
Page 1/28
Version 1, 12/02/98

94462
COMPUTER COMMUNICATIONS

LABORATORY 3

INTERNETWORKING : FLOW CONTROL

ALGORITHMS AND TCP/IP

SEPTEMBER 1998

¶COPYRIGHT BY MATTHIAS FALKNER 1998
(All rights reserved: No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior
written permission of the author)

1. Purpose

Lab 3: Internetworking – Flow Control and TCP/IP Page 2/28
Version 1, 12/02/98

1 PURPOSE

The purpose of this lab session is to illustrate some of the basic concepts encountered in
the TCP/IP protocol suite. TCP/IP is currently the dominant protocol used in
internetworking. It has to provide a number of functions to enable successful
communications between stations that may be on the opposite sides of the globe, use
different transmission speeds or hardware. For example, it defines a common protocol
data unit (PDU) such that all stations using TCP/IP have a common base for
communication. Furthermore, a unified addressing scheme is defined – the IP addresses –
which allow each station on the globe to be uniquely identified. These addresses are used
by the routing algorithms to send packets in the right direction. Other important functions
include flow control, congestion control and error recovery. TCP/IP uses a number of
concepts here, some of which you have already encountered in the lab on ARQ
algorithms. However, these algorithms and concepts have to be modified to deal with the
complexity of an entire network, not just a single link between two stations.

The objective of this lab is to demonstrate a few of these concepts by use of simulation
models in COMNET III. In particular, we are going to focus on
• Nagle’s algorithm
• The TCP/IP slow-start algorithm for flow control
• adaptive timeouts to demonstrate the TCP/IP congestion control algorithm

Obviously, TCP/IP provides many more functions. Many of these are beyond the scope of
this lab. In fact, some features of TCP/IP cannot even be simulated. They are simply a
matter of convention or standard. For example, the definition of the IP addressing scheme
has been defined, but there is not much to simulate to demonstrate the performance or the
execution of this scheme. You just have to understand the basic standard and be aware
how it is used. So, in particular, we will not consider
• the segmentation and re-assembly functions of TCP/IP
• the role of sequence numbers and ordered delivery of frames
• routing algorithms
• network addresses and address resolution protocols
• interaction with higher or lower layer protocols

This lab session builds heavily on the theoretical descriptions of TCP/IP in standard
textbooks. To successfully complete this lab session, you are expected to have read such
relevant sections on TCP/IP. You are again expected to be familiar with the COMNET
III network simulator. To execute this lab, please make sure that COMNET III is
installed on your machine and that the model files are also installed under the directory
‘C:\CommTut\Lab5’. The following files should appear under this directory:
• NagleA.c3
• NagleB.c3
• SlowStart.c3
• CongCont.c3

1. Purpose

Lab 3: Internetworking – Flow Control and TCP/IP Page 3/28
Version 1, 12/02/98

In addition, you should find the following subdirectories and files
• Subdirectory: ‘C:\CommTut\Lab5\NagleA’
• File: ‘C:\CommTut\Lab5\NagleA\comments.txt’
• Subdirectory: ‘C:\CommTut\Lab5\NagleB’
• File: ‘C:\CommTut\Lab5\NagleB\comments.txt’
• Subdirectory: ‘C:\CommTut\Lab5\SlowStart’
• File: ‘C:\CommTut\Lab5\SlowStart\comments.txt’
• Subdirectory: ‘C:\CommTut\Lab5\CongCont’
• File: ‘C:\CommTut\Lab5\CongCont\comments.txt’

2. Theoretical Background

Lab 3: Internetworking – Flow Control and TCP/IP Page 4/28
Version 1, 12/02/98

2 THEORETICAL BACKGROUND

In this section we give you a brief overview of the structure and the main functions of
TCP/IP. This overview is by no means exhaustive. The functions and algorithms
employed by TCP/IP are far too vast to be described in this short overview. For a detailed
treatment of the protocol functions, you should consult a book on TCP/IP, such as [5].

Let us start by positioning TCP/IP within the ISO/OSI reference model. Strictly speaking,
TCP/IP are two protocols: the transmission control protocol (TCP) and the internet
protocol (IP). TCP is a layer 4 protocol - it resides in the transport layer in terms of the
ISO/OSI reference model. IP is a layer 3 protocol – it resides in the network layer. Let us
describe some of the features of these two protocols in turn.

2.1 OVERVIEW OF TCP

The basic operation of TCP can be summarized as follows: TCP receives messages from
the higher layer protocols. These messages are large bit streams. They could represent
entire files. TCP segments these messages into TCP protocol data units (PDUs), which
are sometimes called segments. Each segment is of course given a header. The maximum
size of a segment is restricted to 65535 bytes, including the TCP and IP headers. This
means that each TCP PDU can carry at most 65495 bytes of user data. If a message is
larger than this, the message is segmented into several TCP segments. Otherwise, the
TCP segment will be just as long as the message plus the overhead of 20 bytes for TCP.

