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Abstract

A stochastic process is said to exhibit long range dependence (LRD) structure
when it has a hyperbolically decaying autocorrelation function. Self-similar (or frac-
tal) processes (both exact and asymptotic) are among those LRD processes which are
widely used. Traditional traffic models, on the other hand, typically possess some
form of Markovian structure and display short range dependence (SRD) only. Sev-
eral recent papers have shown that traditional traffic models may be inadequate for
modeling real traffic. Instead, self-similar stochastic processes were proposed as more
accurate models of certain categories of traffic (e.g., Ethernet traffic, WAN traffic,
variable-bit-rate video) which will be transported in ATM networks.

Due to the distinct differences between these two classes of models, their impli-
cations for network design and performance estimation will be significantly different.
In this thesis, we will start with our work on modeling real traffic based on LRD
traffic models. Then we will introduce our fast simulation technique for simulating
the behavior of LRD traffic over ATM network. We will show that, some of the con-
gestion control schemes proposed in the literature under the traditional models may
fail under LRD models. In the last part, we will propose a new congestion control

scheme which may work well under LRD traffic models.
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Chapter 1

Introduction

1.1 Background

Traffic is the driving force of communications systems, and traffic models are of crucial
importance for assessing their performance. In practice, stochastic models of traffic
streams are relevant to network traffic engineering and performance analysis, to the
extent that they are able to predict system performance measures to a reasonable
degree of accuracy.

The fundamental systems, of which traffic is a major ingredient, are queueing
systems. Traditional traffic models have often been devised and selected for the an-
alytical tractability they induce in the corresponding queueing systems. However, a
practitioners’s confidence in a given traffic model is greatly diminished if the model is
only able to crudely approximately basic statistics but cannot capture visually domi-
nant features of empirical traffic collected from a variety of working communications
systems.

While originally the validity and efficacy of models for modern high-speed net-
work traffic were difficult to assess due to the unavailability of empirical data, recently

very large sets of traffic measurements from working packet networks have become



available. More importantly, statistical analyses of these enormous traffic data sets
have revealed features in measured network traffic that (i) have gone unnoticed by the
teletraffic literature, (ii) suggest that from a statistical view point traditional traffic
models have little in common with empirical data from modern high-speed networks,
and (iii) seem to have serious implications for the design, management and control of
modern telecommunications systems.

The most striking finding from these traffic data studies is that, in a statistical
sense, one can sharply distinguish between empirical network traffic data and traffic
generated from traditional models. Traditional traffic processes have in common that
they are Markovian or, more generally, short-range dependent (SRD) in nature, that
is, their autocorrelations decay exponentially fast [1]. On the other hand, measure-
ments from modern networks give rise to empirical traffic processes that are generally
non-Markovian in nature and exhibit long-range dependence (LRD). In other words,
empirical traffic processes are characterized by slowly decaying autocorrelations (hy-
perbolic or power decay) which, in turn, result in self-similar or, to use a more popular
term, “fractal” traffic. Specifically, studies have reported that LAN traffic [2], WAN
traffic [3] and variable bit rate (VBR) video traffic [4, 5, 6] often display LRD and
can be better modeled by self-similar processes.

Although fractal traffic exhibits properties that are dramatically different from
those of traffic generated from traditional models, it is nevertheless possible to clearly
identify the point-of-departure from traditional traffic modeling that results in fractal
characteristics. It has been shown in [6] and [5] that, in addition to LRD struc-

ture, VBR video traffic also possesses low-lag correlation structures which suggests



an asymptotic self-similar model rather than exact self-similar model. Marginal prob-
ability distributions with heavy tails were reported in [5] and [6].

Although a fractional autoregressive integrated moving-average (FARIMA(p, d, q))
model [7] can be used to model both long term and short term autocorrelation struc-
tures at the same time, it may be difficult to obtain accurate estimates of the p and
g parameters required for the generation of traces with arbitrary marginals [5]. This
fact motivated us to develop modeling techniques that may capture the autocorre-
lation structure directly. In this thesis, we extend the work in [5] and present a
unified approach which, in addition to modeling the marginal distribution of empir-
ical records, also models directly both the SRD and LRD empirical autocorrelation
structures. While here we utilize MPEG-1 compressed VBR video, the approach it-
self can be readily applied to other VBR video compression schemes (e.g., JPEG,
MPEG-2, H.261) and other types of LRD traffic.

Briefly, we generate a background self-similar Gaussian process with both LRD
and SRD explicitly incorporated. We then use a histogram-based inversion technique
to generate a foreground process with the marginal distribution of the empirical data.
Finally we systematically calculate and correct the asymptotic differences between the
autocorrelations of the foreground processes and the autocorrelations of background
processes so that the autocorrelations of the foreground processes asymptotically
match that of the empirical streams. We also prove that the value of the Hurst param-
eter H is not affected by a large family of transformations. This class of traffic model,
which defines a class of Marginal Transformed Processes (MTP), is quite general in
the sense that it includes Fractional Gaussian Noise (FGN) and FARIMA(p,d,q)

models as its subsets and it can have arbitrary marginal distributions.



