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Abstract—Recent server collapse in carrier networks (e.g., 
Skype outage) indicates that message retransmissions triggered 
by various SIP timers make the overload worse. The built-in 
overload control mechanism cannot handle overload conditions 
effectively. Since the retransmissions stimulated by the overload 
introduce more overhead rather than reliability, we suggest 
mitigating the overload by reducing the retransmission rate. We 
propose a novel algorithm to detect the potential overload at the 
downstream servers and control message retransmission rate 
from upstream servers to mitigate the overload at the 
downstream servers. We investigate two typical overload 
scenarios caused by demand burst and server slow down 
respectively. OPNET simulations demonstrate that (1) the 
proposed solution can help the overloaded downstream server to 
cancel the short-term overload quickly after it resumes its normal 
operation status; (2) without the overload control algorithm 
applied, the overload at the downstream server may propagate or 
migrate to its upstream servers. 

I. INTRODUCTION 

Internet telephony is experiencing rapidly growing 
deployment due to its lower-cost telecommunications 
solutions for both consumer and business services. Session 
Initiation Protocol (SIP) [1] has become the main signaling 
protocol to establish the multimedia sessions for numerous 
Internet telephony applications such as Voice-over-IP, instant 
messaging and video conferencing. 3rd Generation Partnership 
Project (3GPP) has adopted SIP as the basis of its IP 
Multimedia Subsystem (IMS) architecture [2-4]. 

SIP introduces a retransmission mechanism to maintain its 
reliability [1, 5]. In practice, a SIP source uses timeouts to 
detect message losses. One or more retransmissions would be 
triggered if the corresponding reply message is not received in 
a predetermined time interval. 

SIP RFC 3261 [1] suggests that the SIP retransmission 
mechanism should be disabled for hop-by-hop transaction 
when running SIP over Transmission Control Protocol (TCP) 
to avoid redundant retransmissions at both SIP and TCP layer 
[1]. However, nearly all vendors choose to run SIP over UDP 
(User Datagram Protocol) instead of TCP for the following 
reasons [4, 6-18]: (1) The overhead of state management such 
as three-way handshake prevents TCP from real-time 
application which is a critical requirement for SIP protocol; (2) 
The complex congestion control mechanism of TCP aims at 
preventing congestion caused by bandwidth exhaustion, thus it 
provides little help to SIP overload caused by CPU constraint; 
(3) TCP only provides reliability at transport layer, but SIP 
messages can still be dropped or corrupted while being 
processed at application layer. 

As SIP network is reaching large scales and serving 
increasing number of users, periods of heavy load may happen 

regularly. When a SIP server is experiencing a heavy load, it 
may create an extremely long queuing delay and trigger 
unnecessary message retransmissions, thus consuming more 
memory and increasing CPU loads of the SIP server. This may 
cause the network to be severely overloaded and suffer from 
potential network collapse [4, 6-16]. 

RFC 5390 [17] identified the various reasons that may 
cause server overload in a SIP network. These include but not 
limited to poor capacity planning, dependency failures, 
component failures, avalanche restart, flash crowds, denial of 
service attacks, etc. In general, anything that may trigger a 
demand burst or a server slowdown can cause server overload 
and lead to server crash. 

When a SIP receiving server detects the overload, it 
terminates some transactions by sending “503 service 
unavailable” messages to the sending servers. Such built-in 
overload control mechanism has two limitations: (1) The cost 
of rejecting a session is comparable with the cost of serving a 
session [10]; (2) A 503 response only terminates a transaction. 
The overloaded server may continue to receive subsequent 
requests for session establishment, thus exhausting its limited 
CPU resources to reply more 503 messages and adding to its 
overloaded state [6]. 

The contributions of this paper are: (1) Using difference 
equations to analyze the impact of the retransmission 
mechanism on the queuing dynamics of an overloaded 
downstream receiving server and its upstream sending server; 
(2) Using retransmission timer queue size to detect the 
overload and Proposing a novel heuristic algorithm to mitigate 
the overload by controlling retransmission rate; (3) Performing 
OPENT simulations under two typical overload scenarios to 
validate the efficiency of our overload control algorithm. 

