonstrates the
benefit by showing concrete performance results to
support the improvement.

Keywords : software evolution, restructuring, networks,
design patterns, software performance engineering,
quality of service, modeling

1. Introduction
Software architecture has become both a theoretically and
practically important topic recently because of the
increasing complexity of software systems. Software
architectures also play a critical role for change impact
analysis [1]. It is common in practice to reconstruct
architecture from the existing design or implementation,
and modify or restructure the system to meet new
changing needs. The process is referred to as
reengineering. The need for software reengineering has
increased significantly, as heritage software systems have
become obsolescent in terms of their architecture, the
platforms on which they run, or their suitability and
stability to support evolution.

The new changing needs that trigger reengineering can be
either functional or non-functional requirements [5].
Examples of non-functional requirements include
performance and maintainability. Performance is critical
for computer systems and networks, as it affects real-time
accuracy and system scalability. Computer systems and
networks are crucial in today’s technologies, because
many applications are dependent on computer systems
and networks in the Internet age. Evaluation of computer
systems and networks is needed at every stage in the life
cycle of the product including design, implementation,
marketing, use, upgrade, tuning, and etc.

MPLS (Multiprotocol Label Switching) has been
recognized as a fundamentally important technology in
networks [3]. MPLS has the potential to bring benefits to
IP-based networks, including traffic engineering and
quality of service (QoS). cgNet is a traffic controller
based on MPLS. It was developed as a prototype
software-based router to test the feasibility of real-time
traffic engineering based on MPLS, but could also be
used as a general-purpose test network. Later, there is a
need to improve the performance and to support new QoS
features for further research. Hence, the first objective of
this paper is to reengineer cgNet to satisfy both the
functional and non-functional requirements.

In addition to the traffic engineering, cgNet involves
distributed computing and protocols . The areas related to
protocols and traffic engineering are relatively new.
However, from the software architecture perspective,
cgNet shares commonalities with many systems in
distributed computing and concurrent systems . Many
critical concepts in this area have been captured and
documented with design patterns [14].

Design patterns capture recurring structures and dynamics
among software participants to facilitate reuse of
successful designs. Patterns, generally, codify expert
knowledge of design constraints and “best practices”.
Pattern languages define a vocabulary for talking about
software development problems, provide a process for the
orderly resolution of these problems, and help to generate
and reuse software architectures [2,4,14].

Design patterns can be used to support software
development, reuse, and maintenance. However, can
design patterns improve or degrade performance?
Performance, in general, is not directly dependent on
design patterns. In other words, the answer is largely
depends on where the performance bottlenecks are and
how patterns are actually implemented. However,
performance can benefit from patterns is concurrency and
locking patterns [13]. These patterns tend to have a broad
influence on application performance.

The second objective of this paper is to study those well
known design patterns in concurrent and networked
domain and apply them to cgNet for restructuring. The

restructured system needs to support QoS requirements
and to have better system performance.

The remaining of the paper is organized as follows.
Section 2 provides a brief overview and the original
structure of cgNet. Section 3 demonstrates the
restructured cgNet based on design patterns. The
enhanced system supports additional QoS requirements.
Section 4 presents performance evaluation of the
restructured system. Section 5 presents lessons learned
from reengineering of software with patterns. Finally,
Section 6 is the summary of this paper.

2. Overview of cgNet
Figure 1 demonstrates the software structure of cgNet.
cgNet is composed of a network of software -based
routers, each consisting of the following main
components:
• Node: A node process represents a router or a switch.

It forwards traffic to another node or to its associated
sink. Each node can also distribute flows across
multiple paths based on the bandwidth ratio.

• Generator: A generator is a payload traffic source. It
generates data packets to various destinations based on
pre-configured distribution.

• Sink: A sink is a destination for generated traffic.
• Statistics (Stats) sink: A statistics sink is the

destination for those statistic reports that are generated
periodically by its associated node process. This
information is then made available to the traffic
controller to manage traffic.