Due to the distinct differences between LRD and SRD models, their implica-
tions for network design and performance estimation will be significantly different.
However, there have been, in general, only a few analytical results reported in this
area, with the notable exception of [8] and [9], where asymptotic expressions for the
steady-state waiting time in single-server queues were derived by generalizing large
deviation theorems to include self-similar processes. Analytical work related to this
subject can also be found in [10]. In [11], a finite ATM buffer driven by a self-similar
process from an infinity of on-off sources with Pareto service demands is studied.
The resulting G/D/1 queueing model is mapped into a M/G/1 model where the
service time is Pareto distributed with infinite variance. It is found that the buffer
cell loss probability decreases with the buffer size not exponentially, as in traditional
Markovian models, but algebraically.

Results in [8, 9] deal with the steady-state asymptotics for a single-server
queue under FGN model. While the self-similar property captures the burstiness of
traffic at all time scales, realistic ATM networks are expected to have a limiting time
scale [12]. Therefore, predicted performance based on a steady-state regime may be
overly pessimistic for practical applications. Furthermore, questions regarding the
transient behavior, small buffer sizes, multiplexing effects, and, in general, the per-
formance of ATM networks under LRD traffic, remain unanswered. For this purpose,
analytical approaches become quickly intractable.

Given the difficulties in analysis, simulation can play an important role in the
study of network performance under self-similar traffic. While several approaches have
been proposed for the synthetic generation of self-similar traffic traces (e.g., Hosk-

ing’s method [7], Mandelbrot’s fast fractional Gaussian noise approach [13], nonlinear



chaotic maps [14]), they are, in general, efficient for generating only small numbers of
relative long traces. Due to the long term dependent structure of self-similar traffic,
accurate statistics can be obtained only from a large number of replications. This
is especially true in ATM networks where one may want to simulate events that are
rare, e.g., cell losses with probability < 107, For this task, conventional simulation
techniques can be extremely inefficient.

In this thesis, we propose a fast simulation approach based on tmportance sam-
pling (IS) and Hosking’s method in [7]. Using this approach, we simulate the transient
queueing behavior of certain self-similar arrival processes, namely discrete-time FGN.
We show that our transient results asymptotically approach the steady-state results
in [8]. We verify experimentally the existence of a certain time scale at which the
steady-state result is a good approximation for transient state. Furthermore, we ap-
ply our approach to the simulation of the multiplexing effect under both homogeneous
and heterogeneous traffic sources.

We focus on the following key issues in ATM network design: the buffering
gain, i.e., the reduction in buffer overflow probability as the buffer size increases, and
the multiplexing gain, i.e., the reduction in buffer overflow due to statistical smoothing
when multiple bursty sources are aggregated. If we define the burstiness of self-similar
traffic as the Hurst parameter [15], our results indicate that, the higher the burstiness,
the lower the buffering gain, as predicted by large deviation results. Our results also
agree with the predictions that, compared with SRD models, self-similar models show
smaller buffering gains. On the other hand, perhaps contrary to common belief, our
results indicate significant gains from multiplexing. These multiplexing gains increase

with the burstiness (Hurst parameter) of the self-similar traffic.



In addition to these results, we show both analytically and by simulation that
when multiplexing two heterogeneous self-similar sources, the steady-state behavior
will be dominated by the burstier one, as predicted by the analytical result we de-
veloped by generalizing the large deviation approach in [8]. This means that traffic
streams with lower Hurst parameter values may suffer the same mean delay as traffic
streams with higher Hurst parameter within a FIFO queue. In its extreme case, a
starvation problem where a traffic stream has to wait indefinitely long time before it
gets service may be introduced. This kind of problem can not be solved by traditional
priority strategies. As pointed out in [3], for self-similar traffic, high priority traffic
may block low priority traffic for quite a long time making it enter into starvation.

Furthermore, we extend the fast simulation approach to the MTP model. Here
we use importance sampling techniques to efficiently estimate the probability of rare
packet losses that occur when a multiplexer is fed with synthetic traffic from our
self-similar VBR video model. We show that, while steady state results are useful for
network planning and long time performance estimation, it may not be appropriate
for estimating the QoS (Quality of Service) of a single user session.

Based on the above observations, we further investigate some congestion con-
trol schemes which may seem promising under traditional models. We show that,
although some of the problems mentioned above can be solved by introducing a fair
queueing approach [16, 17, 18, 19, 20, 21, 22, 23, 24|, other problems remain to be
addressed. Instead, we propose a new congestion control scheme which is designed
to address LRD structure directly. Preliminary analytic and simulation results show
that this scheme is robust in the sense that the detection probability for the con-

gestion state is asymptotically Gaussian distributed which is totally determined by



the mean, variance and Hurst parameter of source. In addition, it can be smoothly

integrated into traditional congestion control structures.

1.2 Thesis Contributions

The contributions of this thesis are:

i

i1

111

Prove a transform-invariant property of stationary Gaussian processes for a
large class of transformations(MTP) and, based on this property, propose a
new traffic modeling approach which combines direct modeling of the SRD and
LRD empirical autocorrelation structures with marginal inversion and Hosk-
ing’s technique. Systematically calculate and correct the asymptotic differences
between the autocorrelations of background processes and the autocorrelations

of the foreground processes.

Develop a fast simulation approach for MTP models based on importance sam-
pling theory. Extensively simulate the buffering gain and multiplexing gain for
LRD traffic streams. Develop an analytical result on the multiplexing effects
of LRD traffic streams. Compare analytical results with simulation results and

show the agreements.

Propose a new congestion control algorithm for LRD traffic and show both
analytically and in simulation that it is robust to different traffic streams in

terms of the setting of control parameters.

