TCP: Overview

3 point-to-point:

O one sender, one receiver
3 reliable, in-order byte

steam:

O no “message boundaries”
3 pipelined:

o TCP congestion and flow
control set window size

3 send & receive buffers

socket
door —

receive buffer

() [Seament] —» ()

send buffer

RFCs: 793, 1122, 1323, 2018, 2581

3 full duplex data:

O bi-directional data flow
In same connection
o MSS: maximum segment
size
3 connection-oriented:
o handshaking (exchange
of control msgs) init's

sender, receiver state
before data exchange

3 flow controlled:

o sender will not
overwhelm receiver

o socket
door

3: Transport Layer

3b-1

TCP segment structure

<

URG: urgent data
(generally not used)\

source port # | dest port #

32 bits >

counting

~

sequence number

by bytes
of data

(not segments!)

ACK: ACK #
valid —t—acknowledgement number
head r;%fj -APESF rcvr window size

PSH: push data now
(generally not used)— |

| len—

C

sum ptr urgent data

bytes
rcvr willing

RST. SYN, FIN:—
connection estab

/

Opti

S (variable length)

to accept

(setup, teardown
commands)

Internet/////

checksum
(as in UDP)

/ application

data
(variable length)

3: Transport Layer 3b-2

Dividing file data into TCP segments

- File
) ‘ 1 ‘ 1,000 ‘ 1,899 1499,999'
Drata for » Datafor
15t segment | 2nd segment '

3: Transport Layer 3b-3

TCP seqg. #'s and ACKSs

Seq. #'s:

O byte stream
“number” of first
byte in segment’s
data

ACKs:

O seq # of next byte
expected from
other side

O cumulative ACK

Q: how receiver handles
out-of-order segments

O A: TCP spec doesn't
say, - up to
Implementor

host ACKs
receipt
of echoed
c

receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

3: Transport Layer

time

v

3b-4

TCP: reliable data transfer

event: data received - - - i
from application above simplified sender, assuming

create, send segment eone way data transfer
*no flow, congestion control

event: timer timeout for
segment with seq #vy

event retransmit segment

O

event: ACK received,
with ACK #y

ACK processing

3: Transport Layer 3b-5

TC P . 00 sendbase = initial_sequence number
. 01 nextsegnum = initial_sequence number
e 02
re I I ab I e 03 loop (forever) {
04 switch(event)
05 event: data received from application above
d at a 06 create TCP segment with sequence number nextsegnum

07 start timer for segment nextsegnum
08 pass segment to IP

t ran Sfe r 09 nextsegnum = nextsegnum + length(data)

10 event: timer timeout for segment with sequence number y

11 retransmit segment with sequence number y

12 compue new timeout interval for segment y
Simplified 13 restart timer for sequence numbery

14 event: ACK received, with ACK field value of y
TCP 15 if (y > sendbase) { /* cumulative ACK of all data up to y */
sender 16 cancel all timers for segments with sequence numbers <y

17 sendbase =y

18 }

19 else { /* a duplicate ACK for already ACKed segment */

20 increment number of duplicate ACKSs received for y

21 if (number of duplicate ACKS received for y == 3) {

22 [* TCP fast retransmit */

23 resend segment with sequence numbery

24 restart timer for segment y

25 }

26 } /* end of loop forever */

3: Transport Layer 3b-6

TCP ACK generation [RFC 1122, RFC 2581]

Event TCP Receiver action

in-order segment arrival, delayed ACK. Wait up to 500ms

no gaps, for next segment. If no next segment,
everything else already ACKed send ACK

in-order segment arrival, Immediately send single

no gaps, cumulative ACK

one delayed ACK pending

out-of-order segment arrival send duplicate ACK, indicating seq. #
higher-than-expect seq. # of next expected byte
gap detected

arrival of segment that immediate ACK if segment starts
partially or completely fills gap at lower end of gap

3: Transport Layer 3b-7

TCP: retransmission scenarios

<4——timeout——p

time

lost ACK scenario

92 timeout—»l

100 timeout—bl

Seq-=
|<— Seq

)
D
Q
(g
N
0o
o
3
(7]
oy
Q

time

premature timeout,
cumulative ACKs

3: Transport Layer

3b-8

TCP Flow Control

-flow control receiver: explicitly
sender won't overrun iInforms sender of
receiver’'s buffers by (dynamically changing)

transmitting too much, amount of free buffer
too fast Space
O RcvW ndow field in
RevBuUf f er = size or TCP Receive Buffer TCP segment
RcvW ndow = amount of spare room in Buffer sender: keeps the amount

of transmitted,
unACKed data less than

7 / o most recently received
7 %% application RcvW ndow

//_:f e % process
707
¥ RevBuffer ————

receiver buffering

-||— RevWindow —4-

data from

3: Transport Layer 3b-9

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?
3 longer than RTT
o note: RTT will vary

3 too short: premature
timeout

O unnecessary
retransmissions

[too long: slow reaction
to segment loss

Q: how to estimate RTT?

