

Controlling Retransmission Rate For

Mitigating SIP Overload
Yang Hong, Changcheng Huang, James Yan

Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada

E-mail: {yanghong, huang}@sce.carleton.ca, jim.yan@sympatico.ca

Abstract—Recent server collapse in carrier networks (e.g.,
Skype outage) indicates that message retransmissions triggered
by various SIP timers make the overload worse. The built-in
overload control mechanism cannot handle overload conditions
effectively. Since the retransmissions stimulated by the overload
introduce more overhead rather than reliability, we suggest
mitigating the overload by reducing the retransmission rate. We
propose a novel algorithm to detect the potential overload at the
downstream servers and control message retransmission rate
from upstream servers to mitigate the overload at the
downstream servers. We investigate two typical overload
scenarios caused by demand burst and server slow down
respectively. OPNET simulations demonstrate that (1) the
proposed solution can help the overloaded downstream server to
cancel the short-term overload quickly after it resumes its normal
operation status; (2) without the overload control algorithm
applied, the overload at the downstream server may propagate or
migrate to its upstream servers.

I. INTRODUCTION

Internet telephony is experiencing rapidly growing
deployment due to its lower-cost telecommunications
solutions for both consumer and business services. Session
Initiation Protocol (SIP) [1] has become the main signaling
protocol to establish the multimedia sessions for numerous
Internet telephony applications such as Voice-over-IP, instant
messaging and video conferencing. 3rd Generation Partnership
Project (3GPP) has adopted SIP as the basis of its IP
Multimedia Subsystem (IMS) architecture [2-4].

SIP introduces a retransmission mechanism to maintain its
reliability [1, 5]. In practice, a SIP source uses timeouts to
detect message losses. One or more retransmissions would be
triggered if the corresponding reply message is not received in
a predetermined time interval.

SIP RFC 3261 [1] suggests that the SIP retransmission
mechanism should be disabled for hop-by-hop transaction
when running SIP over Transmission Control Protocol (TCP)
to avoid redundant retransmissions at both SIP and TCP layer
[1]. However, nearly all vendors choose to run SIP over UDP
(User Datagram Protocol) instead of TCP for the following
reasons [4, 6-18]: (1) The overhead of state management such
as three-way handshake prevents TCP from real-time
application which is a critical requirement for SIP protocol; (2)
The complex congestion control mechanism of TCP aims at
preventing congestion caused by bandwidth exhaustion, thus it
provides little help to SIP overload caused by CPU constraint;
(3) TCP only provides reliability at transport layer, but SIP
messages can still be dropped or corrupted while being
processed at application layer.

As SIP network is reaching large scales and serving
increasing number of users, periods of heavy load may happen

regularly. When a SIP server is experiencing a heavy load, it
may create an extremely long queuing delay and trigger
unnecessary message retransmissions, thus consuming more
memory and increasing CPU loads of the SIP server. This may
cause the network to be severely overloaded and suffer from
potential network collapse [4, 6-16].

RFC 5390 [17] identified the various reasons that may
cause server overload in a SIP network. These include but not
limited to poor capacity planning, dependency failures,
component failures, avalanche restart, flash crowds, denial of
service attacks, etc. In general, anything that may trigger a
demand burst or a server slowdown can cause server overload
and lead to server crash.

When a SIP receiving server detects the overload, it
terminates some transactions by sending “503 service
unavailable” messages to the sending servers. Such built-in
overload control mechanism has two limitations: (1) The cost
of rejecting a session is comparable with the cost of serving a
session [10]; (2) A 503 response only terminates a transaction.
The overloaded server may continue to receive subsequent
requests for session establishment, thus exhausting its limited
CPU resources to reply more 503 messages and adding to its
overloaded state [6].

The contributions of this paper are: (1) Using difference
equations to analyze the impact of the retransmission
mechanism on the queuing dynamics of an overloaded
downstream receiving server and its upstream sending server;
(2) Using retransmission timer queue size to detect the
overload and Proposing a novel heuristic algorithm to mitigate
the overload by controlling retransmission rate; (3) Performing
OPENT simulations under two typical overload scenarios to
validate the efficiency of our overload control algorithm.