1.3 Thesis Organization

The remaining chapters of this thesis are organized as follows:



Chapter 2: Reviews the fundamentals of LRD traffic models and presents our pro-
posed traffic modeling approach in detail. An analytical proof of the transform-

invariant nature of Gaussian LRD process is provided.

Chapter 3: Describes the procedures of our fast simulation approach and investi-

gates the simulation results of a multiplexer under LRD traffic.

Chapter 4: Reviews various congestion control schemes proposed in literature and
describes our proposed congestion control algorithm. Analytical and simulation

approaches are used to evaluate the algorithm.

Chapter 5: Presents conclusions and recommendations for future research.

Appendix: Extends existing Large Deviation results for a single server queue with
self-similar input traffic to the cases where homogeneous or heterogeneous self-

similar traffic streams are statistically multiplexed into a single server queue.



Chapter 2

LRD Traffic Models

2.1 Definitions

2.1.1 Definition of LRD Process

Let X = {X; : &k = 1,2,...} be a covariance stationary stochastic process with
constant mean m = E[X}], finite and positive variance ¢* = E[(X} — m)?], and an

autocorrelation function defined as follows:

. COV(X“ Xi—l—k)

r(k) 5 ,fori=1,2,... and k=1,2,... (2.1)

g

For each n =1,2,3,..., let
Xlgn) = (X]m + Xpno1 + 0 F an—(n—l))/n7 k= 1,2,3,...; (22)

then the time series X" = {X,gn) :k=1,2,3,...} is also a covariance stationary
process. Let r(™(k), k = 1,2,..., denote the corresponding autocorrelation function.

?

The process X is called a stationary process with long-range dependence
(LRD) [1] if it satisfies
r(k) ~ k=P L(k), as k — oo, (2.3)
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where 0 < # < 1, and L(k) is slowly varying at infinity, i.e., lim;_o, L(tz)/L(t) =1,
for every > 0 [2]. Furthermore, from definition (2.3) it follows that >, r(k) = oc.
This non-summability of the correlations captures the intuition behind long-range de-
pendence, namely that while high-lag correlations are all individually small, their cu-
mulative effect is of importance and gives rise to features which are drastically different
from those of the more conventional, i.e., short-range dependent(SRD) processes [1].
The latter are characterized by an exponential decay of the autocorrelations [1], i.e.,
r(k) ~ pFas k — 0o(0 < p < 1), resulting in a summable autocorrelation function
| 2k (k)] < oo

The process X is called ezactly second-order self-similar [1] with Hurst param-

eter H =1 — (/2 if it satisfies
rW (k) = r(k), foralln =1,2,3,... and k=1,2,3,... (2.4)
It is not difficult to show that the only solution of (2.4) is [1, 25]
r(k) = 6*(k*77)/2 (2.5)

where 0 < 8 < 2 and 6*(f(k)) = f(k+1) —2f(k) + f(k — 1). Here we are only
interested in the range 0 < [ < 1. The process X is called asymptotically second-

order self-similar [1] with Hurst parameter H = 1 — /2, if

r(”)(l) — 2170 1, as n — o, (2.6)

r(k) — 62(k*7))2, asn — oo (k=2,3,...), (2.7)

Intuitively, one of the most striking features of self-similar(both exact and asymptotic)

processes is that their aggregated processes X possess a nondegenerate correlation
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structure as n — oo. In equation (2.7), for large k, differencing and differentiation

are asymptotically equivalent [1], therefore we can get

F (k) — (2= B)(1— Bk~ /2 (2.8)

This clearly indicates that asymptotically second-order self-similar processes are LRD
processes. Detailed discussions about the definitions of self-similar processes can be
found in [26, 25].

An important recent development in traffic modeling is that Leland et al. [2]
have found that Ethernet traffic satisfies (2.4), Beran et al. [4] have shown that VBR
video traffic satisfies (2.7) and also Paxson [3] has shown that WAN traffic exhibits

LRD behavior.

2.1.2 Definition of the FGN Process

While there are numerous stochastic models which exhibit the self-similar prop-
erty, two of them, namely the exactly self-similar fractional Gaussian noise (FGN)
and the asymptotically self-similar fractional autoregressive integrated moving-average
(FARIMA) process, are the most commonly used. FGN can be viewed as a reasonable
first approximation of more complex LRD processes, since it can be derived from a
special type of the central limit theorem applied to LRD processes, as shown in [27].

A fractional Gaussian noise process X = {X; : &k = 1,2,...} is a stationary
Gaussian process with mean m = E[Xj], variance o = E[(X; — m)?], and autocor-

relation function

r(k) = (|k+ 1 =20k + |k —11*)/2, k=...,-1,0,1,... (2.9)
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Therefore, if 1/2 < H < 1, FGN is exactly second-order self-similar with Hurst

parameter H. Now define process Z = {Z; : k=0,1,2,...} as
k
Zr =Y X;, fork=1,2,... (2.10)
=1

Then Z is an stationary increment process called fractional Brownian motion (FBM)

with mean a(k) = km, and variance v(k) = o*k*" (see also [28]).
2.1.3 FARIMA(p,d,q) Process

A FARIMA (p,d,q) process, where p and ¢ are non-negative integers and d is real, is de-
fined to be a stochastic process X = {X; : k = 1,2,...} [29, 30] with a representation
given by