• Traffic controller, ONC: ONC is used to manage local
traffic. It periodically interprets network status from
network statistics and formulates the necessary
changes required to improve network performance.

Figure 1. S oftware structure of cgNet

The main routing or switching functionalities are realized
in the node process. Figure 2 illustrates the structure of
the original node process. The node process contains
multiple threads: a main thread, a stats thread, and a
thread for each destination. The node process
communicates with other nodes. The Reactor design
pattern is used to demultiplex multiple incoming sources.

Figure 2. Recovered structure of the Node process

Figure 3 depicts the collaboration diagram. The
collaboration diagram demonstrates detailed interactions
for the ma in components.

To improve software performance, we adopt the software
performance engineering approach [7,15]. The next step
after we identify the software structure is to identify
frequent workload scenarios and their execution paths.
The most critical scenario from the performance
perspective is data forwarding. Hence, we focus on it for
performance evaluations.

Figure 3. Partial collaboration diagram of
cgNet components

For the original design, the processing of the incoming
messages requires several steps. In the mean time, there
are still many messages that are waiting in the socket
queue to be read. The main thread, hence, is a
performance bottleneck. Intutively, if there is a thread that
reads messages from the queue and another thread that
does the processing concurrently, the performance should
be improved. The next section discusses the restructuring
effort for performance enhancement of the design.

Router

Router

Router

Router

Controller

data

Router

Generator

Node ONC

Stats Sink

Bi-directional link, data &
control
control process

Node …

Routing

MPLS

Topology

Destination Destinatio

Main

statistics

Destination

Socket
Event React

…

bi-directional link, data and
control

queue
proces
s

shared data data
thread

Shared
data

control

3. Restructuring with Design Patterns
This section presents the restructuring effort of cgNet
based on design patterns. Design patterns have drawn a
lot of attentions lately. Concurrent and networked
applications have been studied intensively. Recurring
structures and dynamics among software components for
this area have been captured and documented. Schmidt at
al. [14] give an in-depth treatment of how to deal with
those systems design issues in a systematic way.

Instead of starting from scratch to find solutions, we reuse
some well-known patterns to begin with. We adopt the
Half-Sync/Half-Async pattern as the overall architectural
structure for the node process. Half-Sync/Half-Async
pattern separates asynchronous and synchronous service
processing by introducing layers in the structure.
Asynchronous programs are generally more efficient,
especially in globally distributed computing. Synchronous
processing, on the other hand, is usually less complex,
since services can be locally constrained to follow a
sequence of operations. Queuing layer is used in between
these two layers to mediate the communication [14].

The main reason is its resemblance to the original design
and its features just described. Figure 4 demonstrates the
restructured view of the node process. In the new design,
the original main thread is divided into three main layers:
asynchronous, queuing, and synchronous, as documented
in the pattern. An input thread will read incoming
messages into a queue, from which the worker threads can
take and process them concurrently. This way, the
messages will not need to wait in the socket queue until a
message is done processing.

Figure 4. Restructured view of the Node process

Figure 5 demonstrates the collaboration diagram for the
new design to support QoS. New components are added.
A Scheduler class is added to support QoS with multiple
queues. There could be multiple schedulers with different
number of queues. For this project, three schedulers were
experimented: Schedulers 0-2. These scheduler classes
were inherited from the abstract Scheduler class.

Figure 5. Partial collaboration diagram of cgNet
components after restructuring

Each scheduler can have different scheduling algorithm.
Scheduler 2 is designed with four queues to support QoS
with packets of four different priorities: command, gold,
silver, and bronze. Since the queue is implemented in
each scheduler, Monitor Object is utilized to control the
concurrent operations by threads.