2.1.1 CONNECTIONS

TCP is a connection-oriented full-duplex protocol. This means that before any data is
transmitted between the sender and the receiver, a connection has to be established in both
directions. Sometimes these connections are referred to as virtual circuits in other
protocols. Effectively, before the data transmission takes place, a connection setup packet
is transmitted to the receiver. This packet contains information on the IP address, the port
number at the receiver side, the maximum segment size and possibly some user data, for
example user passwords. If the connection can be established across the network (i.e. if
the receiver does not yet use the specified port), the receiver returns an acknowledgement.
After the receipt of this acknowledgement on the sender’s side, the connection is
established and the data transmission process begins. If the connection can not be
established, the receiver returns a reject packet.

Similarly, when the data transmission process has terminated, the connection is torn down.
The sender transmits a packet to indicate the end of the transmission. The receiver again
acknowledges this message and repeats this process to tear down the connection in the
reverse direction. Only when the connection in both directions has terminated is the
virtual-circuit released.

2. Theoretical Background

Lab 3: Internetworking – Flow Control and TCP/IP Page 5/28
Version 1, 12/02/98

2.1.2 TCP HEADER FIELDS

Each TCP segment is given a 20 byte header. The fields in this header regulate the
functions of the protocol. For example, 2 bytes are used to specify the destination port.
Another 2 bytes are used to identify the source port. 4 bytes of the header are used for the
sequence number of the segment, and another 4 bytes are used for the acknowledgement
number. We will explain the use of these two fields in more detail in the next section. The
remaining 8 bytes of the header are used for error determination (a 2 byte checksum field
is used for this), to specify the window size or to transmit control information to the peer,
such as the type of PDU. These additional functions allow control messages to be piggy-
backed on TCP segments flowing in the reverse direction. Furthermore, they provide
some quality of service (QoS) functions, for example by allowing a segment to be marked
as ‘urgent’. We will not discuss these advanced functions any further in this lab. They are
beyond our scope.

2.1.3 FLOW CONTROL

The transmission process in TCP is regulated by a sliding window flow control policy.
However, this policy is slightly different from the SRP and GBN algorithms you have seen
in the previous lab. In particular, the receiver not only acknowledges any segments
received correctly, but it also advertises the available buffer space. This flow control
method thus prevents the receiver from being flooded with information.

All acknowledgements or windows are treated as byte streams. Thus, TCP will not
acknowledge a certain PDU, but the number of bytes received correctly. Similarly, it will
advertise the number of bytes available in the receiver’s buffer, rather than the number of
PDUs which it would be able to receive.

For example, in figure 1 the TCP layer on the senders side initially receives 2048 bytes
from a higher layer for transmission. Assuming the connection to the receiver’s side has
already been established, a 2048 byte segment is transmitted. Upon successful receipt, the
receiver returns an acknowledgement, acknowledging the receipt of the 2048 bytes and
advertising that its receive buffer still has 3072 bytes free for more data. The sender then
obtains more data from its higher layer protocol for transmission, say 4096 bytes.
However, since the advertised window was only 3072, a segment of 3072 bytes is
transmitted. Upon receipt of this segment, the receiver’s buffer is then full, and the
receiver advertises this by sending an acknowledgement with window size 0. Only after
the receiver has removed some of the bytes from its buffer, it will advertise again that it
now has more space available to receive data. This indicates to the sender that it may now
continue to transmit, in case it has received more data from its higher layer protocols.

2. Theoretical Background

Lab 3: Internetworking – Flow Control and TCP/IP Page 6/28
Version 1, 12/02/98

Figure 1: Flow control in TCP

2.1.4 NAGLE ’S ALGORITHM

One of the problems faced by TCP/IP is the overhead associated with small user messages.
For example, a TELNET application of an interactive editor sends individual characters
for transmission. Each character typed on the senders keyboard is segmented into a TCP
PDU, adding 20 bytes of overhead. This TCP PDU is then passed down to the IP layer,
which adds another 20 bytes of overhead. Thus, a 1-byte message generates a 41-bytes
packet for the data-link layer. Furthermore, the receivers TCP immediately acknowledges
the receipt of this PDU, sending a minimum of 40 bytes to the sender (assuming no flows
in the reverse direction). Then, the editor at the receivers side reads the byte from the
buffer, thus generating a window update packet, similar to the one shown in figure 1. This
generates another 40-byte packet. And finally, the editor echoes the character back to the
sender so that its screen can be updated. Thus, another 41-byte message is sent from the
sender to the receiver. This sequence of events is repeated for every 1-byte message
generated by the keyboard. To summarize, a 1-byte message generates a flow of 41 bytes
in the direction sender-receiver and 121 bytes in the direction receiver-sender.

Sender Receiver

2048 bytes
received from
higher layer 2048 data

5120 bytes free

Buffer

3072 free2048 data

ACK = 2048, WIN = 3072

4096 bytes
received from
higher layer 3072 data

5120 bytes data

ACK = 5120, WIN = 0
2048 bytes
removed

2048 free3072 data

ACK = 5120, WIN = 2048

2. Theoretical Background

Lab 3: Internetworking – Flow Control and TCP/IP Page 7/28
Version 1, 12/02/98

No doubt that this procedure is very inefficient and wastes a lot of time and bandwidth.
To overcome this problem, Nagle’s algorithm is used. This algorithms resolves the
problem by only sending the first character as outlined in the last paragraph. In the
meantime, the remaining characters typed at the sender’s side are buffered, until the
outstanding character is acknowledged. When this acknowledgement arrives at the
sender, hopefully a number of characters have accumulated in the buffer, and they can all
be transmitted in a single TCP PDU. Furthermore, on the receiver’s side, the
acknowledgements are artificially delayed for a pre-specified amount of time. This means
that both the window update and the acknowledgement for the character can be piggy-
backed onto the echoed-PDU. Using these two schemes, only 2 PDU’s flow in each
direction, generating much less overhead traffic and thus a more efficient transmission
channel.