®(B)AX;, = O(B)ey, (2.11)

where ®(B)=1—-¢;B—...—¢,B? and O(B) = 1—6,B—...—0,B? are polynomials
in the backward-shift operator BX; = X;_;, A = 1 — B denotes the differencing
operator, and A? is the fractional differencing operator defined by A? = (1 — B)? =
Ye()(=B)F with (9)(=1)% = T(—=d + k)/(T(—=d)T'(k + 1)) and (e; : k = 1,2,3,...)
is a white noise process. It has been shown in [29] that for d € (—1/2,1/2), X is
stationary and invertible, and its autocorrelation satisfy r(k) ~ ak?*~! as k — oo,
where a is a finite positive constant independent of k. Clearly X is a LRD process
with Hurst parameter d+1/2, for all 0 < d < 1/2. FARIMA processes are much more
flexible with regard to the simultaneous modeling of the short- term and long-term
behavior of a time series than a FGN process, mainly because the latter having only
the three parameter p,o? and H is not capable of capturing the low-lag correlation

structures encountered in practice.
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2.2 Statistical Methods for Self-similar Process

2.2.1 Mean Estimation

In [25], it is shown that for a LRD process X = { X,k = 1,2,...}, there exist the

following result

- iy Xi _ 1
Jim var(==1=2) /[en® 7] = AEH=T1)

(2.12)

where ¢, is a positive constant.
Therefore, the variance of the sample mean decays to zero at a slower rate

than n!.

2.2.2 Estimation of Self-Similarity
Variance-Time Plots

By equation 2.12, we have, for a self-similar process X, that the variance of the

marginal distribution of the aggregated processes X (™ defined by
X,gm) = (Ximemir + -+ Xpm)/m, k>1, m=1,2,3,...

decreases linearly (for large m) in log-log plots against m. The variance-time plots
are obtained by plotting the function log(var(X(™)) against log(m) and by fitting a
simple least squares line through the resulting points in the plane, ignoring the small
values for m. An estimate B of # will be the absolute value of the slope of the line

fit. Values of the estimate B between 0 and 1 suggest self-similarity, and an estimate

for the degree of self-similarity is H=1- B/Z
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The R/S Statistic

The R/S Statistic [31] which is based on the Hurst effect [15, 32, 33] is an empirical
methodology proven to be more robust against the effects of marginal distributions
in practice than the Variance-Time Plots. Briefly, for a given set of observations
(X) :k=1,2,...,n) with sample mean X (n) and sample variance S?(n), the rescaled

adjusted range or the “R/S statistic” is given by

R(n)/S(n) = [max(0,W,...,W,)

— min(0, W1, ..., W,)]/S(n) (2.13)
with Wi = (X; + Xz + ...+ X) — kX(n),k = 1,2,...,n. For self-similar processes,
we have the following relation [15]:

E[R(n)/S(n)] ~ en®, asn — oo (2.14)

Given a sample of N observations (X : k= 1,2,3,...,N), one subdivides the
whole sample into K non-overlapping blocks which are then treated as independent
replications(This assumption is approximately correct if N is very large and K is
small.) and computes the rescaled adjusted range R(i,n)/ S(¢,n) for each block.
Here, the R/S statistic R(¢,n)/S(¢,n) is defined as in (2.13) with ¢ denotes the block
number. Next, we plot log(R(z,n)/ S(i,n)) versus log(n) in a pox plot. This plot is

the rescaled adjusted range plot. An estimate H is given by a least squares fit.

Frequency Domain MLE

While variance-time plots and pox plots of R/S are very useful tools for identifying

self-similarity (in a mostly heuristic manner), the absence of any results for the limit
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laws of the corresponding statistics make them inadequate when a more refined data
analysis is required (e.g., confidence intervals for the degree of self-similarity H, model
selection criteria, and goodness of fit tests). In contrast, a more refined data analysis
is possible for maximum likelihood type estimates (MLE) and related methods based
on the periodogram. In particular, for Gaussian processes X = {X; : k = 1,2,...},
Whittle’s approximate MLE has been studied extensively [34, 25, 35, 36] and has
been shown to be asymptotically normally distributed and asymptotically efficient
for FGN or FARIMA process.

Applying this approach to empirical data, two problems of robustness due
to (i) deviations from Gaussianity which both FGN and FARIMA possess, and (ii)
deviations from the assumed model(FGN or FARIMA) spectrum are commonly en-
countered. Transforming the data so as to obtain approximately the desired marginal
(normal) distribution is generally considered a viable heuristic method to overcome
(i). In the presence of large data sets, a direct approach for tackling (ii) uses the
method of aggregation. In [37], it is shown that there exists a central limit theo-
rem for a large class of LRD processes. And further more, most of their aggregated
processes converge weakly to FGN.

Combining Whittle’s approximate MLE approach and the aggregation method
give rise to the following operational procedure. For a given time series, consider
the corresponding aggregated processes X™) with m = 100,200, 300, ..., where the
largest m-value is chosen such that the sample size of the corresponding series X(™) is
not less than about 100. For each of the aggregated series, estimate the self-similarity
parameter H via Whittle’s MLE. This procedure results in estimates H™ of H and

corresponding, say, 95%-confidence intervals. Finally, we plot the estimates H of H
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together with their 95%-confidence intervals versus m. Such plots will typically vary a
lot for small aggregation levels, but will stabilize after a while and fluctuate around a
constant value. Among the possible choices for the corresponding confidence interval,
we obviously choose the one with the smallest value for m given the "stabilization”
has occured, because the size of the confidence intervals increases in m (the more we

aggregate, the less observations we have).