II. RELATED WORK 

Recent collapses of SIP servers in carrier networks (e.g., 
Skype outage [19]) has motivated numerous overload control 
solutions (e.g., [6-16]). Three window-based feedback 
algorithms were proposed to adjust the message sending rate 
of upstream SIP servers based on the queue length [10]. Both 
centralized and distributed overload control mechanisms for 
SIP were investigated in [9]. Retry-after control, processor 
occupancy control, queue delay control and window based 
control were proposed to improve goodput and prevent 
overload collapse in [6]. However, these overload control 
proposals suggested that the overloaded receiving server 
advertises its upstream sending servers to reduce their sending 
rates. 

Such pushback control solution would increase the queuing 
delays of newly arrival original messages at upstream servers, 



 
 

which in turn cause overload at the upstream servers. Overload 
may thus propagate server-by-server to sources and block 
large amount of calls which means the revenue loss for 
carriers. 

III. SIP OVERVIEW 

To briefly describe the basic SIP operation, we only 
consider originating User Agent (UA), Proxy-server (P-server) 
and terminating UA. Fig. 1 depicts a typical procedure of a 
session establishment. To set up a call, an originating UA 
sends an “Invite” request to a terminating UA via two P-
servers. The P-server returns a provisional “100(Trying)” 
response to confirm the receipt of the “Invite” request. The 
terminating UA returns a “180(Ringing)” response after 
confirming that the parameters are appropriate. It also evicts a 
“200(OK)” message to answer the call. The originating UA 
sends an “ACK” response to the terminating UA after 
receiving the “200(OK)” message. Finally the call session 
creates the media communication between the originating UA 
and the terminating UA. The “Bye” request is generated to 
close the session thus terminating the communication. 
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Fig. 1. A typical procedure of session establishment. 

When an overload happens, the hop-by-hop Invite-
100(Trying) transaction is the major workload contributor due 
to its role for call setup and its hop-by-hop retransmission 
mechanism [9]. Given the proportionate nature and the general 
similarity of the retransmission mechanisms between the 
“Invite” and “non-Invite” messages in a typical session [1], we 
will focus on the hop-by-hop Invite-100(Trying) transaction in 
this paper. For each hop, the sender starts the first 
retransmission of the original message at T1 seconds, and the 
time interval doubles after every retransmission (exponential 
back-off), if the corresponding reply message is not received. 
The last retransmission is sent out at the maximum time 
interval 64xT1 seconds. Thus there is a maximum of 6 
retransmissions. The default value of T1 is 0.5s. 

IV. SIP OVERLOAD CONTROL ALGORITHM 

When the message arrival rate to a server exceeds its 
message processing capacity, overload happens and its queue 
builds up. Then the long queuing delay would trigger 
unnecessary retransmissions from its upstream servers to make 
the overload worse. Therefore, it is necessary to investigate the 

impact of retransmissions on the queuing dynamics (e.g., [15, 
20]), before we propose our novel algorithm to control 
retransmission rate. 
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Fig. 2. SIP network topology with an overloaded downstream receiving Server 
2 (which is marked with diagonal lines) and its upstream sending Server .1 

A. Queuing dynamic of SIP retransmission mechanism 

We consider a SIP network which consists of an 
overloaded downstream receiving Server 2 and its upstream 
sending Server 1 (as shown in Fig. 2). We use difference 
equations to describe the queuing dynamics of Server 1 and 
Server 2 respectively, by making the following assumptions 
according to SIP RFC [1]: 

(a) The SIP RFC [1] does not specify the queuing 
discipline to be deployed by a SIP server. We assume that a 
SIP server maintains a First-In-First-Out (FIFO) queue for 
messages arriving at different time-slots. All request messages 
enter the tail of the message queue [9]. This FIFO queuing 
model reflects the common practice by most vendors today; 

(b) Response messages enter the head of message queue, 
because delaying the processing of response messages may 
trigger unnecessary retransmissions to exacerbate the overload; 

(c) To study the interactions between overloaded 
receiving Server 2 and its upstream sending Server 1, we 
assume that the upstream servers of Server 1 and the 
downstream servers of Server 2 have sufficient capacity to 
process all arrival messages without any delay, while Server 2 
is the most overloaded server in the network; 

(d) Practical buffer sizes vary with the actual service 
rates and system configuration plans. With the memory 
becoming cheaper and cheaper, typical buffer sizes are likely 
to become larger and larger. The buffer sizes for all servers are 
assumed to be large enough to hold all the incoming messages. 
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Fig. 3. Queuing dynamics of an overloaded Server and its upstream server. 

Fig. 3 depicts the queuing dynamics of Server 1 and Server 
2. There are two queues at each server: one to store the 
messages and the other to store the retransmission timers. The 
downstream servers of Server 2 have sufficient capacity to 
process all the arrival messages so that no retransmissions will 
be generated by Server 2 for its upstream servers. Thus Fig. 3 
did not show the timer queue of Server 2. 