2.1.5 SILLY -WINDOW SYNDROME

The silly-window syndrome is somewhat related to the above algorithm. Rather than
considering the effect of a sender generating 1-byte messages, it considers the effect of the
receiver removing data from the buffer in 1-byte chunks. In this case, every time 1-byte is
removed from the receiver’s buffer, a window update would be transmitted to the sender,
indicating that another 1 byte is now free at the receiver’s buffer. The sender would
transmit a 1-byte message, generating a 41-byte segment. The situation described above
would re-occur.

This problem has been addressed by Clark in 1982. His solution is to delay the window
update until an appropriate amount of buffer space is available at the receiver’s side.
Typically, this appropriate amount is defined to be at least 1 maximum PDU size, as
determined upon connection establishment. Alternatively, the window update would be
transmitted if half of the receiver’s buffer is available.

Note that conditions leading to Nagle’s algorithm and the silly-window syndrome are
related. Similarly, the solutions to both problems are related. Basically, artificial delays
are introduced to buffer data and PDUs are only transmitted if it is considered efficient to
do so.

2.1.6 ERROR CONTROL

The flow control algorithm above ensures that the receiver is not flooded with data.
However, you have to remember that TCP is an end-to-end protocol, and that in between
the sender and the receiver lies an entire network with possibly many switches, routers or
even satellites. This is where the transport layer flow control and congestion control
algorithms differ from the corresponding data-link algorithms. Recall that the error
control algorithms in the data link layer rely on a timeout value. At the data link layer,
you are only considering 1-hop connections. The delays across this one hop are
predictable, if you know the bandwidth capacity of the link, the buffer sizes, and the length
of the link. Consequently, the timeout value can be predicted. On and end-to-end basis,

2. Theoretical Background

Lab 3: Internetworking – Flow Control and TCP/IP Page 8/28
Version 1, 12/02/98

the entire transmission process becomes less predictable. The sender’s TCP does not even
know the number of hops that the routing algorithm determines to reach the receiver.
Furthermore, the delays can now be affected by the intermediary switches. If a switch
becomes congested, the end-to-end delay for the TCP segments increases and a timeout
may occur. Similarly, the chance of a failure in the connection increases with the number
of hops determined by the routing algorithm.

To overcome these difficulties, TCP uses modified concepts of the data link error and
congestion control algorithms. First of all, it uses a sliding window algorithm. This means
that a new data packet is now transmitted until a previous data packet has been
acknowledged. This limits the number of data packets in transmission from the source to
the destination. However, because the delay across the network is less predictable, TCP
does not use a fixed value for the timeout. Instead, the round-trip-time (RTT) is measured
between the sender and the receiver, and it is used to estimate the value of the timeout. In
this way, if the network becomes congested, the timeout value is automatically increased,
thus preventing timeouts to occur unnecessarily.

Note how important such adaptive timeouts are. If the timeout is fixed and congestion
occurs in the network, each packet in transmission would eventually time out. The
packets would be re-transmitted, and thus add to the congestion of the network. In a bad
case, such a strategy can clog up an entire network!

The algorithm to determine the timeout value in TCP operates as follows. Rather than
taking the last measured round-trip time, the timeout is set to

MRTTDD

DRTTTOTCP

−−+=
+=

)1(

4

αα

where RTT is the previously computed value of the round-trip time, M is the last measured
round-trip delay, and D is a smoothing factor, typically D=7/8. This algorithm for adapting
the timeout ensures that some measure of the deviation is also included in the estimation
of the timeout, as indicated by |RTT-M| in the above formula. This factor represents the
mean deviation, weighted by a factor of (1-D). It is easier than estimating the actual
standard deviation for the round-trip delay.

2.1.7 CONGESTION CONTROL

In addition to the above timeout and flow-control mechanisms, TCP uses an additional
window parameter, the congestion window, to take account of congestion within the
network. This is different from congestion at the receiver’s side, which is treated by the
flow control.

The congestion window is modified by the network devices. It indicates the maximum
amount of data that the network can transmit. The sender takes both the receiver’s
window and the congestion window, determines the minimum of the two values and

2. Theoretical Background

Lab 3: Internetworking – Flow Control and TCP/IP Page 9/28
Version 1, 12/02/98

transmits the respective amount of data. In this way, TCP ensures that neither the
network, nor the receiver are flooded with data.