2.3 Modeling VBR Video

An important advantage of packet switched networks (e.g., ATM-based BISDN net-
works) is that such networks support variable bit rate (VBR) connections, thus allow-
ing efficient statistical multiplexing of bursty traffic. Video sources (coders) generate
inherently VBR traffic, however, in order to transmit video information in circuit-
switched networks, the variable content of moving pictures has to be coded in con-
stant bit rate (CBR) form, resulting in inefficient bandwidth utilization and variable
picture quality.

Due to the advantages of VBR video transmission and the packet-switched
nature of ATM, and given the development of highly-sophisticated compression tech-
niques for video sources, VBR compressed video traffic is expected to become one of
the main loading components in future BISDN networks. However, the high band-
width and burstiness of VBR video traffic can make network design and management
difficult to perform. Effective design and performance analysis depend on accurate
modeling of the various traffic types. Among bursty traffic types, VBR video sources
are arguably among the most important and demanding to model, due to their band-

width fluctuation and autocorrelation, as well as their complex generation scheme
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(coding algorithm). Numerous studies have been conducted on issues of video coding,
transmission over packet networks, and related modeling and performance analysis
topics, see for example [38, 39, 40, 41, 42, 43] and references within.

Traditional models based on Markovian structures (e.g., MMPP, IBP, etc.)
have been widely used to statistically approximate VBR video traffic. All these
models have in common an asymptotically exponential decay of the autocorrelation
function and a rapidly decaying marginal distribution tail. Furthermore they lack a
systematic way of simultaneously fitting both the empirical marginal distribution and
the autocorrelation function.

In a series of papers (see [44] and references within), B. Melamed and col-
leagues at NEC USA, Inc., developed the TES (Transform-Expand-Sample) modeling
technique which can capture both the marginal distribution and the autocorrelation
structure of empirical records. The TES approach was used to model transmission of
VBR video traffic over high-speed networks also in [45, 46]. A composite TES-based
model of the “Star Wars” sequence was presented in [47].

TES processes can attain the full range of feasible lag-1 autocorrelations for a
given marginal distribution[44], and can frequently match autocorrelations at higher
lags. TES+ covers the positive lag-1 range [0,1] and TES- covers the negative lag-1

range [-1,0]. TES+ is defined as

Ut 1 =0
+ _ 0 .
v { (UF, + Vi) i=1,2,. (2:15)
while TES- is defined as
__Jut v 1s even .
Ui = { 1 - U iisodd (2.16)
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where Uf ~ U(0,1), and V; is a random variable that is independent of Ug, U;F, ..., UT .
The notation (z) denotes modulo-1 arithmetic.

The key result is that these recursions define random variables with U/(0,1)
marginals, and the autocorrelation structure of U; depends only on the distribution
of V;. Therefore, the autocorrelations can be manipulated by moditying the distri-
bution of V; without changing the marginal distribution of U;. However, altering the
distribution of V; typically changes the autocorrelations of U; at all lags.

TEStool allows the user to interactively change the distribution of V; until
the autocorrelations of the input process match the desired autocorrelations. Expe-
rience is required to adjust the distribution in a systematic way. TEStool software is
described in [48].

Similar to TES processes, AutoRegressive To Anything (ARTA), which was
introduced by Cario and Nelson [49], is a transformation-oriented approach for mod-
eling and generating a stationary time series Y = {Y; : ¢« = 1,2,...} with an arbitrary
marginal distribution and autocorrelation structure specified through lag p. ARTA
takes a process with a known and easily controlled autocorrelation structure, the
background process X = {X; : 4 =1,2,...}, and transforms it to achieve the desired
marginal distribution for the input process,Y. The target autocorrelation structure
of Y is obtained by adjusting the autocorrelation structure of the background pro-
cess. The background process is a standardized gaussian autoregressive process of
order p, denoted AR(p). The critical step in constructing an ARTA process is find-
ing the autocorrelations for the AR(p) background process X, that yield the desired
autocorrelations for the foreground ARTA process, Y. A numerical approach to the

characterization of the relationship between the AR-process autocorrelations and the
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ARTA-process autocorrelations is developed in [49]. Comparing TES to ARTA,
ARTA processes are guaranteed to match p > 1 autocorrelations automatically, with-
out user intervention.

Earlier efforts in modeling video traffic have been confined to short traces of
empirical records or to conference video, due to the difficulties in obtaining empirical
data from realistically long sequences (Weeks of computer processing time are required
at this time to generate statistics from fully compressed, full-length movies).

Recent extensive measurements of real traffic data [4], have led to the conclu-
sion that VBR video traffic cannot be sufficiently represented by traditional models,
but instead can be more accurately matched by self-similar (fractal) models [26, 2].
The crucial feature of self-similar processes is that they exhibit LRD. This is in
contrast to traditional stochastic models, all of which exhibit SRD, i.e., have an au-
tocorrelation function that decays exponentially. The serious implication for ATM
network design is that conclusions based on traditional models may not be applicable
under self-similar traffic. Recent studies on self-similar traffic have shown that the
LRD structure may have a significant impact on queueing performance [8, 9, 50, 51].