We consider the overloaded downstream Server 2 first. We 
can obtain the queue size q2(n+1) for the message queue of 



 
 

Server 2 at next time slot n+1 based on the information at the 
current time slot n, i.e., 

q2(n+1)=[q2(n)+2(n)+r2(n)+2(n)−2(n)]+,                            (1) 
where at the current time slot n at Server 2, q2(n) denotes the 

queue size; 2(n) denotes the arrival original request messages; 
r2(n) denotes the arrival retransmitted messages corresponding 

to 2(n); 2(n) denotes the response messages sent by 

downstream servers; 2(n) denotes the processed messages. 
There are two queues at Server 1: one to store the messages 

and the other to store the timers. Like Eq. (1), we can obtain 
queuing dynamics for message queue of Server 1 as follows, 

q1(n+1)=[q1(n)+1(n)+r1(n)+r'2(n)+1(n)−1(n)]+,                  (2) 
where at the current time slot n at Server 1, q1(n) denotes the 

queue size; 1(n) denotes the aggregated arrival original 
request messages, which can be arbitrary stochastic process 
(e.g., Poisson, Pareto, Gamma or Lognormal distribution); r1(n) 
denotes the aggregated retransmitted messages corresponding 

to 1(n); 1(n) denotes the response messages corresponding to 

2(n); 1(n) denotes the processed messages; r'2(n) denotes the 

retransmissions generated by Server 1 corresponding to 2(n). 
Let us consider an overload scenario that Server 2 

performs its routine maintenance and reduces its processing 
capacity. The original message rate is larger than the service 
rate, and the queue size q2 increases slowly. After a short 
period of overload, the queuing delay of Server 2 is long 
enough to trigger the retransmissions r'2 which enter the queue 

of Server 1. If the total new message arrival rate of 1, 1 and 

r'2 is larger than the service rate 1, the queue size q1 would 
increase (as described by Eq. (2)) and may trigger the 
retransmissions r1. The retransmissions r1 would enter Server 
1 to increase the queue size q1 more quickly, thus propagating 
the overload from Server 2 to Server 1. On the other hand, 
after queuing and processing delay at Server 1, the 
retransmitted messages r'2 depart Server 1 and enter Server 2 
as r2 to increase the queue size q2 more quickly (as described 
by Eq. (1)), thus making the overload at Server 2 much worse. 

B. Overload Control Algorithm 

As the retransmitted messages r'2 may increase queue sizes 
at both Server 1 and Server 2 and bring the overload to both 
servers, our goal for mitigating the overload is to control the 
retransmission rate r'2. To achieve our target, we calculate a 
retransmission probability p to determine whether to 
retransmit an original message when its retransmission timer 
fires or expires. The timers are ordered by their expiration 
periods in the retransmission timer queue. 

Dynamics of retransmission timer queue qr1 

After Server 1 has forwarded the original messages 2 to 
the downstream Server 2, it inserts the corresponding 
retransmission timers into the retransmission timer queue qr1. 

The response messages 1 remove the retransmission timers 

corresponding to 2 from the timer queue qr1. 
When the retransmission timer queue size qr1 is larger than 

its maximum threshold qr1max, the overload at one or multiple 
downstream servers is anticipated. This indicates that Server 2 

delays the processing of 2 and the generation of 

corresponding 1. Thus we use the retransmission timer queue 
size qr1 to detect the overload, and propose our novel overload 
control algorithm as depicted by Fig. 4. 
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pmin    : Minimum retransmission probability
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Fig. 4. Overload control algorithm for controlling retransmission rate 

C. Setting of Overload Control Parameters 

There are two dynamically tuning parameters and one 
fixed parameter in our overload control algorithm: minimum 
retransmission probability pmin, minimum threshold qr1min for 
the retransmission timer queue size qr1, and maximum 
threshold qr1max for the retransmission timer queue size qr1. We 
will discuss our parameter setting strategy as follows. 