II. RELATED WORK

Recent collapses of SIP servers in carrier networks (e.g.,
Skype outage [19]) has motivated numerous overload control
solutions (e.g., [6-16]). Three window-based feedback
algorithms were proposed to adjust the message sending rate
of upstream SIP servers based on the queue length [10]. Both
centralized and distributed overload control mechanisms for
SIP were investigated in [9]. Retry-after control, processor
occupancy control, queue delay control and window based
control were proposed to improve goodput and prevent
overload collapse in [6]. However, these overload control
proposals suggested that the overloaded receiving server
advertises its upstream sending servers to reduce their sending
rates.

Such pushback control solution would increase the queuing
delays of newly arrival original messages at upstream servers,

which in turn cause overload at the upstream servers. Overload
may thus propagate server-by-server to sources and block
large amount of calls which means the revenue loss for
carriers.

III. SIP OVERVIEW

To briefly describe the basic SIP operation, we only
consider originating User Agent (UA), Proxy-server (P-server)
and terminating UA. Fig. 1 depicts a typical procedure of a
session establishment. To set up a call, an originating UA
sends an “Invite” request to a terminating UA via two P-
servers. The P-server returns a provisional “100(Trying)”
response to confirm the receipt of the “Invite” request. The
terminating UA returns a “180(Ringing)” response after
confirming that the parameters are appropriate. It also evicts a
“200(OK)” message to answer the call. The originating UA
sends an “ACK” response to the terminating UA after
receiving the “200(OK)” message. Finally the call session
creates the media communication between the originating UA
and the terminating UA. The “Bye” request is generated to
close the session thus terminating the communication.

Invite

100Trying
Invite

Invite
100Trying

180Ringing
180Ringing

180Ringing

200OK
200OK

200OK

ACK
ACK

ACK

Session Data

Bye
Bye

Bye

Originating

UA

Terminating

UA

SIP

Proxy-2

200OK
200OK

200OK

SIP

Proxy-1

Fig. 1. A typical procedure of session establishment.

When an overload happens, the hop-by-hop Invite-
100(Trying) transaction is the major workload contributor due
to its role for call setup and its hop-by-hop retransmission
mechanism [9]. Given the proportionate nature and the general
similarity of the retransmission mechanisms between the
“Invite” and “non-Invite” messages in a typical session [1], we
will focus on the hop-by-hop Invite-100(Trying) transaction in
this paper. For each hop, the sender starts the first
retransmission of the original message at T1 seconds, and the
time interval doubles after every retransmission (exponential
back-off), if the corresponding reply message is not received.
The last retransmission is sent out at the maximum time
interval 64xT1 seconds. Thus there is a maximum of 6
retransmissions. The default value of T1 is 0.5s.

IV. SIP OVERLOAD CONTROL ALGORITHM

When the message arrival rate to a server exceeds its
message processing capacity, overload happens and its queue
builds up. Then the long queuing delay would trigger
unnecessary retransmissions from its upstream servers to make
the overload worse. Therefore, it is necessary to investigate the

impact of retransmissions on the queuing dynamics (e.g., [15,
20]), before we propose our novel algorithm to control
retransmission rate.

UA

UA

UA

UA

UA

UA

UA

UA

P-Server P-Server

Originating Servers Terminating Servers

1 2

0

Fig. 2. SIP network topology with an overloaded downstream receiving Server
2 (which is marked with diagonal lines) and its upstream sending Server .1

A. Queuing dynamic of SIP retransmission mechanism

We consider a SIP network which consists of an
overloaded downstream receiving Server 2 and its upstream
sending Server 1 (as shown in Fig. 2). We use difference
equations to describe the queuing dynamics of Server 1 and
Server 2 respectively, by making the following assumptions
according to SIP RFC [1]:

(a) The SIP RFC [1] does not specify the queuing
discipline to be deployed by a SIP server. We assume that a
SIP server maintains a First-In-First-Out (FIFO) queue for
messages arriving at different time-slots. All request messages
enter the tail of the message queue [9]. This FIFO queuing
model reflects the common practice by most vendors today;

(b) Response messages enter the head of message queue,
because delaying the processing of response messages may
trigger unnecessary retransmissions to exacerbate the overload;

(c) To study the interactions between overloaded
receiving Server 2 and its upstream sending Server 1, we
assume that the upstream servers of Server 1 and the
downstream servers of Server 2 have sufficient capacity to
process all arrival messages without any delay, while Server 2
is the most overloaded server in the network;

(d) Practical buffer sizes vary with the actual service
rates and system configuration plans. With the memory
becoming cheaper and cheaper, typical buffer sizes are likely
to become larger and larger. The buffer sizes for all servers are
assumed to be large enough to hold all the incoming messages.