In [5] the authors presented a detailed statistical analysis of a 2-hour long em-
pirical VBR video trace (“Star Wars”). The authors estimated the Hurst parameter
of the empirical stream, modeled the marginal distribution of the video “bandwidth”
(i.e., number of bits per video frame or slice) with a combined Gamma/Pareto distri-
bution, and generated synthetic traces by appropriately transforming a FARIMA(0, d, 0)
process [30] that provided the LRD behavior. However, explicit modeling of the SRD

structure was left for future work.
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Although a FARIMA(p, d, q) model [7] can be used to model both long term
and short term correlation structures at the same time, it may be difficult to obtain
accurate estimates of the p and g parameters required for the generation of traces with
arbitrary marginals. This fact motivated us to develop modeling techniques that may
capture the autocorrelation structure directly. In this thesis, we extend the work in
[5] and present a unified approach which, in addition to modeling the marginal dis-
tribution of empirical records, also models directly both the SRD and LRD empirical
autocorrelation structures. While here we utilize MPEG-1 compressed VBR video,
the approach itself can be readily applied to other VBR video compression schemes
(e.g., JPEG, MPEG-2, H.261). Briefly, we generate a background Gaussian process
using Hosking’s technique with both LRD and SRD explicitly incorporated. We then
use a histogram-based inversion technique to generate a foreground process with the
marginal distribution of the empirical data, and systematically calculate and correct
the asymptotic difference between the autocorrelations of the foreground processes
and the autocorrelations of the background processes so that the autocorrelations of
the foreground processes match that of the empirical streams. We also prove that the
value of the Hurst parameter H is not affected by a large family of transformations.
Different from ARTA processes which can only match p autocorrelations, our ap-
proach matches the autocorrelations in an asymptotic sense so that the LRD nature
is preserved.

Most often in the past, long video traffic traces have been taken from the “Star
Wars” movie. In this paper, we use approximately two hours of video from the movie
“Last Action Hero”. The movie was initially encoded using the MPEG-1 algorithm

[52, 53], with a hardware intraframe MPEG-1 encoder on a Sun SPARC 20 computer
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Coder MPEG-1

Duration 2 hours, 12 minutes, 36 seconds
Number of frames 238,626

Frame dimensions 320x240 pixels

Resolution 8 bits/pixel (3-band color)
Format YUV colorspace, CCIR 601-2
Framerate 30 per second

Slicerate 15 per frame

Table 2.1: Parameters of compressed empirical video sequence.

[54]. The movie was then decompressed and re-encoded with both intraframe and
interframe coding, using the PVRG-MPEG 1.1 software codec [55]. A summary of

the parameters of the empirical trace is given in Table 2.1.

2.3.1 Generation of FGN Trace

Clearly, generation of long synthetic traces from self-similar processes poses significant
difficulties, due to their long range dependence. The earliest exact simulation method
for FGN models was proposed by McLeod and Hipel [56]. That was based on Cholesky
decomposition of correlation matrices which is efficient only for short traces. Hosking
[7] improved the approach in [56] by employing the Levinson-Durbin algorithm to
make it appropriate for longer time traces. We briefly describe Hosking’s procedure
in the following paragraphs.

For a FGN process X with m = 0, the conditional mean and variance of Xy,

given the past values xj_1,x5_9,..., 1, may be written as [57]
k
mp = E(Xk|$k—17$k—27 .. .,Il) = Z ¢kjfck—j-|—1 for & Z 2 (217)
=2

k
vp = Var(Xg|lte_1,Tp_z,...,21) = 0 H(l — qbf]) for k > 2 (2.18)

=2
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Here ¢;; is the jth partial correlation coefficient of {X;} and the ¢;; are partial
linear regression coefficients. For simulating a sample {x1,21,..., 2,1} of size n
from a FGN process, [7] describes the following algorithm:

1. Generate a starting value x; from a Gaussian distribution N(0,0?). Set
N, =0, D, =10, =%

2. Set Ny = 1r(2),Dy = D1,¢22 = g—z,mg = ¢92x1 and vy = (1 — ¢3,)vy, generate

a value x5 from a Gaussian distribution N(mg,vy).

3. For k =3,...,n—1, calculate ¢y;, 7 = 2, ..., k, recursively via the equations
k-1

Ny = r(k—=1)=> ¢p_1jr(k—J) (2.19)
71=2

Dy = Dy_y — NZ /Dy (2.20)

¢>kj = ¢>k—1,j - ¢’kk¢’k—1,k—j+1 J = 27 RN k—1 (2'22)

Calculate m; = Efﬂ Grjri—j+1 and vy = (1 — @7, )vr_1. Generate x) from the
Gaussian distribution N (my, vg).
The above method is applicable to any Gaussian process as long as the corre-

lation function r(k) is known.

2.3.2 Generation of a Self-Similar Process with an Arbi-
trary Marginal Distribution

Let X, be a Gaussian process with zero mean, unit variance and autocorrelation

function r(k). Let Fx(z) be its marginal cumulative probability function. Let Fy(y)

be a marginal cumulative probability function corresponding to a process Y;. Then we

can generate the process Y; with the desired marginal cumulative probability function

Fy (y) from the process X by using the following transformation [44, 5]:
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Ye = h(Xg) = Fy ' (Fx(Xp)) k=1,2,... (2.23)

In real modeling procedures, Fy(y) can be obtained either by modeling an
empirical distribution using parametric mathematical functions or, as we do in our
approach, by inverting the empirical distribution directly. An important issue, how-
ever, regarding this approach is that if the process X is a self-similar Gaussian process
with Hurst parameter H, then the nature of the process Y may not be known. In the
following, we show that, under general conditions, the process Y will be a self-similar
process having the same Hurst parameter with process X.

