Message type	Description
Destination unreachable	Packet could not be delivered
Time exceeded	Time to live field hit 0
Parameter problem	Invalid header field
Source quench	Choke packet
Redirect	Teach a router about geography
Echo request	Ask a machine if it is alive
Echo reply	Yes, I am alive
Timestamp request	Same as Echo request, but with timestamp
Timestamp reply	Same as Echo reply, but with timestamp

Fig. 5-50. The principal ICMP message types.

The PARAMETER PROBLEM message indicates that an illegal value has been detected in a header field. This problem indicates a bug in the sending host's IP software, or possibly in the software of a router transited.

The SOURCE QUENCH message was formerly used to throttle hosts that were sending too many packets. When a host received this message, it was expected to slow down. It is rarely used any more because when congestion occurs, these packets tend to add more fuel to the fire. Congestion control in the Internet is now done largely in the transport layer and will be studied in detail in Chap. 6.

The REDIRECT message is used when a router notices that a packet seems to be routed wrong. It is used by the router to tell the sending host about the probable error.

The ECHO REQUEST and ECHO REPLY messages are used to see if a given destination is reachable and alive. Upon receiving the ECHO message, the destination is expected to send an ECHO REPLY message back. The TIMESTAMP REQUEST and TIMESTAMP REPLY messages are similar, except that the arrival time of the message and the departure time of the reply are recorded in the reply. This facility is used to measure network performance.

In addition to these messages, there are four others that deal with Internet addressing, to allow hosts to discover their network numbers and to handle the case of multiple LANs sharing a single IP address. ICMP is defined in RFC 792.

The Address Resolution Protocol

Although every machine on the Internet has one (or more) IP addresses, these cannot actually be used for sending packets because the data link layer hardware does not understand Internet addresses. Nowadays, most hosts are attached to a

LAN by an interface board that only understands LAN addresses. For example, every Ethernet board ever manufactured comes equipped with a 48-bit Ethernet address. Manufacturers of Ethernet boards request a block of addresses from a central authority to ensure that no two boards have the same address (to avoid conflicts should the two boards ever appear on the same LAN). The boards send and receive frames based on 48-bit Ethernet addresses. They know nothing at all about 32-bit IP addresses.

The question now arises: How do IP addresses get mapped onto data link layer addresses, such as Ethernet? To explain how this works, let us use the example of Fig. 5-51, in which a small university with several class C networks is illustrated. Here we have two Ethernets, one in the Computer Science department, with IP address 192.31.65.0 and one in Electrical Engineering, with IP address 192.31.63.0. These are connected by a campus FDDI ring with IP address 192.31.60.0. Each machine on an Ethernet has a unique Ethernet address, labeled *E1* through *E6*, and each machine on the FDDI ring has an FDDI address, labeled *F1* through *F3*.

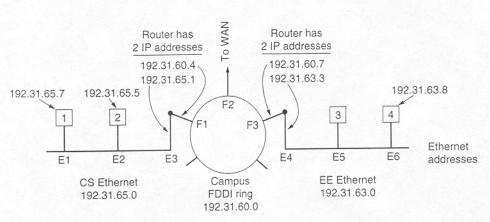


Fig. 5-51. Three interconnected class C networks: two Ethernets and an FDDI ring.

Let us start out by seeing how a user on host 1 sends a packet to a user on host 2. Let us assume the sender knows the name of the intended receiver, possibly something like mary@eagle.cs.uni.edu. The first step is to find the IP address for host 2, known as eagle.cs.uni.edu. This lookup is performed by the Domain Name System, which we will study in Chap. 7. For the moment, we will just assume that DNS returns the IP address for host 2 (192.31.65.5).

The upper layer software on host 1 now builds a packet with 192.31.65.5 in the *Destination address* field and gives it to the IP software to transmit. The IP software can look at the address and see that the destination is on its own network, but it needs a way to find the destination's Ethernet address. One solution is to have a configuration file somewhere in the system that maps IP addresses onto

Ethernet addresses. This solution is certainly possible, but for organizations with thousands of machines, keeping these files up to date is an error-prone, time-consuming job.

A better solution is for host 1 to output a broadcast packet onto the Ethernet asking: "Who owns IP address 192.31.65.5?" The broadcast will arrive at every machine on Ethernet 192.31.65.0, and each one will check its IP address. Host 2 alone will respond with its Ethernet address (*E*2). In this way host 1 learns that IP address 192.31.65.5 is on the host with Ethernet address *E*2. The protocol for asking this question and getting the reply is called **ARP** (**Address Resolution Protocol**). Almost every machine on the Internet runs it. It is defined in RFC 826.

The advantage of using ARP over configuration files is the simplicity. The system manager does not have to do much except assign each machine an IP address and decide about subnet masks. ARP does the rest.

At this point, the IP software on host 1 builds an Ethernet frame addressed to E2, puts the IP packet (addressed to 192.31.65.5) in the payload field, and dumps it onto the Ethernet. The Ethernet board of host 2 detects this frame, recognizes it as a frame for itself, scoops it up, and causes an interrupt. The Ethernet driver extracts the IP packet from the payload and passes it to the IP software, which sees that it is correctly addressed, and processes it.

Various optimizations are possible to make ARP more efficient. To start with, once a machine has run ARP, it caches the result in case it needs to contact the same machine shortly. Next time it will find the mapping in its own cache, thus eliminating the need for a second broadcast. In many cases host 2 will need to send back a reply, forcing it, too, to run ARP to determine the sender's Ethernet address. This ARP broadcast can be avoided by having host 1 include its IP to Ethernet mapping in the ARP packet. When ARP broadcast arrives at host 2, the pair (192.31.65.7, E1) is entered into host 2's ARP cache for future use. In fact, all machines on the Ethernet can enter this mapping into their ARP caches.