Each scheduling algorithm has its own policy for adding,
dropping, and sending packets depending on the priority
of incoming packets and traffic workload.
If a high priority packet arrives and the total queue

capacity is full, then the scheduler checks
the lower priority queue and drops the last
packet in that queue. For instance, if a
silver packet arrives and the total queue
length is full, then Scheduler 2 checks the
bronze queue and drops the last packet in
that queue. Detailed discussion of the
scheduling algorithm is beyond the scope
of this paper. However, different
scheduling algorithms can be
implemented for specific needs.

4. Performance Evaluation

This section presents some evaluation
results from the performance and QoS
perspectives. The evaluations are
conducted on a five-node network, shown
in Figure 6, based on actual network data.

 The numbers represent the base traffic rate in bits per
second (bps) or the link bandwidth (bps). The evaluations
are conducted on a Pentium (R) IV machine with 1.7 GHz
CPU and 256 MB of memory. The operating system is
Linux Red Hat 6.0 kernel 2.4.18-3.

Node …

Routing
table

MPLS

Topology

Destination
1

Destinatio n

Input

Destinatio n

Socket
Event React or

Shared
data

… Statistics Worker 1 Worker m

Input Q

Synchronous
Service

Queuing
Layer

Service

…

Monitor Scoped
Lock

…

Asynchronous

Figure 6. A Five-Node Evaluation Network

4.1 Evaluation Plan
cgNet consists of various types of configuration data. To
evaluate the performance of the restructured cgNet, we
need to consider three main areas: traffic
generation rate, test duration, and technology type.

The traffic generation rate is specified as a
percentage of the base engineered traffic rate. The
test duration is the length of the test run. There are
three different scenarios in terms of technology
that need to be tested.
• OSPF only. Packets are strictly routed based

OSPF protocol. No LSPs will be created.
• MPLS only. Packets are forwarded based on

statically created LSPs. There are two diverse
LSPs between each source and destination pair.

• Traffic controller (ONC) based on MPLS. LSPs are
established just as the previous case. However, ONC
may automatically control the LSPs (increase or
decrease bandwidth capacity, reroute or delete LSPs)
based on the traffic status.

The initial test plan is to go through all the combinations
of various values. Each type has its own set of values.
The following lists all the potential parameter
values for the evaluation:
• Technology type: OSPF, MPLS, ONC
• Rate: 100, 130, 150, 155, 160, 170, 200, 225,

250
• Run Duration: 20 minutes
• Number of worker threads: 1, 2, 4, 6
• Number of queues:2, 3, 4

Therefore we need to run the restructured cgNet
for 3 × 9 × 1 × 4 = 108 times to compare the
performance with the original design. And each
time the program lasts 20 minutes. We also need
to include and configure the number of worker
threads and queues for QoS verification. For
comparison, we also need to run the original cgNet with
the same set of parameter values as listed above (except
for worker number parameters).

4.2 Performance Improvement
The data that we are interested in include total number of
packets processed, discarded on links and on MPLS paths.
For QoS, we need to measure the delay for each packet
class. A tremendous amount of effort is needed for
verification. The following highlights partial results to
demonstrate the performance improvement and support of
additional QoS requirements using the design patterns.
Detailed results can be found in [11,16]

Table 1 demonstrates the results for OSPF only
technology. The point to take from this table is that the
number of worker threads does not have much impact on
performance. The results from MPLS and ONC, not
presented due to page limits, also concur this point.
Therefore, we just use the restructured cgNet with one
worker thread in our later performance comparison.

Table 1. Evaluation results for OSPF

The original cgNet and the restructured cgNet are
compared to evaluate the improvement of performance in
this section. We run the original cgNet with exactly the
same configurations. Table 2 shows the evaluation results
for all three types of technology using one worker thread.