Theorem 1: Let X = {X;,: =0,1,...} be a zero mean, unit variance station-
ary Gaussian process defined on a probability space (2, F, P) and h: R —— R be a
Borel measurable function. If A?(X) is integrable with respect to P ,E(h(X)X) # 0,
and r(k) — 0, then limy_ ., rn(k)/r(k) = [E(R(X)X)]*/VAR(R(X)), where r(k) and
ri(k) are the autocorrelation functions of process X and h(X) respectively.

Proof: Since h*(X) is integrable with respect to P, it follows by a straight-
forward application of the Schwartz inequality that the autocovariance of Y is finite

or
1 x? —2r(k)zizipr + $?+k

i T ey

is integrable with respect to Lebesgue measure.

h(zi)h(zitr) 3 (2.24)

Due to the symmetry of the zero mean Gaussian probability distribution, and
the fact that h*(—X) is also integrable with respect to P we can easily conclude that

the function

2 . 2

1 z? 4 2r(k)ziziyr + z3
h(zi)h(ziq ) ————=exp{— 3 +k
2my/1 — r2(k) 2(1 - r2(k))

} (2.25)



24

is integrable with respect to Lebesgue measure.
Furthermore, since for any real numbers x and y we have exp(|zy|) < exp(zy)+

exp(—zy) the function

2 . 2

1 x? — [2r(k)ziz 4 r| + x?
h(@i ) (i 45) —— == exp{— . L
2my/1 — r2(k) 2(1 - r2(k))

} (2.26)

is integrable with respect to Lebesgue measure. By the expansion of exponential

function, we have

exp{ o ik} = Z Tl i ]/t (2.27)
Therefore the function
- . , 1 r(k) o mgy =} + $?+k
Z_:h(%)h(zzﬂc) i) = 2 () TiTiyrl] /n-eXP{—m} (2.28)
is integrable with respect to Lebesgue measure, that is
- ) ) 1 r(k) . n i+ 1+k
//{; Ih(ﬂfz)h(ﬂvz+k)|27T 0 1= TQ(k)szz+k|] /n!exp{—m}}dw idzipx <oo  (2.29)
Furthermore the function
. , 1 r(k) o mgy =} + I?+k
h(zi)h(zig k) i) =TTy TiTitk] /n.exp{—m} (2.30)

is also integrable with respect to Lebesgue measure for Vrn > 0.

By definition, we can calculate the autocovariance of Y as follows:

COV(Y;, Yipx) =

1 1’? —2r(k)ziziyr + z‘?_l_k
/ / ) T ey e P

, ol + 7l .
//mh( Titk {Z Titk] /n~}eXP{—m}d%dm+k

~[B(h(X))P
(2.31)

By equation (2.29) and the dominated convergence theorem, for each k& > 0,

we can write



COV(Yi,Yipr) =

Ly (k) " 2} +a}
= —F— ,TZ//h(l'i)h(xi+k)[l_TQ(k)$i$i+k] /n']eXp{_2(1_r z-k))}dl'1dl’z+k
-[E (f(X))
= r(k) (zi)z; exp{— — 57— }dz 2 ———lfiﬁl——— r
T ] 3/2{/ et < T e )
: 1/2{/ Zi exp{ ( ))}dl‘l} _[ ( (X))]2
where we define R(r(k)) as follows:
R(r(k)) =
1 . T(k) n—2 n 1 I?-I— 2
EZ;//h(Ii)h(l’i+k)[1_T2(k)] [Zizitr] /n.]exp{—iﬂl_r (-I-k))}dﬂfv.d%q.k

It is easy to see that

x + 2—}—.7:2
Py ¢ (- ZF by

2(1—r2(k)) 2

exp{—

Therefore, by using the Cauchy-Schwarz inequality, we have

|R(r (k)| <

IN

(*) -2, , n
2(k)l] 2/ BIIA(X)[1X "]}

IN

G2 B2 (X)) ()

Given r(k) — 0, there 3K such that, for Yk > K, we have

Therefore, by equation 2.35, we have

[oe]

|R(r (k)| < 27TE(h2(X))2:[1/4]"_2/n!E(X2")

87rE(h2(X))Z1/n!E((X/2)2")
81E(h?(X))E(exp{X?/4})
= 8V2rE(h* (X)) < oo fork > K

IN

s r 1‘? + 1‘?
=> / / Mol s eI exp{ =
n=2

25

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)
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Now by equation 2.32 and 2.37, we have

Koo (k) | koo r(K)VAR(Y;)
1 {f hzi)z; exp{—g—f}dwi}2
27 VAR(K(X;))
[B(h(X:)X:)]?
VAR(h(X:))
= a (2.38)

rp(k) . COV(Yy,Yiqk)

where a = M

VAR(h(Xz))Z) .Because F(X) = 0, we have E[h(X)X] = E[(h(X)—EA(X))X].
By using the Cauchy-Schwarz inequality it follows that 0 < ¢ < 1.0

A close but different conclusion proved by Dr. M. Taqqu can be found in
Proposition 3.1 of [37] which has shown that, under similar conditions as the above
Theorem 1, VAR(YCN | h(X;)) is regularly varying with exponent 2H,1/2 < H < 1,
as N — oo, if and only if r(k) is regularly varying with exponent —D = 2H — 2 as
k — oo. For more about this conclusion, please refer to [37].