The congestion window is modified as follows: upon connection establishment, the
connection window is set to the maximum PDU size for the connection (as determined by
the connection establishment process). Each time an ACK returns to the sender before the
timer goes off, the congestion window is doubled, thus effectively growing exponentially.
This process does not continue indefinitely! Eventually, the congestion window will
exceed the receiver’s window, in which case it is no longer increased. Alternatively, the
congestion window will reach a pre-determined threshold, initialized to 64K. Once this
threshold is reached, the congestion window no longer increases exponentially, but only
linearly by the maximum PDU size. At this point, the congestion window still grows!
Eventually, a timeout occurs in the network. The congestion window will then be re-set
to 1 PDU size, and the threshold for exponential growth will be halved from the last
acceptable value of the congestion window. The increase repeats itself: initially, the
congestion window grows exponentially, until it reaches the threshold. From then
onwards, it grows linearly again until a timeout occurs.

The exponential growth phase of the congestion window is called ‘slow-start’. Basically,
every time a timeout occurs, the congestion window is re-set to 1 and the exponential
growth starts again. Figure 2 illustrates the growth of the congestion window. Bear in
mind that the sender still takes the minimum of the congestion window and the receiver’s
window to determine how much data is ultimately transmitted.

Figure 2: Congestion Window Adaptation
2.2 OVERVIEW OF IP

0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19 21 23

Transmission Number

C
on

ge
st

io
n

W
in

do
w

Congestion Window Threshold

2. Theoretical Background

Lab 3: Internetworking – Flow Control and TCP/IP Page 10/28
Version 1, 12/02/98

As mentioned above, internet protocol (IP) resides on layer 3 of the ISO/OSI reference
model. Its main task is to route data arriving from the transport layer through to the
destination. The main issues in IP are therefor addressing and routing. Since we will
demonstrate neither the addressing scheme nor the routing algorithm in this lab, we will
keep this section very short.

IP takes a TCP segment and adds its own header of 20 bytes on top of it. So basically, the
TCP layer ensures that the data content of its PDU is less than 65495, adds a 20-byte TCP
header and then passes the PDU down to the IP layer. At this point, another 20-byte
header is added. The main fields of the IP header are

• Source address
• Destination address
• Time-to-live (TTL)
• Header checksum
• Total length
• Type of service

Plus a few other fields which are less important for our purposes. The source and
destination addresses are both in the format standardized for IP – the famous IP-
addresses. The addresses look like this: 255.255.255.255. This address is inherently
hierarchical, sort of like a mailing address. The first few numbers typically represent the
network. The last numbers represent the host. For large networks with many hosts, only
the first three numbers are used to identify the network. This leaves nine numbers to
distinguish between the different hosts. For small networks, the first 9 numbers are used
to identify the network, and only the last three numbers are used to differentiate between
the hosts. The intermediate solution is also available: six number network identifier and
six number host identifier. The Internet can thus accommodate 126 large networks with
16 million hosts each, plus 16382 medium size networks with 65535 hosts, or 2 million
small networks with up to 254 hosts. There are, of course, some special address
sequences for broadcasts, multicast addresses or control messages. Note that each host
on the internet requires a unique address.

The time-to-live (TTL) field in the header is important for network congestion. The
routing algorithm used by the internet is local. You cannot have the full view of the entire
network. Instead, each packet is sent as a datagram, and a routing decision is made at
each router in the network. The routers inform each other about the available paths and
the congestion in the network by routing table updates. However, this leaves the
possibility of a datagram being passed around in circles between routers. Without the
TTL field, an IP packet may remain in the network indefinitely, thus adding to the network
congestion. Effectively, this field is decreased as the packet remains in the network, and
as soon as this timer expires, the packet is destroyed. Note that this only happens if the
packet has not yet reached the destination.
The remaining fields are self-explanatory. The header checksum allows each router to
determine whether the header has been corrupted during transmission. Note that only the

2. Theoretical Background

Lab 3: Internetworking – Flow Control and TCP/IP Page 11/28
Version 1, 12/02/98

header is checked. This prevents routing errors, for example when the addresses become
corrupted. The total length field indicates the length of the IP datagram. This is used to
properly handle the datagram. Finally, the type of service field allows IP to implement
simple QoS functions, for reliability or speed.

IP uses the Open Shortest Path First (OSPF) or the RIP minimum hop (based on Bellman-
Ford) routing algorithms. OSPF works on a number of distance metrics and it acts
dynamically on these. The algorithm represents the network as a directed graph, in which
each arc is assigned a metric. This metric may be based on the distance, the delay or any
other metric. OSPF then determines the weighted shortest path between the source and
the destination. This algorithm is made possible by routers exchanging routing table
updates periodically (link state updates), informing their neighbors about the state of the
network. Eventually, these table updates propagate through the network to inform all the
routers about the availability of the links and the level of congestion. Based on the
propagated information, the routing decision is then made.

3. Experiment 1

Lab 3: Internetworking – Flow Control and TCP/IP Page 12/28
Version 1, 12/02/98

3 EXPERIMENT 1

The first experiment in this lab will demonstrate the event sequence and the inefficiencies
occurring during a TELNET TCP/IP transmission. You will see how inefficient the
transmission of single characters over TCP/IP is and how Nagle’s algorithm improves the
transmission.

The model is depicted in figure 1.