Table 2. Evaluation Results for the Original cgNet

 1 worker thread 2 worker threads 4 worker threads 6 worker threads
Base

Engineered
Rate

multiplier

Packets
processed

Link
Loss

Packets
processed

Link
Loss

Packets
processed

Link
Loss

Packets
processed

Link
Loss

1 1209947 0 1241876 0 1241453 0 1241764 0
1.3 1609670 0 1610087 0 1610126 0 1610131 0
1.5 1855030 0 1855127 0 1854781 0 1854861 0
1.55 1908934 0 1916162 0 1893297 14047 1916658 0
1.6 1978136 0 1947201 22736 1946140 22794 1978152 0
1.7 2100449 0 2100809 0 2100674 0 2091853 0
2 2377809 90126 2393399 72989 2443909 13679 2468678 0

2.25 2774561 0 2773407 0 2774619 0 2708108 38425
2.5 2993370 61806 2967616 100373 2945209 137932 2939605 83954

 OSPF MPLS ONC
Base

Engineered
Rate

multiplier

Packets
processed

Link
Loss

Packets
processed

Link
Loss

Mpls
Loss

Packets
processed

Link
Loss

Mpls
Loss

1 1208861 0 1655413 0 13 1655480 0 26
1.3 1560857 37564 2142797 0 2051 2143763 0 129
1.5 1718044 108042 2429156 0 25079 2472751 0 276
1.55 1757378 125842 2475511 0 40605 2524556 0 741
1.6 1796612 143357 2534343 0 61821 2625639 737 987
1.7 1874747 178745 2599230 0 121021 2707464 27586 2696
2 2090450 293299 2660470 14892 367662 2788632 231517 55271

2.25 2247254 400069 2669410 36928 591021 2795026 364158160011

2.5 2371229 531188 2669986 60480 818940 2812510 424317334219

The evaluation results for the restructured cgNet with one
worker thread are demonstrated in Table 3.

Table 3. Results for the Restructured cgNet

By comparing the data from Tables 2 and 3, we see that
the total number of packets processed in the restructured
cgNet is slightly larger than the number in the original
cgNet. But the differences are not significant. On the
other hand, the packet loss ratios are greatly reduced in
the restructured cgNet. From Tables 2 and 3, the packet
loss ratios are calculated respectively and shown in Tables
4 and 5. It can be seen that the packet loss ratios are
significantly reduced for the OSPF and ONC scenarios for
the new design using the design patterns for this particular
system.

Table 4. Packet loss ratios for the original cgNet

Base Engineered
Rate multiplier

OSPF packet
loss

 MPLS Packet
loss

ONC Packet
Loss

1 0.0% 0.0% 0.0%
1.3 2.4% 0.1% 0.0%
1.5 6.3% 1.0% 0.0%
1.55 7.2% 1.6% 0.0%
1.6 8.0% 2.4% 0.1%
1.7 9.5% 4.7% 1.1%
2 14.0% 14.4% 10.3%

2.25 17.8% 23.5% 18.8%

2.5 22.4% 32.9% 27.0%

Table 5. Packet loss ratios for the restructured cgNet

Base Engineered
Rate multiplier

OSPF packet
loss

MPLS Packet
loss

ONC Packet
Loss

1 0.0% 0.0% 0.0%
1.3 0.0% 0.1% 0.0%
1.5 0.0% 1.0% 0.0%
1.55 0.0% 1.6% 0.1%
1.6 0.0% 2.4% 0.0%
1.7 0.0% 4.6% 0.3%
2 3.8% 14.0% 2.9%

2.25 0.0% 21.7% 9.0%
2.5 2.1% 29.5% 17.5%

4.3 Addition of QoS Requirements

From the QoS point of view, Figure 9 illustrates the
number of packets received versus the average delay.
There are eight different lines in Figure 9. Each line
represents a set of statistics. The leftmost line of the graph
represents the first set of statistical data, which was taken

in 15 minutes after the emulation. On this line, gold
series packets can be spotted at the bottom of the
line. While middle empty circle represents the silver
and the top diamond represents the bronze series
packets. The rest of the lines follow the same
sequence. From Figure 9, it can be seen that the
numbers of gold packets are received relatively
higher than other two, at the same time it has lower
delay than others. On the other hand, bronze packets
are the fewest in numbers, but they have the highest
delay. So, Figure 9 clearly shows how average delay
varies in QoS.

