SYSC 4005/5001 SIMULATION AND MODELING

Introduction to Using OPNET Modeler

Reference: OPNETWORK2002

Outline

- Introduction
- Simulation Overview
- Events and Event List Concepts
- Network Modeling
- Node Modeling
- Link Modeling
- Process Modeling
- Running Simulations
- Collecting and Analyzing Results
- Conclusion

Note: You don't have to use Opnet Modeler for your project!

Simulation Methodology

The Project/Scenario Workflow

- Create project
- Create baseline scenario
 - Import or create topology
 - Import or create traffic
 - Choose results and reports to be collected
 - Run simulation
 - View results
- Duplicate scenario
 - Make changes
 - Re-run simulation
 - Compare results

The Three-Tiered OPNET Hierarchy

- Three domains: network, node, and process
- Node model specifies object in network domain
- Process model specifies object in node domain

Network Domain: Network Objects

- Network models consist of nodes, links and subnets
- Nodes represent network devices and groups of devices
 - Servers, workstations, routers, etc.
 - LAN nodes, IP clouds, etc.
- Links represent point-to-point and bus links
- Icons assist the user in quickly locating the correct nodes and links
- Vendor models are distinguished by a specific color and logo for each company Generic Devices Vendor Devices

Node Domain

- Basic building blocks (modules) include processors, queues, and transceivers
 - Processors are fully programmable via their process model
 - Queues also buffer and manage data packets
 - Transceivers are node interfaces
- Interfaces between modules
 - Packet streams
 - Statistic wires

Process Domain

- OPNET process models consist of
 - State transition diagrams
 - Blocks of C code
 - OPNET Kernel Procedures (KPs)
 - State variables
 - Temporary variables

- A process is an instance of a process model
- Processes can dynamically create child processes
- Processes can respond to interrupts

Simulation Output

- Three kinds of output
 - Vectors
 - » List of time-value pairs
 - Scalars
 - » List of values dependent on parametric input
 - » Not plotted vs. time
 - Animations
 - » Packet flows
 - » Node movements
- Objects have pre-defined statistics
 - For example: throughput, bits received, bits forwarded, etc.

Events and Event List Concepts

Event-Driven Simulation

- Events are specific activities that occur at a certain time
- OPNET simulations are event-driven
- Simulation time advances when an event occurs
- A different method might be to sample at regular intervals
 - Disadvantages:
 - » Accuracy of results is limited by the sampling resolution
 - » Simulation is inefficient if nothing happens for long periods

Event List Concepts

- Single global event list
- Shared simulation time clock
- Events scheduled in time order
- Event removed from event list when it completes

Event List Example

Event List Example (cont.)

- The network model has three nodes (src, dest1, dest2) relying on two node models (both dest nodes use the same node model)
- In the src node model, packets are generated at gen and sent by queue to either transmitter (tx0 / tx1)
- Packets then flow across a link to a destination node (dest1, dest2) where they are received (rx) and thrown out (sink)
- Three modules (gen, queue, and sink) have process models associated with them

Forced States

- Forced (green) and unforced (red) states differ significantly in execution timing
- In a forced state, the process:
 - Invokes the enter executives
 - Invokes the exit executives
 - Evaluates all condition statements
 - If exactly one condition statement evaluates to true, the transition is traversed to the next state
- OPNET convention: code in enter execs only

Unforced States

- In an unforced state, the process:
 - Invokes the enter executives
 - Places a marker at the middle of the state
 - Releases control to the Simulation Kernel and becomes idle
 - Resumes at the marker and processes the exit execs when next invoked

Unforced (red) states

Blocking, waiting for invocation

Start of invocation

End of invocation

Blocking, wait for next invocation

Process Model Example

• Model with three forced states and one unforced state:

Starting the Simulation

- Simulation Kernel reads the event at the head of the event list, and delivers control to the process in the src.gen module
- Process begins execution at the initial state, marked with the black arrow
- Process executes the Init state's enter execs

<u>Time</u> 0.0 0.0	Event Type BEGSIM BEGSIM	Module src.gen src.queue	
0.0	DEOSIW	sic.queue	

Simulation Termination

- Simulations terminate in one of four ways:
 - The event list is emptied
 - Simulation attribute duration expires
 - A process calls for termination, using the KP op_sim_end()
 - A fatal error occurs

How Does Time Advance?