Figure 3: Model Layout for experiment 1

The model is once again very simple. It demonstrates the sequence of event described
under section 2.1.4. Station A is assumed to be a terminal running an interactive editor
remotely using TCP/IP. Station B represents the mainframe where the editor runs. The
user types a single character, represented by the message source ‘TELNET’ at station A.
This character is then transmitted over the link ‘LinkA-B’ to the mainframe, station B.
Upon arrival, the mainframe executes the command sequence hidden behind the
application source ‘Window Update’. This application source first of all transmits a 40-
byte acknowledgement, then it simulates the process of the editor reading the buffer.
Following this operation, the window update is transmitted to station A. The character is
then processed by the mainframe and finally the character is echoed back to station A.

Let us describe the COMNET III model building blocks in more detail.

3. Experiment 1

Lab 3: Internetworking – Flow Control and TCP/IP Page 13/28
Version 1, 12/02/98

3.1 NODES

The two nodes in the model are called ‘Station A’ and ‘Station B’, as can be seen in figure
3. Both stations are modeled as default COMNET III processing nodes. This implies that
the nodes have infinite buffer capacities and that the processors are infinitely fast. Note
that we are once again not really interested what goes on at the nodes. The nodes simply
act as sources and destinations of network traffic. Our goal is to observe how much
traffic is generated by this event sequence. We therefore do not collect any statistics on
the nodes and therefore retain the default values.

3.2 LINKS

There is only one link in the model: ‘LinkA-B’. This link provides the connectivity
between station A and station B. It is configured as a 128 Kbps point-to-point link. All
other parameters are left at their default values. This means that no propagation delay is
modeled. Also, no data-link protocol is modeled. The protocol stack in the simulation is
thus determined by the transport protocol, as will be described below. The transport
protocol generates packets, which are then transmitted directly by the link, without being
further segmented into frames, or without any additional data link overhead added. Recall
that a point-to-point link has a first-come-first-server (FCFS, also known as FIFO) MAC
policy. This means that all packets are transmitted in the sequence presented by the
transport protocol.

3.3 M ESSAGE SOURCES

There is only one message source in the model: ‘TELNET’. This message source only
generates one message at simulation time 0.0. No other messages are generated, since the
inter-arrival time is left at the value ‘none’. The message has a size of 1 byte. You should
verify this by double-clicking on the message source and selecting the tab ‘Messages’.
The destination of the source is set to ‘Random Neighbor’. Since there is only one
neighbor in the model, station B, the message is automatically transmitted to station B.
Finally, the 1-byte message is sent using the generic transport protocol.

3. Experiment 1

Lab 3: Internetworking – Flow Control and TCP/IP Page 14/28
Version 1, 12/02/98

Figure 4: Scheduling parameters for the 1-byte TELNET message

3.4 TRANSPORT PROTOCOL

The transport protocol in this simple model represents a part of the TCP/IP protocol
described in section 2. As you can see from figure 5, the maximum data content of a
packet is set to 65495 bytes. Each packet is given an overhead of 40 bytes, which
represents both the IP and the TCP headers. The packet identifier, used by COMNET III
internally for routing and packet processing purposes at the nodes, is set to IP. This is not
a critical parameter, but has been set here for clarification purposes.

Note that the acknowledgement bytes and the acknowledgement priority both take the
value 1. We do not really model the acknowledgement process automatically in this
model. If you click on the tab ‘Flow control’, you will see that the algorithm is set to
‘none’. This means, that COMNET III will not automatically generate any
acknowledgements. The reason for this is very simple: we wanted to demonstrate the
sequence of events at the receiver side, and so we are modeling all the acknowledgements
explicitly using the application source ‘Window Update’. As you will see in the next
section, the acknowledgements are modeled using answer commands. In this way, you
can trace the model much better, since it is explicitly shown when and what
acknowledgements are modeled. This would be much less obvious if we let COMNET III
automatically generate the ACKs.

3. Experiment 1

Lab 3: Internetworking – Flow Control and TCP/IP Page 15/28
Version 1, 12/02/98

We have made one further simplification in this model: we do not model the connection
setup and tear-down events. This is an assumption in this model. We pretend that the
virtual circuit has already been established between the sources TCP and the receivers
TCP protocol.

To summarize the protocol stack: the message source generates a single byte message.
This message is then handled by the transport protocol. Since its maximum packet size is
not violated, the 1-byte message is simply taken as a packet, and a 40-byte header is
added. This packet is then directly transmitted on the point-to-point link, without any
additional segmentation or overhead at the data link layer.

Figure 5: Transport Protocol parameters

3.5 APPLICATION SOURCES AND GLOBAL COMMANDS

The only other source in this model is an application source at station B. You have seen
such application sources before in lab 4. They allow you to model event sequences in
more detail at a node. In this case, the source is triggered by the arrival of a message, as
you can see from the scheduling parameters. The only active button on the tab
‘Scheduling’ is called ‘Edit Received Messages’. If you click on it, you will see that a
single message with the text ‘TELNET’ has to be received to trigger this message. In this
way, the message source ‘TELNET’ in our model activates the application source
‘Window Update’.

Once this source has been triggered, the following commands will be executed.