1
)(1 n

100Trying response



)('2 nr

q1(n)

Invite request
)(1 nr

2

)(2 n

100Trying response

)(2 nr

)(1 n

Invite request

Server 1

Server 2

)(2 n



Message buffer

Timer buffer

Timer starts
Reset timer Timer fires

Timer expires

q2(n)

qr1(n)

Fig. 3. Queuing dynamics of an overloaded Server and its upstream server.

Fig. 3 depicts the queuing dynamics of Server 1 and Server
2. There are two queues at each server: one to store the
messages and the other to store the retransmission timers. The
downstream servers of Server 2 have sufficient capacity to
process all the arrival messages so that no retransmissions will
be generated by Server 2 for its upstream servers. Thus Fig. 3
did not show the timer queue of Server 2.

We consider the overloaded downstream Server 2 first. We
can obtain the queue size q2(n+1) for the message queue of

Server 2 at next time slot n+1 based on the information at the
current time slot n, i.e.,

q2(n+1)=[q2(n)+2(n)+r2(n)+2(n)−2(n)]+, (1)
where at the current time slot n at Server 2, q2(n) denotes the

queue size; 2(n) denotes the arrival original request messages;
r2(n) denotes the arrival retransmitted messages corresponding

to 2(n); 2(n) denotes the response messages sent by

downstream servers; 2(n) denotes the processed messages.
There are two queues at Server 1: one to store the messages

and the other to store the timers. Like Eq. (1), we can obtain
queuing dynamics for message queue of Server 1 as follows,

q1(n+1)=[q1(n)+1(n)+r1(n)+r'2(n)+1(n)−1(n)]+, (2)
where at the current time slot n at Server 1, q1(n) denotes the

queue size; 1(n) denotes the aggregated arrival original
request messages, which can be arbitrary stochastic process
(e.g., Poisson, Pareto, Gamma or Lognormal distribution); r1(n)
denotes the aggregated retransmitted messages corresponding

to 1(n); 1(n) denotes the response messages corresponding to

2(n); 1(n) denotes the processed messages; r'2(n) denotes the

retransmissions generated by Server 1 corresponding to 2(n).
Let us consider an overload scenario that Server 2

performs its routine maintenance and reduces its processing
capacity. The original message rate is larger than the service
rate, and the queue size q2 increases slowly. After a short
period of overload, the queuing delay of Server 2 is long
enough to trigger the retransmissions r'2 which enter the queue

of Server 1. If the total new message arrival rate of 1, 1 and

r'2 is larger than the service rate 1, the queue size q1 would
increase (as described by Eq. (2)) and may trigger the
retransmissions r1. The retransmissions r1 would enter Server
1 to increase the queue size q1 more quickly, thus propagating
the overload from Server 2 to Server 1. On the other hand,
after queuing and processing delay at Server 1, the
retransmitted messages r'2 depart Server 1 and enter Server 2
as r2 to increase the queue size q2 more quickly (as described
by Eq. (1)), thus making the overload at Server 2 much worse.

B. Overload Control Algorithm

As the retransmitted messages r'2 may increase queue sizes
at both Server 1 and Server 2 and bring the overload to both
servers, our goal for mitigating the overload is to control the
retransmission rate r'2. To achieve our target, we calculate a
retransmission probability p to determine whether to
retransmit an original message when its retransmission timer
fires or expires. The timers are ordered by their expiration
periods in the retransmission timer queue.

Dynamics of retransmission timer queue qr1

After Server 1 has forwarded the original messages 2 to
the downstream Server 2, it inserts the corresponding
retransmission timers into the retransmission timer queue qr1.