- Simulation time advances only when an event with a later time is processed from the event list
- No simulation time occurs during the execution of a process
- No time elapses during transitions between states
- A process model must always have an unforced (red) state so time can advance
 - Avoid endless looping between
 - forced (green) states

Packets

- Information-carrying entities that circulate among system components
- General data structures, organized into fields of userdefined information
- Dynamically created and destroyed as the simulation progresses
- A single system may rely on multiple types of packets with different formats

Packet Formats

- Packets can either be unformatted or formatted
- Unformatted packets have no user-defined data fields
- Formatted packets have zero or more fields of type
 - Integer
 - Floating point
 - Structure
 - Packet
 - Information

Events for Packet Transmission

- All packet transmissions are modeled with 4 events
 - Start of Transmission
 - End of Transmission
 - Start of Reception
 - End of Reception
- Simulation Kernel automatically schedules the events

Network Modeling

Creating Network Models

- There are two ways to create new network models
 - Manual Creation
 - » Drag and drop
 - » Rapid configuration
 - Import from network management tool
 - » HP Network Node Manager
 - » Tivoli Netview
 - » Router configuration files
 - » ATM text files
 - » XML
 - » ACE
 - » VNE Server

Rapid configuration

- Rapid configuration allows you to quickly create networks of any size
- Available topology configurations:

Bus; Ring; Star; Tree; Unconnected Net; Mesh (Full or Randomized)

• You control the number of nodes, the node and link models used, how nodes will be arranged, and node locations within the workspace

🛪 Rapid Configuration 🛛 🛛	🔀 Rapid Configuration: Star 🛛 🛛 🔀
Configuration Star	MODELS Center Node Model fddi32_hub Periphery Node Model custom_app_wkstn Link Model FDDI
	PLACEMENT Center X -86.9668 Y 32.9955 Radius 3.81546
	Select Models Cancel OK

Startup Wizard

- The Startup Wizard can quickly configure a new scenario
- There are several settings for each scenario:
 - Name
 - Initial topology
 - Network scale
 - Network size
 - Technologies

Object Attributes

- All objects have attributes that control aspects of their behavior
- Attributes may vary from one model to the next
- Attribute values may vary between objects of the same model type
- Right-click on an object and select "Edit Attributes" to view or change its attributes

Attribute	Value	<u>^</u>
7 name	http_server	
> - model	ethernet_server	
①	Unspecified	
Application: Supported Services	None	
P + CPU Background Utilization	None	
P + CPU Resource Parameters	Single Processor	
1 + IP Host Parameters	()	
1 + IP Processing Information	Default	
P Server Address	Auto Assigned	
The server: Advanced Server Configuration	Sun Ultra 10 333 MHz	
P Server: Modeling Method	Simple CPU	
TCP Parameters	Default	

Node Modeling

Node Objects: Processors and Queues

- Processors
 - General-purpose building blocks of node models
 - Fully programmable
- Queues
 - Offer all the functionality of processors
 - Can also buffer and manage a collection of data packets

P	rocessoi	ſ
	P	
	Queue	
	q	
	P.	Processor P Queue

Link Modeling

Link Types

• Link objects model physical layer effects between nodes, such as delays, noise, etc.

Link Editor

- Create or modify links
- Choose link types
- Modify attributes

•				
Keywords ———		Supported Li	nk Types ———	
		Link Type	Supported	Palette Icon
		ptsimp	ves	simp pt lk
		ptdup	no	dup pt lk
		bus	no	bus_lk
Add	Delete	bus tap	no	bus_tap
Attributes	Status	Initial Value		Edit Properties
arrowheads	set	bead and tail	ī	Ponomo (Morgo Attributo
ber	set	0.0		n enamezmerge Attribute
channel count	set	1		Define Attributes
	set	dbu_closure		
closure model				
closure model coll model	set	dbu_coll		

Verify Links

- Verify links before running a simulation
- Ensures that point-to-point and bus link connections are valid
 - Enough transmitters and receivers to support all of the incoming and outgoing links
 - Data rates of the connected transmitter and receiver match the data rate of the link
 - Transceivers support the attached link technology

Process Modeling

Process Models

- Process models represent algorithms
 - Communications protocols and algorithms
 - Shared-resource managers
 - Queuing disciplines
 - Specialized traffic generators
 - Statistic-collection mechanisms
 - Control Processes
- Process Editor provides the features for creating process models