3 Sanpl eRTT: measured time from

segment transmission until ACK
receipt

O ignore retransmissions,
cumulatively ACKed segments
A Sanpl eRTT will vary, want
estimated RTT “smoother”
O use several recent

measurements, not just
current Sanpl eRTT

3: Transport Layer 3b-10

TCP Round Trip Time and Timeout

Estimat edRTT = (1-x)*Estimat edRTT + x*Sanpl eRTT

3 Exponential weighted moving average

3 influence of given sample decreases exponentially fast
3 typical value of x: 0.1

Setting the timeout

3 Esti nt edRTT plus “safety margin”
3 large variation in Esti mat edRTT - > larger safety margin

TI meout = Estimat edRTT + 4*Devi ati on

Deviation = (1-x)*Deviation +
x*| Sanpl eRTT- Esti nmat edRTT]|

3: Transport Layer 3b-11

RTT samples/estimate

0.6 v T

Average
RTT Snmﬁgs_ ----------
05 :

04t

0.2

o1 lh

0

10 15 20 25 30

3: Transport Layer 3b-12

Principles of Congestion Control

Congestion:

3 informally: “too many sources sending too much
data too fast for network to handle”

3 different from flow control!
3 manifestations:
O lost packets (buffer overflow at routers)
0 long delays (queueing in router buffers)
3 a top-10 problem!

3: Transport Layer 3b-13

Causes/costs of congestion: scenario 1

Host A

O two senders, two Ain tiginal data % st
receivers et
0 one router, - I T

InFinite buffers

.\
. ()
3 no retransmission el
infinite buffers
C/2+ . 3 large delays
- Yo when congested
5 e, _
< 3 maximum
i achievable
C/2 throughput

3: Transport Layer 3b-14

Causes/costs of congestion: scenario 2

3 one router, finite buffers

3 sender retransmission of lost packet

Host B

Host A

Ay original datta

M. = original +
in
refrans.

\ PN

7Lou’r

()

N
router with

finite buffers

3: Transport Layer 3b-15

Causes/costs of congestion: scenario 2

: = |
0 always: | " out (goodput) ,
O “perfect” retransmission only when loss: | in> | out
3 retransmission of delayed (not lost) packet makes | » larger
(than perfect case) for same | out
Cr24 Cr24 C/2-
5 C/37
O . T
< 3 3
. B o c< /
C/2 5C 6C 5C
7\'in:)\‘in 7\'in 7“in

“costs” of congestion:
3 more work (retrans) for given “goodput”

3 unneeded retransmissions: link carries multiple copies of pkt
3: Transport Layer 3b-16

Causes/costs of congestion: scenario 3

O four senders Q: what happens asl
0 multihop paths and | ' increase ?
7 timeout/retransmit In

Host A Host B

_g RD Host C

3: Transport Layer 3b-17

Causes/costs of congestion: scenario 3

Host A sl
L]

C/2 E
3 H

(-< X) = 5 Host C

R4 3 i

% s (] =

luIIII[III —_
A
a

Another “cost” of congestion:

3 when packet dropped, any “upstream transmission
capacity used for that packet was wasted!

> O

b

3: Transport Layer 3b-18

Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion Network-assisted
control: congestion control:

3 no explicit feedback from O routers provide feedback
network to end systems

[congestion inferred from O single bit indicating
end-system observed loss, congestion (SNA,
delay DECDbit, TCP/IP ECN,

7 approach taken by TCP ATM)

O explicit rate sender
should send at

3: Transport Layer 3b-19

TCP Congestion Control

3 end-end control (no network assistance)

3 transmission rate limited by congestion window
size, Congwi n, over segments:

send_base nextsegnum already usable, not

ack’ed yet sent

G T e

t— congwin—*

3 w segments, each with MSS bytes sent in one RTT:

w * MSS
RTT

throughput = Bytes/sec

3: Transport Layer 3b-20

TCP congestion control:

3 “probing” for usable
bandwidth:

O Iideally: transmit as fast
as possible (Congw n as
large as possible)
without loss

O increase Congw n until
loss (congestion)