Yet another optimization is to have every machine broadcast its mapping when it boots. This broadcast is generally done in the form of an ARP looking for its own IP address. There should not be a response, but a side effect of the broadcast is to make any entry in everyone's ARP cache. If a response does arrive, two machines have been assigned the same IP address. The new one should inform the system manager and not boot.

To allow mappings to change, for example, when an Ethernet board breaks and is replaced with a new one (and thus a new Ethernet address), entries in the ARP cache should time out after a few minutes.

Now let us look at Fig. 5-51 again, only this time host 1 wants to send a packet to host 4 (192.31.63.8). Using ARP will fail because host 4 will not see the broadcast (routers do not forward Ethernet-level broadcasts). There are two solutions. First, the CS router could be configured to respond to ARP requests for network 192.31.63.0 (and possibly other local networks). In this case, host 1 will make an ARP cache entry of (192.31.63.8, E3) and happily send all traffic for host

4 to the local router. This solution is called **proxy ARP**. The second solution is to have host 1 immediately see that the destination is on a remote network and just send all such traffic to a default Ethernet address that handles all remote traffic, in this case *E3*. This solution does not require having the CS router know which remote networks it is serving.

Either way, what happens is that host 1 packs the IP packet into the payload field of an Ethernet frame addressed to E3. When the CS router gets the Ethernet frame, it removes the IP packet from the payload field and looks up the IP address in its routing tables. It discovers that packets for network 192.31.63.0 are supposed to go to router 192.31.60.7. If it does not already know the FDDI address of 192.31.60.7, it broadcasts an ARP packet onto the ring and learns that its ring address is F3. It then inserts the packet into the payload field of an FDDI frame addressed to F3 and puts it on the ring.

At the EE router, the FDDI driver removes the packet from the payload field and gives it to the IP software, which sees that it needs to send the packet to 192.31.63.8. If this IP address is not in its ARP cache, it broadcasts an ARP request on the EE Ethernet and learns that the destination address is E6 so it builds an Ethernet frame addressed to E6, puts the packet in the payload field, and sends it over the Ethernet. When the Ethernet frame arrives at host 4, the packet is extracted from the frame and passed to the IP software for processing.

Going from host 1 to a distant network over a WAN works essentially the same way, except that this time the CS router's tables tell it to use the WAN router whose FDDI address is F2.

The Reverse Address Resolution Protocol

ARP solves the problem of finding out which Ethernet address corresponds to a given IP address. Sometimes the reverse problem has to solved: Given an Ethernet address, what is the corresponding IP address? In particular, this problem occurs when booting a diskless workstation. Such a machine will normally get the binary image of its operating system from a remote file server. But how does it learn its IP address?

The solution is to use the RARP (Reverse Address Resolution Protocol) (defined in RFC 903). This protocol allows a newly-booted workstation to broadcast its Ethernet address and say: "My 48-bit Ethernet address is 14.04.05.18.01.25. Does anyone out there know my IP address?" The RARP server sees this request, looks up the Ethernet address in its configuration files, and sends back the corresponding IP address.

Using RARP is better than embedding an IP address in the memory image because it allows the same image to be used on all machines. If the IP address were buried inside the image, each workstation would need its own image.

A disadvantage of RARP is that it uses a destination address of all 1s (limited broadcasting) to reach the RARP server. However, such broadcasts are not

forwarded by routers, so a RARP server is needed on each network. To get around this problem, an alternative bootstrap protocol called **BOOTP** has been invented (see RFCs 951, 1048, and 1084). Unlike RARP, it uses UDP messages, which are forwarded over routers. It also provides a diskless workstation with additional information, including the IP address of the file server holding the memory image, the IP address of the default router, and the subnet mask to use. BOOTP is described in RFC 951.

5.5.5. The Interior Gateway Routing Protocol: OSPF

As we mentioned earlier, the Internet is made up of a large number of autonomous systems. Each AS is operated by a different organization and can use its own routing algorithm inside. For example, the internal networks of companies X, Y, and Z would usually be seen as three ASes if all three were on the Internet. All three may use different routing algorithms internally. Nevertheless, having standards, even for internal routing, simplifies the implementation at the boundaries between ASes and allows reuse of code. In this section we will study routing within an AS. In the next one, we will look at routing between ASes. A routing algorithm within an AS is called an **interior gateway protocol**; an algorithm for routing between ASes is called an **exterior gateway protocol**.

The original Internet interior gateway protocol was a distance vector protocol (RIP) based on the Bellman-Ford algorithm. It worked well in small systems, but less well as ASes got larger. It also suffered from the count-to-infinity problem and generally slow convergence, so it was replaced in May 1979 by a link state protocol. In 1988, the Internet Engineering Task Force began work on a successor. That successor, called **OSPF** (**Open Shortest Path First**) became a standard in 1990. Many router vendors are now supporting it, and it will become the main interior gateway protocol in the near future. Below we will give a sketch of how OSPF works. For the complete story, see RFC 1247.

Given the long experience with other routing protocols, the group designing the new protocol had a long list of requirements that had to be met. First, the algorithm had to be published in the open literature, hence the "O" in OSPF. A proprietary solution owned by one company would not do. Second, the new protocol had to support a variety of distance metrics, including physical distance, delay, and so on. Third, it had to be a dynamic algorithm, one that adapted to changes in the topology automatically and quickly.

Fourth, and new for OSPF, it had to support routing based on type of service. The new protocol had to be able to route real-time traffic one way and other traffic a different way. The IP protocol has a *Type of Service* field, but no existing routing protocol used it.

Fifth, and related to the above, the new protocol had to do load balancing, splitting the load over multiple lines. Most previous protocols sent all packets