3. Experiment 1

Lab 3: Internetworking – Flow Control and TCP/IP Page 16/28
Version 1, 12/02/98

Figure 6: Command sequence in the application source ‘Window Update’

First of all, an acknowledgement is generated using a global answer command. The ACK
has no data bytes, and so a single packet is returned to station A, which is basically just
the packet overhead. The second command models the operation of the editor at station
B reading the single byte. It is modeled as a COMNET III processing command. The
processing command is modeled arbitrarily as a 5-ms delay, during which the station’s
CPU is utilized. Following the processing command, another packet is send to station A,
representing the window update. Recall that the TCP protocol in station B advertises the
available buffer space. Since the single byte has just been read, the station generates this
packet to indicate to station A that it may transmit another byte. Again, a COMNET III
answer command is used here. In fact, its parameters are identical to the parameters used
for the command ‘SendAck’. No data bytes are transmitted, only the 40 bytes overhead.
Following the ‘SendWindowUpdate’-command, another processing delay is incurred at
the mainframe station B. This delay models the processing time to process the character.
In this case, an arbitrary delay of 10 ms elapses before the CPU is available again and
before the last command in the sequence is executed. This last command models the
echoing of the 1-byte character to the screen of station A. It is again modeled as a 1-byte
message, which follows the generic transport protocol and is thus given a 40-byte packet
overhead.

3. Experiment 1

Lab 3: Internetworking – Flow Control and TCP/IP Page 17/28
Version 1, 12/02/98

Note that all commands are defined as ‘GLOBAL’. This implies that they could be used
in any application source attached to any of the processing nodes in the model. You can
inspect the details of these commands by clicking on the ‘Global’-button, selecting the
appropriate command, and then clicking on ‘Edit’.

3.6 NAGLE ’S ALGORITHM

To demonstrate the difference between the inefficient simulation and Nagle’s algorithm,
consider the alternative command sequence. This command sequence assumes that the
processing delays incurred at station B are less than the delay specified by Nagle’s
algorithm. As a result, rather than sending the ACK immediately, the acknowledgement is
delayed at the receiver. During this delay, the editor reads the single byte from the
receiver’s buffer. Also, the editor processes the character. So by the time these two
processing delays have finished, a single packet can be transmitted back to station A. This
packet is effectively the echoing of the character. However, it also carries the piggy-
backed acknowledgement for the received packet, and in the window field of the TCP
header, the 1-byte receiver window is also indicated. Thus, the transmission only requires
a single 4-byte packet, rather than two 40-byte packets and one 41-bytes echoed packet.

Figure 7: Command sequence for Nagle’s algorithm

3. Experiment 1

Lab 3: Internetworking – Flow Control and TCP/IP Page 18/28
Version 1, 12/02/98

To Do: Run the simulation of the model ‘NagleA’ and ‘NagleB’. Provide an
interpretation of the main results, focussing on the transmission delays and
the channel utilization.

Change the inter-arrival time of the message source ‘TELNET’ from
‘none’ to 0.01 sec. This simulates the case where a 1-byte message arrives
every 10 ms. Run both simulations again and compare the results. Note
that we do not assume that the user at station A types 100 characters a
second. These values are simply taken for demonstration purposes.

Finally, change the message source ‘TELNET’ to transmit 2 byte packets
every 0.02 seconds. This represents Nagle’s algorithm where the user’s
traffic at station A is buffered until the ACK returns, and then the buffered
bytes are transmitted in a single packet. By how much does the link
utilization decrease? Does this represent an increase or a decrease in
efficiency?

Provide a brief (max. 2 pages, type-written) report with your conclusions
of this experiment.

4. Experiment 2

Lab 3: Internetworking – Flow Control and TCP/IP Page 19/28
Version 1, 12/02/98

4 EXPERIMENT 2

The second experiment in this lab demonstrates the slow-start function for TCP/IP. The
specific purpose of this experiment is to get you to examine the initial seconds when a
TCP/IP connection is established and starts to transmit data. In particular, you will be
asked to experiment with different values for the flow control window. The model for this
experiment is shown in figure 8. The model layout is again kept very simple to make it
easier for you to explore all the model building blocks in detail. As you can see from
figure 8, the model consists of two processing node building blocks and a new building
block, a network device node. The network device node represents a packet switch in this
model. Each of the processing nodes are connected to the packet switch through a point-
to-point link. There is only one message source generating traffic in the model. It is
connected to the source node, and destined for the sink node. Let us describe each of the
building blocks in more detail.

Figure 8: Model Layout for Experiment 2

4.1 NODES

The model consists of two processing nodes and a single COMNET III network device
node. The processing nodes are called ‘Source’ and ‘Sink’ respectively. As you can see,
the names indicate their function in the simulation. The node ‘Source’ represents the place
in the network where traffic originates. Similarly, the node ‘Sink’ represents the place in
the network where traffic terminates. Both of these nodes retain their default values

4. Experiment 2

Lab 3: Internetworking – Flow Control and TCP/IP Page 20/28
Version 1, 12/02/98

(infinite buffer space, infinitely fast processors), since we are not interested in their
statistics.

The third node in this model is a COMNET III network device node. Its internal
architecture is depicted in figure 9.

Figure 9: Internal Architecture of a COMNET III Network Device Node

The network device is an extension to the COMNET III processing node. Its similarities
are:

• Input and output ports with processors
• A CPU for processing

These building blocks function as you already know from the processing node. In
addition, the network device node has a number of busses which connect the ports to the
CPU. During a switching operation, a packet not only incurs the queuing delay at the
ports and the processing delays at the ports and the CPU. Each packet also incurs a bus
delay, which is the time it takes the bus to transmit a packet from the ports to the CPU
and vice versa. Note that the bus speed is given in Mbps. It acts like an extremely fast
internal link without propagation delay.