O loss: decrease Congwi n,
then begin probing
(increasing) again

3 two “phases”
O slow start
Q congestion avoidance

3 important variables:
o Congw n
O t hreshol d: defines
threshold between two
slow start phase,

congestion control
phase

3: Transport Layer 3b-21

TCP Slowstart

-Slowstart algorithm

Initialize: Congwin =1
for (each segment ACKed)
Congwin++
until (loss event OR
CongWin > threshold)

[exponential increase (per
RTT) in window size (not so
slow!) time

3 loss event: timeout (Tahoe
TCP) and/or or three
duplicate ACKs (Reno TCP)

3: Transport Layer 3b-22

TCP Congestion Avoidance

-Congestion avoidance

[* slowstart is over */ 13
[* Congwin > threshold */
Until (loss event) {

Ll
% —
% L
/5] 9_
every w segments ACKed: | ¢ | e
. ‘% : threshol d

Congwin++ s
threshold = Congwin/2 g0

CongWIn:1 1||||||||||||||

perform SIOWStartl 012 34 567 8 921011121314

Mumber of transmissions

1: TCP Reno skips slowstart (fast

recovery) after three duplicate ACKs
3: Transport Layer 3b-23

AIMD

TCP Fairness

TCP congestion

avoidance: Fairness goal: If N TCP
g AIMD: additive sessions share same

increase, bottleneck link, each

multiplicative should get 1/N of link

decrease capacity

O Increase window by 1 TCP connection 1

per RTT @
O decrease window by = =
factor of 2 on loss -

event :
Tcp bottleneck

connection 2 rout_er
capacity R

3: Transport Layer 3b-24

Why Is TCP fair?

Two competing sessions:

3 Additive increase gives slope of 1, as throughout increases
3 multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput o

Connection 1 throughput R

3: Transport Layer 3b-25

TCP latency modeling

Q: How long does it take to Notation, assumptions:
receive an object froma 4 Assume one link between

Web server after sending client and server of rate R

a request? 3 Assume: fixed congestion
3 TCP connection establishment window, W segments
0 data transfer delay O S: MSS (bits)

3 O: object size (bits)
@ no retransmissions (no loss,
no corruption)
Two cases to consider:

O WS/R>RTT + S/R: ACK for first segment in
window returns before window's worth of data
sent

O WS/R<RTT + S/R: wait for ACK after sending
window's worth of data sent 3: Transport Layer 3b-26

TCP latency Modeling o O/WS

initiate TCP

coftie oo \-K-M_M
RTT
recuest)
object — [
SR
yoalty RTT
OF * teturns
L
tirr_le ¥ ¥ dime
at client at server

Case 1: latency = 2RTT + O/R

WS

initiate TCP
cotect on ‘\hh S

=t
e

e
““"“—u.-m_m_h_w.m_%
BanEry
L

T
——
e

RTT

SR
Walk

ETT

request
object

lstack
returts

fitrie ;
tirne
. ¥ 1
at client at server

Case 2: latency = 2RTT + O/R
+ (K-D[S/R + RTT - WS/R]

3: Transport Layer 3b-27

TCP Latency Modeling: Slow Start

3 Now suppose window grows according to slow start.
3 Will show that the latency of one object of size O is:

Latency = 2RTT + O, PSRTT +2U. (27 - 1)§
R & RH R

where P is the number of times TCP stalls at server:
P=min[Q,K- 1

- where Q is the number of times the server would stall
I the object were of infinite size.

-and K is the number of windows that cover the object.

3: Transport Layer 3b-28

TCP Latency Modeling: Slow Start (cont.)

initiate TCP
Example: connection
oIS =15 ‘et
- Segments object t first window
=S/R
K =4 windows :
RIT second window
=2S/R
Q=2
third window
P=min{K-1,Q} =2 = 4SR

Server stalls P=2 times.

fourth window
= 8S/R

v

\ complete

ot_)Ject transmission
delivered

time at
time at server
client

3: Transport Layer 3b-29

TCP Latency Modeling: Slow Start (cont.)

g + RTT = timefrom when server starts to send segment

until server receives acknowledgement

initiate TCP
connection

\

21> = timeto transmit thekth window request __
R object first window
TS
,S S 0 . . R!I—T second window
% +RTT - 2"'1§§ = &tall timeafter thekth window i I v

third window
=4S/R

fourth window

@) 3 :
latency = = +2RTT + a stallTime,

=8S/R
p=1
:9+2RTr+§[§+RTr-2k'1§] <
R = A
delivered
QL RTT+PRIT+ 3] (P-4,
R R R client

3: Transport Layer 3b-30