The response messages 1 remove the retransmission timers

corresponding to 2 from the timer queue qr1.
When the retransmission timer queue size qr1 is larger than

its maximum threshold qr1max, the overload at one or multiple
downstream servers is anticipated. This indicates that Server 2

delays the processing of 2 and the generation of

corresponding 1. Thus we use the retransmission timer queue
size qr1 to detect the overload, and propose our novel overload
control algorithm as depicted by Fig. 4.

When each retransmission timer fires or expires

if qr1 < qr1min

Calculate retransmission probability p:

Overload Control Algorithm

else

if qr1min ≤ qr1 ≤ qr1max

p  1

p  11pminqr1qr1minqr1maxqr1min

else
p  pmin

Fixed parameter:

qr1min : Minimum threshold for qr1

Varying parameter:

qr1: Instantaneous timer queue size of Server 1

qr1max: Maximum threshold for qr1

pmin : Minimum retransmission probability

Dynamically tuning parameters:

Fig. 4. Overload control algorithm for controlling retransmission rate

C. Setting of Overload Control Parameters

There are two dynamically tuning parameters and one
fixed parameter in our overload control algorithm: minimum
retransmission probability pmin, minimum threshold qr1min for
the retransmission timer queue size qr1, and maximum
threshold qr1max for the retransmission timer queue size qr1. We
will discuss our parameter setting strategy as follows.

Setting pmin

SIP provides retransmission to maintain its reliability due
to the message loss. The Internet Traffic Report indicates that
current global packet loss statistic averaged 8% packet loss
[21]. Since some messages may be corrupted while being

processed at application layer, average =10% message loss is
assumed. Thus we suggest maintaining a minimum
retransmission probability pmin as pmin=10%. (3)
The non-retransmission probability of all 6 retransmissions for

a lost message is (1pmin)
6, thus the minimum retransmission

probability of a lost message becomes p=1(1pmin)
6

=1(110%)647%. This indicates that in order to mitigate the

overload, maximum (1p)=53% average message loss cannot
be recovered after 6 retransmissions when the overload is
anticipated at the downstream servers. This will cause

maximum *(1p)=10%*53%5% calls to be rejected.

Setting qr1min and qr1max

Since Server 1 only generates the retransmissions for the
original messages whose retransmission timers fire or expire
in the timer queue qr1, and a queuing delay less than the 1st
retransmission timer T1 at Server 2 will not trigger any
retransmissions, we suggest minimum threshold qr1min as

qr1min='1avg*T1, (4)

where '1avg is the moving average original message departure
rate of Server 1. In our scenario, the original message

departure rate '1 of Server 1 is equal to the original message

arrival rate 2 of Server 2. We can use an exponential

weighted moving average filter to obtain '1avg as

'1avg(n)=(1− w)'1avg(n−1)+ w '1(n), (5)

where w is a filter weight. A good value for the averaging

filter is recommended as 0.002 [22], i.e., w=0.002. The initial

value of '1 is set as the mean service capacity C1 of Server 1.

We define the ratio between maximum threshold qr1max and

minimum threshold qr1min as α, i.e., qr1max=αqr1min, and α1.
Based on our numerous experiments, we suggest setting α as 3,

i.e., qr1max=3qr1min='1avg*3T1='1avg*(T1+2T1). This means that
the retransmission probability p reaches its minimum value
pmin when the queuing delay of the original messages in the
timer queue is longer than 2nd retransmission timer.

Quite different from fixed packet queue thresholds for
most active queue management algorithms (e.g., RED [22])
that provide end-to-end congestion control for data traffic,
both minimum threshold qr1min and maximum threshold qr1max
for retransmission timer queue are adaptively tuned by the

moving average original message departure rate '1avg to
achieve hop-by-hop overload control for signaling traffic.