The second difference is the line-card. Input and output buffers are physically located on a
network card, which is called the ‘line card’ in COMNET III. When a packet arrives at an
input buffer and is destined for an output buffer located on the same link, the packet is not
switched through the CPU. Hence, the packet does not incur the bus delay and the CPU
delay. Instead, it only incurs the queuing delays at the ports, and the port processing
delays. This is how most internet routers function.

CPU

Line CardPort

Internal Busses

Port Processor

4. Experiment 2

Lab 3: Internetworking – Flow Control and TCP/IP Page 21/28
Version 1, 12/02/98

For the purpose of this experiment, we will not make use of these functions at all. We
simply want to introduce the network device building block here and make you familiar
with it. Like with the other nodes in this model, we retain the default values, which are
infinite fast CPUs at the ports and inside the switch, as well as infinite buffers. The
network device simply acts as a place where packets are switched between point-to-point
links.

4.2 LINKS

The two links in the model are again point-to-point links. They connect the source node
to the switch, and the switch node to the sink. In this way, they allow packets to travel
from the source to the sink.

The bandwidth capacity of both links is set to 512 Kbps. Again, we are not modeling a
data-link protocol. We simply create messages which are segmented into packets and
immediately transmitted, without any further segmentation or without adding any
additional overheads.

4.3 M ESSAGE SOURCES

There is only one message source in the model. It is called ‘TCPMessage’ and only
generates a single message, which arrives 0.5 seconds into the simulation. The message
size is set to 1000 packets. This is done simply to ensure that a sufficient number of
packets are supplied during the simulation time of 2 seconds such that the source never
runs out of packets. The destination for the source is set to the ‘Random List’-algorithm,
which means that the button ‘Edit Destination List’ is enabled. If you click on this button,
you will see that the node ‘Sink’ is the only destination in the model.

Note that the option ‘Random Neighbor’ would only transmit the packets to the switch.
A neighbor is defined in COMNET III as any node which is one hop away, and so the sink
node is not a neighbor. The only neighbor in this case would be the switch.

The packets are set to follow the TCP/IP Sun default parameter set, which we will now
describe.

4.4 TRANSPORT PROTOCOL

The transport protocol ‘TCP/IP Sun default’ defines that each packet has a maximum data
content of 1024 bytes. Each packet is given an overhead of 40 bytes, which represents the
TCP and IP overheads of 20 bytes each. The size of the acknowledgement is also set to
40 bytes.

The flow control for this transport protocol is set to ‘TCP/IP window’, which implements
the enhanced sliding window flow control algorithm plus the slow-start function which is
unique to TCP/IP. In particular, if you click on the ‘..’-button next to the field

4. Experiment 2

Lab 3: Internetworking – Flow Control and TCP/IP Page 22/28
Version 1, 12/02/98

‘DEFAULT’ under the tab ‘Flow Control’, and then click on ‘Edit’ to open up the
parameters, you will find parameters to manipulate the adaptive timeout function and the
error control function of TCP/IP. Furthermore, the tab ‘TCP/IP’ notifies you that for this
flow control algorithm the slow-start function is indeed implemented, but that it needs no
parameters for you to set.

For this experiment, we have disabled the adaptive timeout function of the flow control
algorithm. The reason is that we want to focus on the demonstration of the slow-start
function, and thus we do not want any other function to distort the demonstration. For
this reason you will see the parameter ‘Retransmission timeout’ under the tab ‘Adaptive
Timeout’ set to the value ‘Constant’. All other parameters on the tab then become
obsolete.

Since we are not modeling limited buffers nor any link errors in this experiment, a packet
will never become corrupted. The parameters under the tab ‘Error control’ are thus not
important. If you are really interested, you may want to check the COMNET III manual
for a description of the fast-recovery error control algorithm.

To Do: The goal of this experiment is for you to see the impact of the TCP/IP
slow-start function. For this reason, you are required to run the model
under the following scenarios

• Select the option ‘Sliding Window (Enhanced)’ for the flow control tab
for the transport protocol. This requires you to click on the menu
‘Define / Protocols’, to edit the transport protocols, to edit the
protocol ‘TCP/IP Sun default’, to click on the tab ‘Flow Control’, and
then to select ‘Sliding Window (Enhanced)’ as the flow control
window algorithm. Set the window size to 16.
• You can only observe the operation of the windowing algorithm by

plotting the level of the output port buffer at the source node.
Since all the packets are dumped into this buffer instantly when they
are created, this level indicates how the window algorithm sends
packets. You should verify that the real-time window for the
output port buffer at the node ‘Source’ is activated. To do so, click
on the arc connecting the node ‘Source’ with the link ‘SourceLink’.
You will see the dialog box depicted in figure 10. If you click on
the button ‘Output’ and then on the button ‘Statistics’, you will see
that the option ‘Real-time Port Buffer Level (ON)’ is set. This will
automatically show you the level of this particular buffer while the
simulation is running.