Figure 9. QoS results: number of received packets vs .
average delay

Numbers of Packet Vs Average Delay

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 200 400 600 800 1000 1200 1400 1600

Numbers of Packet Received

A
ve

ra
g

e
D

el
ay

 Bronze
 Silver
 Gold

5. Lessons Learned
This section presents several lessons that we have learned
from this study. They are listed and discussed as follows.
• Design patterns. As reported by practitioners in
patterns community, design patterns effectively capture
design rational and provide a standardized design
vocabulary. For a well studied problem, design patterns
are more effective. This point is generally accepted. For
this study, design patterns help us reuse existing proven
technique and facilitate knowledge extraction and transfer
[9,12]. Furthermore, in this particular case, patterns also
help in the design recovery process. We assume that the
target system, although not written based on design
patterns, contains some similar concepts, since it belongs
to the same problem domain and the domain is stable, and
the designers are experienced in this area.

We first chose design patterns in some specific areas and
then reviewed the code based on the concept of those
patterns. For this study, we started with patterns for
concurrent and networked objects. That way, we had
more concrete goals derived from specific patterns to look
for and the person performing the analysis did not need to
be very experienced in patterns. It is not difficult to

 OSPF MPLS ONC
Base

Engineered
Rate

multiplier

Packets
processed

Link
 Loss

Packets
processed

Link
Loss

Mpls
Loss

Packets
processed

Link
Loss

Mpls
Loss

1 1209947 0 1655697 0 8 1656043 0 37
1.3 1609670 0 2144027 0 2127 2146929 0 91
1.5 1855030 0 2430515 0 25369 2462772 0 433
1.55 1908934 0 2487619 0 40732 2506863 0 1875
1.6 1978136 0 2534074 0 61647 2599288 0 762
1.7 2100449 0 2589669 0 119527 2771384 6024 2820
2 2377809 90126 2664349 8328 365847 3113868 36727 54209

2.25 2774561 0 2724666 0 591390 3117574 41357 238529
2.5 2993370 61806 2748549 0 809794 3184967 173817383859

identify some areas in the target system that shares
commonalities with patterns because the target is also in
the area of communications. More detailed discussion can
be found in [10]. The description of the patterns also
helps us better understand the original design.

The effort to select an appropriate pattern for restructuring
for this project is insignificant mainly due to two factors.
The first one is that the area is specific and well
documented. Secondly, the original design shares some
similarities with the Half-Sync/Half-Async pattern.
However, this may not be true for other cases.

Strictly speaking, design patterns do not have direct
impact on performance, as performance is dependent on
specific implementation. However, performance often can
benefit from patterns is concurrency and locking patterns
[13]. These patterns tend to have a broad influence on
application performance. For this particular study, design
patterns not only satisfy the new functional requirement,
but also improve the performance.

• Software architecture. Software architecture inevitably
evolves. For this project, considerable amount of effort
was spent on reverse engineering and subsequent
restructuring. Verification of the system was also
extremely time consuming. To mitigate the evolution
effort, architecture should be built to accommodate
anticipated changes or evaluated for sensitivity due to
changes [8]. For example, had the architecture considered
the QoS requirements to incorporate multiple queues, the
verification effort would not need to be duplicated.

• Software performance engineering. If a software
performance bottleneck is identified, increasing the
number of threads for the bottleneck, generally, will result
in better system performance. It is easy to configure the
number of threads or queues if the original design had put
it into the consideration. However, if the system is
originally designed with only a single thread or a single
queue, it may be difficult or time consuming to restructure
the system into a multi-threaded application. The
restructured system also requires tremendous amount of
effort in testing and evaluation. This study illustrates the
importance of conducting software performance
engineering [15] at the early stage to mitigate effort for
performance enhancement later in the life cycle phases.