V. PERFORMANCE EVALUATION AND SIMULATION

In order to validate our overload control algorithm, we
perform OPNET simulation based on the SIP network
topology depicted by Fig. 2. Four originating servers
generated original request messages with equal rate, and then
sent them to four terminating servers via two proxy servers
(i.e., Server 1 and Server 2). Currently there is no
measurement result for the workload in the real SIP networks.
Since Poisson distribution has been widely adopted in existing
research works (e.g., [10]), our message generation rates are
Poisson distributed. The message service time of each server is
exponentially distributed. Since processing a response
message takes much less time than processing a request
message, we denote β as the ratio of the mean processing time
of a response message to that of a request message and set β as
0.5. We assume that the mean service capacity of a Proxy
server is 1000 messages/sec measured based on the processing
time of request message, i.e. C1=C2=1000 request messages/s.
That is, the mean processing times for a request message and a
response message are 1ms and 0.5ms respectively. The mean
service capacity of an originating server or a termination
server is equal to 500 request messages/sec. The total message

service rate  is bounded by the service capacity C at each

server, i.e., ≤C. The average message loss probability is 10%.
We consider two typical overload scenarios: (1) Overload

at Server 1 due to a demand burst; (2) Overload at Server 2
due to a server slowdown. The simulation period is 90s. In
each scenario, we conducted our simulations with overload
control algorithm and without overload control algorithm
separately. In all the simulation plots, we use “OLC”/“NOLC”
to indicate that overload control algorithm “was”/“was not”
applied to all servers in the SIP network.

A. Overload at Server 1

In this scenario, the mean message generation rate for each

originating server was 200 messages/sec (i.e., 1=40=800

messages/sec, emulating a short surge of user demands) from

time t=0s to t=30s, and 50 messages/sec (i.e., 1=40=200

messages/sec, emulating regular user demands) from time

t=30s to t=90s. The mean service capacities of two proxy

servers were C1=C2=1000 messages/sec.

Figs. 5 and 6 show the dynamic behaviour of overloaded

Server 1 and one of its upstream originating servers. Without

overload control algorithm applied, it is easy to see from Fig.

5(a) that Server 1 became CPU overloaded immediately and

the overload deteriorated with time going, leading to the

eventual crash of Server 1. Since the aggregate service

capacity of four originating servers was larger than that of

proxy Server 1, the queue size of each originating server

decreased slowly (see Fig. 5(b)) after new original message

generation rates decreased.

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8
x 10

4

Time (sec)

Q
u
eu

e
si

ze
 q

1 (
m

es
sa

g
es

)

NOLC q
1

OLC q
1

(a)

0 10 20 30 40 50 60 70 80 90
0

2000

4000

6000

8000

10000

N
O

L
C

 Q
u
e
u
e
 s

iz
e
 q

0
 (

m
e
ss

a
g
e
s)

Time (sec)

0 10 20 30 40 50 60 70 80 90
0

30

60

90

O
L

C
 Q

u
e
u
e
 s

iz
e
 q

0
 (

m
e
ss

a
g
e
s)

NOLC q
0

OLC q
0

(b)

Fig. 5. (a) Queue size q1 (messages) of Server 1 versus time. (b) Queue size q0
(messages) of an originating server versus time.

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

700

800

900

Time (sec)

O
ri

g
in

a
l

m
e
ss

a
g
e
 r

a
te

 (
m

sg
s/

se
c
)

NOLC 
1

OLC 
1

(a)

0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

Time (sec)

R
e
tr

a
n

sm
is

si
o

n
 r

a
te

 (
m

sg
s/

se
c
)

NOLC r
1

OLC r
1

(b)

Fig. 6. (a) Moving average original message rate 1 (messages/sec) of Server 1
versus time. (b) Moving average retransmission rate r1 (messages/sec) for
Server 1 versus time.

Our overload control algorithm made the queue size of

Server 1 increase slowly during the period of the demand burst,

and cancelled the overload at Server 1 within 25s after the new

user demand rate reduced at time t=30s (see Fig. 5(a)).

B Overload at Server 2

In this scenario, the mean server capacities of the two
proxy servers were C1=1000 messages/sec from time t=0s to
t=60s, C2=100 messages/sec from time t=0s to t=30s, and
C2=1000 messages/sec from time t=30s to t=90s. The mean
message generation rate for each original server was 50
messages/sec. When there were no queuing delays at all
servers in the beginning, the SIP traffic enters Server 1 with

1=200 messages/sec, and then enters Server 2 with 2=200
messages/sec.