State Transitions

- Transitions connect states
 - Conditional
 - Unconditional
 - Transition executive
- Exactly one condition must evaluate to true
- If the condition statement (x == y) is true, the transition executive (*Reset_Timers*) is invoked

State Executive Blocks

- Each state has two executive blocks
 - Enter executives are invoked upon entering a state
 - Exit executives are invoked before exiting a state

Alpha : Enter Execs				
<u>File Edit Options</u>				
<pre>1</pre>				
Alpha Hipha Exit Execs				
<pre>1 X = Y; 2 if (op_intrpt_type () == OPC_INTRPT_SELF) 3 pk_count = 0;</pre>				

Proto-C[™]

- State transition diagrams
- C programming language
- Library of OPNET Kernel Procedures (KPs)
- State variables (private to each process)
- Temporary variables

Running a Simulation

Statistic Collection

- Statistic Attributes
- Descriptions of Statistics
- Statistic collection modes

Statistic Attributes

- Right-clicking on a statistic while in the Choose Results dialog box presents a menu of statistic attributes
- Right Click on the work-space and select Choose Individual Statistics to select the statistics to be measured during the simulation

- Statistic attributes include:
 - Record Statistic Animation
 - Change Collection Modes
 - Statistic Description
 - Change Draw Style

Statistic Collection Modes

- Normal mode: Every data point is collected from a statistic
- Sample mode: The data is collected according to a user-defined time interval or sample count
- Bucket mode: All the data points in a bucket are collected and processed according to a user-defined parameter
 - » Max
 - » Min
 - » Sum
 - » Count
 - » Sample mean
 - » Time average

🔣 Task Response Time (sec).capture m🗵					
Capture mode	bucket	•			
C <u>E</u> very		seconds			
C E <u>v</u> ery		values			
	default 💌	values			
Bucket mode	sample mean	•			
₩ <u>R</u> eset					
⊠ <u>A</u> dvanced					
<u>C</u> ancel <u>D</u> K					

Understanding Statistics

- It is essential to define the goals of the study and to understand the statistics needed to get useful results
- Browse available statistics and view their descriptions
- Understand the default collection mode to help interpret results

Configuring Simulations

- Scenarios automatically provide a default duration and random number seed for simulations
- Users can set simulation attributes by choosing "Configure Simulation" from the **Simulation** menu, or by clicking on the "running man" icon:

🛨 Simulation Set: scenario			
Common Global Attributes Object Attributes Reports SLAs Animation Advanced Enviro	Configure Simulation Dialog Box		
Seed: 128 Values per Statistic: 100	Name	Description	
Update Interval: 100000 Events	Duration	Duration of simulation, in simulated time	
✓ Enable Simulation Log □ Use OPNET Debugger (ODB) □ Generate web report	Values Per Statistic	Number of values to be collected for each statistic	
Record a date/time in results: none	Seed	Random number generation seed	
Date:	Generate Web Report	If checked, the simulation will produce a web report for the results.	

Running a Simulation

- The Simulation Sequence window shows the progress of simulation
- Elapsed time bar displays the progress of the simulation
 - -Appears after 1,000,000 events by default
- Elapsed/Remaining Time: Real time elapsed and remaining time
- Simulation Time: Simulation time elapsed and number of events processed

Viewing Results

- Results can be displayed by:
 - Selecting the "View Results" button on the tool bar
 - Selecting View Results from the Results menu
 - Right-clicking the project workspace and selecting from the pop-up menu
- View Results dialog box allows the user to select the results to display.
 - *Note*: Only the statistics you chose for collection will be available
- The "Show" button in the "View Results" dialog box displays a graph of the selected statistics

Viewing Results (cont.)

- Multiple graph panels can be displayed at the same time
- Each panel can contain one or more traces in an **Overlaid** or **Stacked** layout

Where to Get Help

- Online Documentation from the **Help** menu
 - Online Tutorials
 - M/M/1 Queue
 - Basic Processes
- Model help accessible by right-clicking object icons in the object palette or by right-clicking objects in the Project workspace and selecting "View Node Description"
- Tool Tips by holding the mouse over any object to get a brief description of that object
- Attribute help accessible by clicking on the question mark next to the attribute

	HIP Host Parameters	()
2	F IP Processing Information	()
2	- Server Address	Auto Assigned