• Tools and aspect-oriented programming. As stated
earlier, a tremendous amount of effort was spent on issues
related to concurrency and synchronization.
Synchronization is tedious, but is well understood. Tools
can be developed to support translating a single threaded
program to multi-threaded. The concept of aspect-
oriented programming [6] can be applied to this area.

6. Summary and Future Directions
This paper presented an experimental study on software
restructuring with design patterns. With patterns, we

modified the system to meet new functional requirements
as well as non-functional performance attribute. Software
evolution is common. Software evolution with proven
design patterns will likely improve the quality of the
system. For specific areas, such as concurrency and
synchronization, patterns often can result in better
performance.

The translation of a single-threaded program to a multi-
threaded program is tedious. Many parts involved are
mechanical. Tools can be developed to support this
process to mitigate human errors. We are working on
tools to support this process.

References:
[1] R. S. Arnold and S. A. Bohner, Software Change Impact
Analysis, IEEE Computer Society Press 1996.
[2] Buschmann, F. and Meunier, R. Patterns of Software
Architecture: A System of Patterns. Addison-Wesley, Reading,
MA., 1995.
[3] B. Davie and Y. Rekhter, MPLS Technology and
Applications, Morgan Kaufmann Publishers, 2000.
[4] Gamma, E., et al., Design Patterns: Elements of Reusable
Object-Oriented Software Architecture. Addison Wesley,
Reading, MA, 1995.
[5] R. Kazman, G. Abowd, L. Bass, P. Clements, "Scenario-
Based Analysis of Software Architecture", IEEE Software,
November 1996, pp. 47-55.
[6] G. Kiczales et al., Aspect-Oriented Programming, Proc. of
European Conf on Object-Oriented Programming, 1997.
[7] C.-H. Lung, et al., "Performance-Oriented Software
Architecture Analysis", Proc. of the Int'l Workshop on Software
Performance Eng. (WOSP), 1998, pp. 191-196.
[8] C.-H. Lung and K. Kalaichelvan, "A Quantitative Approach
to Software Architecture Sensitivity Analysis", Int'l J. of Sw.
Eng and Knowledge Eng, 10 (1), 2000, pp. 97-114.
[9] C.-H. Lung, G. Maculak, and J. Urban, “Software Reuse and
Knowledge Transfer through Analogy and Design Patterns”,
Proc. of Int’l Conf. on Software Eng. Research and Practice
(SERP), June, 2002, pp. 618-624.
[10] C.-H. Lung, “Agile Software Architecture Recovery
through Existing Solutions and Design Patterns”, Proc. of 6th
IASTED Int’l Conf. on Software Engineering and Applications
(SEA), Nov. 2002, pp. 539-545.
[11] H. Mar, H. Xu, and P. Kanagaratnam, Quality of Service for
MPLS Software, 4th Year Project Report, 2003, Dept. of
Systems and Computer Eng, Carleton Univ., Ottawa, Canada.
[12] D. May and P. Taylor, “Knowledge Management with
Patterns”, Com. of the ACM, 46 (7), 2003, pp. 94-99.
[13] P.E. McKenney, “Selecting Locking Primitives for Parallel
Programming”, Com. of the ACM, 39 (10), 1996, pp. 75-82.
[14] D. Schmidt, et al., Pattern-Oriented Software Architecture,
Volume 2, Patterns for Concurrent and Networked Objects , John
Wiley and Sons, 2000.
[15] C. U. Smith, Performance Engineering of Software System ,
Reading, MA, Addison-Wesley, 1990.
[16] Q. Zhao, Pattern-Oriented Software Reengineering of a
Network Traffic Engineering System, Master Project Report,
2003, School of Computer Science, Carleton Univ., Ottawa,
Canada.

Acknowledgements:
We are grateful for Nortel Networks for granting us permission
to use cgNet for research and education.