Without overload control algorithm applied, Figs. 7 and 8
demonstrate the following phenomena: (1) Server 2 became
overloaded first, which was followed by a later overload at
Server 1, i.e., the overload propagation which may cause the
widespread server crashes. (2) After Server 2 resumed its
normal service at time t=30s, Server 1 and Server 2 had the
same service capacity. As Server 2 processed the residual
messages in the queue and fed back response messages to
Server 1 more quickly, the response rate of Server 1 increased
sharply (see Fig. 8(a)). Server 1 had to process part of r1 which
would not enter Server 2, the total arrival rate at Server 2 was
less than its service capacity. Therefore the queue at Server 2
started going down. Eventually the overload at Server 2 was

cancelled at time t64s, while the overload at Server 1
persisted due to its higher arrival rate of aggregated request
messages (see Figs. 7 and 8(a)).

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5
x 10

4

N
O

L
C

 Q
u
e
u
e
 s

iz
e
 q

1
 (

m
e
ss

a
g
e
s)

Time (sec)

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

O
L

C
 Q

u
e
u
e
 s

iz
e
 q

1
 (

m
e
ss

a
g
e
s)NOLC q

1

OLC q
1

(a)

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Time (sec)
Q

u
e
u
e
 s

iz
e
 q

2
 (

m
e
ss

a
g
e
s)

NOLC q
2

OLC q
2

(b)

Fig. 7. (a) Queue size q1 (messages) versus time. (b) Queue size q2 (messages)
versus time.

0 10 20 30 40 50 60 70 80 90
0

200

400

600

800

1000

1200

Time (sec)

M
e
ss

a
g

e
 r

a
te

 (
m

sg
s/

se
c
)

NOLC r
1

OLC r
1

NOLC 
1

OLC 
1

(a)

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

700

800

900

1000

Time (sec)

M
e
ss

a
g

e
 r

a
te

 (
m

sg
s/

se
c
)

NOLC 
2

OLC 
2

NOLC r
2


OLC r
2


(b)

Fig. 8. (a) Moving average retransmission rate r1 (messages/sec) for Server 1

and moving average response rate 1 (messages/sec) of Server 1 versus time.

(b) Moving average original message rate 2 (messages/sec) of Server 2 and

moving average retransmission rate r2 (messages/sec) for Server 2 versus time.

With our overload control algorithm applied, the

retransmission rate r2 for Server 2 was restricted. The
overload at Server 2 was mitigated and the queue size of
Server 2 increased relatively slowly. In the mean time, Server
1 had enough capacity to process the limited retransmissions
for Server 2, thus maintaining a small queue. Retransmission
was triggered only for message loss recovery at Server 1 (i.e.,

r120messages/sec). After Server 2 resumed its normal service,
it only spent 13s to cancel the overload and the buffer became

empty at time t43s (see Fig. 7(b)).

VI. CONCLUSIONS

We have investigated the impact of SIP retransmission
mechanism on queuing dynamics of an overloaded
downstream receiving server and its upstream server. Our
queuing analysis has demonstrated that unnecessary
retransmissions not only exacerbate the overload, but also
propagate the overload to server-by-server thus bringing down
the whole SIP network (e.g., recent Skype outage [19]).

When the overload occurs at the downstream servers, our
overload control algorithm reduces retransmission rate to
mitigate the overload, while maintaining the original message
rate to avoid excessive revenue loss.

Our OPNET simulation results have demonstrated that our
overload control algorithm can cancel the short-term overload
effectively regardless of whether the overload is caused by the
demand burst or by server slow down.

One of main advantages of heuristic control approach is its
simple structure of implementation. Control theoretic approach
(e.g., [23, 24]) can reduce the impact of bandwidth congestion
in TCP/IP layer on the retransmission timer queue, but the
CPU cost of implementation is higher. When an overload lasts

for a long period, our retransmission-based solution can be
combined with pushback solution (e.g., [14]) to reject some
calls by reducing the original message rates of SIP sources.

ACKNOWLEDGMENT

This work was supported by the NSERC grant #CRDPJ

354729-07 and the OCE grant #CA-ST-150764-8.

REFERENCES

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R.
Sparks, M. Handley, and E. Schooler, “SIP: Session Initiation Protocol,”
IETF RFC 3261, June 2002.

[2] “3rd Generation Partnership Project”. http://www.3gpp.org.
[3] S.M. Faccin, P. Lalwaney, and B. Patil, “IP Multimedia Services:

Analysis of Mobile IP and SIP Interactions in 3G Networks,” IEEE
Communications Magazine, 42(1), January 2004, pp. 113-120.