Setting pmin 

SIP provides retransmission to maintain its reliability due 
to the message loss. The Internet Traffic Report indicates that 
current global packet loss statistic averaged 8% packet loss 
[21]. Since some messages may be corrupted while being 

processed at application layer, average =10% message loss is 
assumed. Thus we suggest maintaining a minimum 
retransmission probability pmin as        pmin=10%.             (3) 
The non-retransmission probability of all 6 retransmissions for 

a lost message is (1pmin)
6, thus the minimum retransmission 

probability of a lost message becomes p=1(1pmin)
6 

=1(110%)647%. This indicates that in order to mitigate the 

overload, maximum (1p)=53% average message loss cannot 
be recovered after 6 retransmissions when the overload is 
anticipated at the downstream servers. This will cause 

maximum *(1p)=10%*53%5% calls to be rejected. 

Setting qr1min and qr1max 

Since Server 1 only generates the retransmissions for the 
original messages whose retransmission timers fire or expire 
in the timer queue qr1, and a queuing delay less than the 1st 
retransmission timer T1 at Server 2 will not trigger any 
retransmissions, we suggest minimum threshold qr1min as 

qr1min='1avg*T1,                                                                        (4) 

where '1avg is the moving average original message departure 
rate of Server 1. In our scenario, the original message 

departure rate '1 of Server 1 is equal to the original message 

arrival rate 2 of Server 2. We can use an exponential 

weighted moving average filter to obtain '1avg as 

'1avg(n)=(1− w)'1avg(n−1)+ w '1(n),                                   (5) 

where w is a filter weight. A good value for the averaging 

filter is recommended as 0.002 [22], i.e., w=0.002. The initial 

value of '1 is set as the mean service capacity C1 of Server 1. 



 
 

We define the ratio between maximum threshold qr1max and 

minimum threshold qr1min as α, i.e., qr1max=αqr1min, and α1. 
Based on our numerous experiments, we suggest setting α as 3, 

i.e., qr1max=3qr1min='1avg*3T1='1avg*(T1+2T1). This means that 
the retransmission probability p reaches its minimum value 
pmin when the queuing delay of the original messages in the 
timer queue is longer than 2nd retransmission timer. 

Quite different from fixed packet queue thresholds for 
most active queue management algorithms (e.g., RED [22]) 
that provide end-to-end congestion control for data traffic, 
both minimum threshold qr1min and maximum threshold qr1max 
for retransmission timer queue are adaptively tuned by the 

moving average original message departure rate '1avg to 
achieve hop-by-hop overload control for signaling traffic. 

V. PERFORMANCE EVALUATION AND SIMULATION 

In order to validate our overload control algorithm, we 
perform OPNET simulation based on the SIP network 
topology depicted by Fig. 2. Four originating servers 
generated original request messages with equal rate, and then 
sent them to four terminating servers via two proxy servers 
(i.e., Server 1 and Server 2). Currently there is no 
measurement result for the workload in the real SIP networks. 
Since Poisson distribution has been widely adopted in existing 
research works (e.g., [10]), our message generation rates are 
Poisson distributed. The message service time of each server is 
exponentially distributed. Since processing a response 
message takes much less time than processing a request 
message, we denote β as the ratio of the mean processing time 
of a response message to that of a request message and set β as 
0.5. We assume that the mean service capacity of a Proxy 
server is 1000 messages/sec measured based on the processing 
time of request message, i.e. C1=C2=1000 request messages/s. 
That is, the mean processing times for a request message and a 
response message are 1ms and 0.5ms respectively. The mean 
service capacity of an originating server or a termination 
server is equal to 500 request messages/sec. The total message 

service rate  is bounded by the service capacity C at each 

server, i.e., ≤C. The average message loss probability is 10%. 
We consider two typical overload scenarios: (1) Overload 

at Server 1 due to a demand burst; (2) Overload at Server 2 
due to a server slowdown. The simulation period is 90s. In 
each scenario, we conducted our simulations with overload 
control algorithm and without overload control algorithm 
separately. In all the simulation plots, we use “OLC”/“NOLC” 
to indicate that overload control algorithm “was”/“was not” 
applied to all servers in the SIP network. 

A. Overload at Server 1 

In this scenario, the mean message generation rate for each 

originating server was 200 messages/sec (i.e., 1=40=800 

messages/sec, emulating a short surge of user demands) from 

time t=0s to t=30s, and 50 messages/sec (i.e., 1=40=200 

messages/sec, emulating regular user demands) from time 

t=30s to t=90s. The mean service capacities of two proxy 

servers were C1=C2=1000 messages/sec. 

Figs. 5 and 6 show the dynamic behaviour of overloaded 

Server 1 and one of its upstream originating servers. Without 

overload control algorithm applied, it is easy to see from Fig. 