• Run the simulation for 2 seconds.
• Change the flow control algorithm for the transport protocol back to

‘TCP/IP window’. You should follow the same steps as outlined above
to do this.
• Make sure that the window size is again set to 16

4. Experiment 2

Lab 3: Internetworking – Flow Control and TCP/IP Page 23/28
Version 1, 12/02/98

• Run the simulation for 2 seconds.
• What can you observe? Can you find any interesting statistics in

the reports to support your observations?
• Now run the same simulation for 2 seconds with values for the window

size of 2, 4, 8, 32 and 64.

• Observe how the port buffer level builds up.

Figure 10: Properties of the output port of link ‘SourceLink’ at the node ‘Source’

Provide a brief (max. 1 page, type-written) report, summarizing your
findings of this experiment.

5. Experiment 3

Lab 3: Internetworking – Flow Control and TCP/IP Page 24/28
Version 1, 12/02/98

5 EXPERIMENT 3

This experiment is simply an extension of the last one. We are now going to increase the
simulation time and introduce some congestion in the network. You will see how adaptive
the TCP/IP flow control algorithm is and how the flow control window varies as
congestion builds up or decreases.

As you can see from figure 11, which shows the model layout, the network topology is
identical to the previous experiment. However, some of the parameters for the nodes have
now been changed such that congestion builds up. Let us describe these changes in detail.

Figure 11: Model layout for experiment 3

5.1.1 NODES

The parameters for the node ‘Source’ do not change at all. The other two nodes are given
their own parameter sets, which take on the name of the node.

For example, the node ‘Sink’ now also has a parameter set called ‘Sink’. This parameter
set defines a packet processing delay of 10 ms per packet. You can verify this by double-
clicking on the node, then clicking on the ‘..’-button next to the field parameters, editing
the parameter set ‘Sink’, and finally clicking on the button ‘Protocol dependent processing
times’. This brings up a list of all the protocol IDs used in the model. You should have an
entry for IP in the list. Clicking on the ‘Edit’-button again shows you that each packet

5. Experiment 3

Lab 3: Internetworking – Flow Control and TCP/IP Page 25/28
Version 1, 12/02/98

with the label ‘IP’ now incurs a processing delay of 10 ms at this node. All other
parameters are left at their default values.

Similarly, the node ‘Switch’ now has a parameter set called ‘Switch’. This parameter set
also defines a processing delay for IP packets, which has been set arbitrarily to 20 ms per
packet. You should follow the steps described in the last paragraph to verify this setting.

5.1.2 LINKS

The link parameters have been given the a higher link speed of 51200 Kbps. This ensures
that the packets are almost instantly dumped into the input buffer of the switch, which is
intended to be the bottleneck in the simulation.

5.1.3 PORTS

Only one port has been given particular parameters. It is the input port to the switch from
the link ‘SourceLink’. You can get to it by double-clicking on the arc between the link
icon for the ‘SourceLink’ and the node ‘Switch’. A dialog box as in figure 10 will appear
on the screen. If you click on the button ‘Input…’, you will see that the buffer size has
been limited to 10 packets. This value has been chosen because the flow control window
is set to 16. It is therefore quite likely that this buffer will become congested!

5.1.4 M ESSAGE SOURCES

The message size has been changed to only 500 packets.

5.1.5 TRANSPORT PROTOCOL

The transport protocol now implements all the functions of the TCP/IP protocol. The
adaptive timeout parameters under the tab ‘Adaptive Timeout’ now use the algorithm
‘RTT+M*Deviation’. However, this algorithm will be the focus of this experiment. You
will be asked to change the algorithm and observe the differences in the transmission
window that results from these changes. Recall that you have to click on the ‘..’-button
next to the field ‘Parameters’ when you are in the main transport protocol dialog box, and
then click on ‘Edit’ to access the enhanced transport protocol parameters.

Through this experiment, we will assume that the window size is initialized to 16 packets.

The error control parameters still remain the same.

To Do: Run the simulation for 30 seconds for the following algorithms
• ‘RTT+M*Deviation’
• ‘RTT*M’
• ‘Sliding Window (Enhanced)’ with default parameters (this effectively

disables the slow-start function)

5. Experiment 3

Lab 3: Internetworking – Flow Control and TCP/IP Page 26/28
Version 1, 12/02/98

• ‘Sliding Window’
• no flow control

Comment on the message transfer delays (i.e. the time to completely send a
500 packet message from the source to the sink) and on the losses in a brief
(max. 1 page, type-written) report.

6. Deliverables

Lab 3: Internetworking – Flow Control and TCP/IP Page 27/28
Version 1, 12/02/98

6 DELIVERABLES :

Experiment 1:
• Print-out the reports generated by the simulation.
• Provide a screen-shot of your model.
• Report

Experiment 2:
• Print-out of the reports.
• Provide a screen-shot of your model.
• Report.

Experiment 3:
• Print-out of the reports.
• Provide a screen-shot of your model.
• Report.

Note: All reports have to be in letter format. All interpretations have to be typed.

Marking Scheme:

Interpretations: Experiment 1 - 35%
Experiment 2 - 35%
Experiment 3 - 15%

Format: 15% (this includes completeness, clarity, form)

Page 28/28
Version 1, 12/02/98

END OF LABORATORY 3