[4] E. Noel and C.R. Johnson, “Initial simulation results that analyze SIP
based VoIP networks under overload,” in Proceedings of 20th
International Teletraffic Congress, 2007, pp. 54-64.

[5] M. Govind, S. Sundaragopalan, K.S. Binu, and S. Saha, “Retransmission
in SIP over UDP - Traffic Engineering Issues,” in Proceedings of
International Conference on Communication and Broadband
Networking, Bangalore, India, May 2003.

[6] E. Noel and C.R. Johnson, “Novel Overload Controls for SIP
Networks,” Proceedings of 21st International Teletraffic Congress, 2009.

[7] R.P. Ejzak, C.K. Florkey, and R.W. Hemmeter, “Network Overload and
Congestion: A comparison of ISUP and SIP,” Bell Labs Technical
Journal, 9(3), 2004, pp. 173–182.

[8] M. Ohta, “Overload Control in a SIP Signaling Network,” in Proceeding
of World Academy of Science, Engineering and Technology, Vienna,
Austria, March 2006, pp. 205—210.

[9] V. Hilt and I. Widjaja, “Controlling Overload in Networks of SIP
Servers,” in Proceedings of IEEE ICNP, Orlando, Florida, October 2008,
pp. 83-93.

[10] C. Shen, H. Schulzrinne, and E. Nahum, “SIP Server Overload Control:
Design and Evaluation,” in Proceedings of IPTComm, Heidelberg,
Germany, July 2008.

[11] A. Abdelal and W. Matragi, “Signal-Based Overload Control for SIP
Servers,” in Proceedings of IEEE CCNC, Las Vegas, NV, January 2010.

[12] “SIP Express Router” http://www.iptel.org/ser/.
[13] T. Warabino, Y. Kishi and H. Yokota, “Session Control Cooperating

Core and Overlay Networks for “Minimum Core” Architecture,” in
Proceedings of IEEE Globecom, Honolulu, Hawaii, December 2009.

[14] V. Hilt and H. Schulzrinne, “Session Initiation Protocol (SIP) Overload
Control,” IETF Internet-Draft, January 2011.

[15] Y. Hong, C. Huang, and J. Yan, “Analysis of SIP Retransmission
Probability Using a Markov-Modulated Poisson Process Model,” in
Proceedings of IEEE/IFIP Network Operations and Management
Symposium, Osaka, Japan, April 2010, pp. 179–186.

[16] E.M. Nahum, J. Tracey, and C.P. Wright, “Evaluating SIP server
performance,” in Proceedings of ACM SIGMETRICS, San Diego, CA,
US, 2007, pp. 349–350.

[17] J. Rosenberg, “Requirements for Management of Overload in the
Session Initiation Protocol,” IETF RFC 5390, December 2008.

[18] Y. Hong, O. W. W. Yang, and C. Huang, “Self-Tuning PI TCP Flow
Controller for AQM Routers With Interval Gain and Phase Margin
Assignment,” in Proceedings of IEEE Globecom, Dallas, TX, U.S.A,
November 2004, pp. 1324-1328.

[19] R. Ando, “Internet phone and video service Skype went down in a global
service outage,” Reuters News, December 22nd, 2010.

[20] Y. Hong, C. Huang, and J. Yan, “Modeling and Simulation of SIP
Tandem Server with Finite Buffer,” ACM Transactions on Modeling and
Computer Simulation, 21(2), 2011.

[21] “Internet Traffic Report”, http://www.internettrafficreport.com/, 2010.
[22] S. Floyd, V. Jacobson, “Random Early Detection Gateways for

Congestion Avoidance,” IEEE/ACM Transactions on Networking, 1(4),
1993, pp. 397-413.

[23] Y. Hong, C. Huang, and J. Yan, “Mitigating SIP Overload Using a
Control-Theoretic Approach,” in Proceedings of IEEE Globecom,
Miami, FL, U.S.A, December 2010.

[24] Y. Hong, C. Huang, and J. Yan, “Design Of A PI Rate Controller For
Mitigating SIP Overload,” in Proceedings of IEEE ICC, Kyoto, Japan,
June 2011.

http://www.3gpp.org/