5(a) that Server 1 became CPU overloaded immediately and 

the overload deteriorated with time going, leading to the 

eventual crash of Server 1. Since the aggregate service 

capacity of four originating servers was larger than that of 

proxy Server 1, the queue size of each originating server 

decreased slowly (see Fig. 5(b)) after new original message 

generation rates decreased. 
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(b) 

Fig. 5. (a) Queue size q1 (messages) of Server 1 versus time. (b) Queue size q0 
(messages) of an originating server versus time. 
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Fig. 6. (a) Moving average original message rate 1 (messages/sec) of Server 1 
versus time. (b) Moving average retransmission rate r1 (messages/sec) for 
Server 1 versus time. 

Our overload control algorithm made the queue size of 

Server 1 increase slowly during the period of the demand burst, 

and cancelled the overload at Server 1 within 25s after the new 

user demand rate reduced at time t=30s (see Fig. 5(a)). 

B Overload at Server 2 

In this scenario, the mean server capacities of the two 
proxy servers were C1=1000 messages/sec from time t=0s to 
t=60s, C2=100 messages/sec from time t=0s to t=30s, and 
C2=1000 messages/sec from time t=30s to t=90s. The mean 
message generation rate for each original server was 50 
messages/sec. When there were no queuing delays at all 
servers in the beginning, the SIP traffic enters Server 1 with 

1=200 messages/sec, and then enters Server 2 with 2=200 
messages/sec. 

Without overload control algorithm applied, Figs. 7 and 8 
demonstrate the following phenomena: (1) Server 2 became 
overloaded first, which was followed by a later overload at 
Server 1, i.e., the overload propagation which may cause the 
widespread server crashes. (2) After Server 2 resumed its 
normal service at time t=30s, Server 1 and Server 2 had the 
same service capacity. As Server 2 processed the residual 
messages in the queue and fed back response messages to 
Server 1 more quickly, the response rate of Server 1 increased 
sharply (see Fig. 8(a)). Server 1 had to process part of r1 which 
would not enter Server 2, the total arrival rate at Server 2 was 
less than its service capacity. Therefore the queue at Server 2 
started going down. Eventually the overload at Server 2 was 



 
 

cancelled at time t64s, while the overload at Server 1 
persisted due to its higher arrival rate of aggregated request 
messages (see Figs. 7 and 8(a)). 
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Fig. 7. (a) Queue size q1 (messages) versus time. (b) Queue size q2 (messages) 
versus time. 
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Fig. 8. (a) Moving average retransmission rate r1 (messages/sec) for Server 1 

and moving average response rate 1 (messages/sec) of Server 1 versus time. 

(b) Moving average original message rate 2 (messages/sec) of Server 2 and 

moving average retransmission rate r2 (messages/sec) for Server 2 versus time. 

With our overload control algorithm applied, the 

retransmission rate r2 for Server 2 was restricted. The 
overload at Server 2 was mitigated and the queue size of 
Server 2 increased relatively slowly. In the mean time, Server 
1 had enough capacity to process the limited retransmissions 
for Server 2, thus maintaining a small queue. Retransmission 
was triggered only for message loss recovery at Server 1 (i.e., 

r120messages/sec). After Server 2 resumed its normal service, 
it only spent 13s to cancel the overload and the buffer became 

empty at time t43s (see Fig. 7(b)). 

VI. CONCLUSIONS 

We have investigated the impact of SIP retransmission 
mechanism on queuing dynamics of an overloaded 
downstream receiving server and its upstream server. Our 
queuing analysis has demonstrated that unnecessary 
retransmissions not only exacerbate the overload, but also 
propagate the overload to server-by-server thus bringing down 
the whole SIP network (e.g., recent Skype outage [19]). 

When the overload occurs at the downstream servers, our 
overload control algorithm reduces retransmission rate to 
mitigate the overload, while maintaining the original message 
rate to avoid excessive revenue loss. 

Our OPNET simulation results have demonstrated that our 
overload control algorithm can cancel the short-term overload 
effectively regardless of whether the overload is caused by the 
demand burst or by server slow down. 

One of main advantages of heuristic control approach is its 
simple structure of implementation. Control theoretic approach 
(e.g., [23, 24]) can reduce the impact of bandwidth congestion 
in TCP/IP layer on the retransmission timer queue, but the 
CPU cost of implementation is higher. When an overload lasts 

for a long period, our retransmission-based solution can be 
combined with pushback solution (e.g., [14]) to reject some 
calls by reducing the original message rates of SIP sources. 
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