Under the conditions of Theorem 1, if process X is a LRD process with Hurst
parameter H, process h(X) will also be a LRD process with the same Hurst parameter
H. In the following parts, we will call the class of processes which satisfy Theorem 1
the class of Marginal-Transformed Processes (MTP).

The empirical distribution function and the transform k(.) corresponding to

the trace of “Last Action Hero” is shown in Fig. 2.1 and 2.2.

2.3.3 Generation of a Process with both LRD and SRD

In the following parts, we describe our approach to modeling VBR video with both
LRD and SRD in four steps:

Step 1: Estimation of the Hurst parameter H:



27

0.25

0.05 - i

0 ! ! ! !
0 5000 10000 15000 20000 25000 30000 35000

Bytes/frame

Figure 2.1: Empirical distribution function for “Last Action Hero”.
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Figure 2.2: Transform function h(X) that converts a normal distribution to the
marginal distribution of the “Last Action Hero” trace.
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Figure 2.3: Variance-time plot for “Last Action Hero”.

Fig.2.3 shows the variance-time plot for the empirical trace of “Last Action
Hero”. Logarithms are taken to base 10. An estimate for the corresponding Hurst
parameter is H =0.89.

The R/S plot is shown in Fig. 2.4. An H =0.92 was determined.

Fig. 2.5 depicts the frequency domain MLE result. At aggregation level m =
700, an estimate of Hurst parameter H results in H =0.95+0.07.

Combining the results of the above three approaches, we decided to set H=09
and B = (.2 for the empirical trace of “Last Action Hero”.

Step 2: Modeling the autocorrelation function:

The autocorrelation resulting from the actual empirical trace of “Last Action
Hero” movie is shown in Fig. 2.6. Upon inspection of the plot it is evident that a

“knee” around lag 60 to 80 exists. For lags less than the “knee” we observe that the au-

tocorrelation decreases relatively fast thus indicating a short term dependence. When



29

45

4r 0.928717*x-0.335963 — 7

log(R/S)

log(d)

Figure 2.4: Pox diagram of R/S for “Last Action hero”.
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Figure 2.5: Frequency domain MLE estimate Hm of H (solid line) and 95%-
confidence intervals (dotted lines), as a function of the aggregation level m for em-
pirical video trace.
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the lag is larger than the “knee”, we can observe a slowly decreasing autocorrelation
indicating long range dependence. The rapidly decaying part of the autocorrelation
can be approximated by superimposing a number of decreasing exponentials of the
form exp(—A\;k) with different rates A;. Furthermore the part corresponding to long

range dependence can be approximated by Lk™?, where L is a constant. We can now

write the following:

r(k) = Lk°I(k> K,

j
+ Y wiexp(—Nk)I(k < Ky),k=1,2,...
=1

Zwi = 1
J

LE" = S wiexp(—\Ky) (2.39)
=1

where K; is the lag value corresponding to the “knee”, I(.) is the indicator function.
In our case we used one exponential for modeling the SRD. To find the exact knee
value, we follow the following procedures:

First, we set an error range e. Starting from lag 0, we apply the least square
fitting recursively to the autocorrelations with increasing lags until the error is larger
than e. The resulting exponential function is the model of short term autocorrelations.
Similarly, starting from the largest lag, we recursively fit the model for LRD parts
with decreasing lag by fixing the measured parameter 3 until the error is larger than
€. Then the lag value corresponding to the crossing of the two models is the knee

value. Such a fit is shown in Fig. 2.7. Finally we obtained the following expression



31

Autocorrel ation

0 50 100 150 200 250 300 350 400 450 500
Lag k

Figure 2.6: The estimated autocorrelation function of “Last Action Hero”.

for the autocorrelation:
(k) = exp (—0.00565k) [ (k < K;) + 1.59k7 21 (k > K;) (2.40)

As will be illustrated later on by simulation experiments, the exponential component
was necessary since the polynomial component decays too fast in the early lags.

It should be noted that the #(k) obtained through the above approach might
not be a well-defined autocorrelation function. In [58], it is shown that 7(k) is a
well-defined autocorrelation function if and only if #(k) forms a positive definite se-
quence. While this may be difficult to check, we find that,in practice, if the conditions
in equation 2.39 are satisfied, 7(k) will typically be a well-defined autocorrelation
function.

Step 3: Calculation of the “attenuation” factor a:

Let process X be a stationary Gaussian process with zero mean, unit variance

and autocorrelation function 7#(k). Define process Y as equation (2.23).Let r(k) be
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Figure 2.7: Autocorrelation fitting result.

the autocorrelation function of the processes Y. By Theorem 1, we have ry(k) =
ar(k), as k — oo, where a = % < 1. We call a the “attenuation” factor.
By this formula, a simulation results a = 0.94.

Step 4: Generation of a process with the desired autocorrelation:

Let r(k) = r(k)/a, for k > K;. Then for the short term part, we solve the

following equation to obtain the rate A:

exp (—AK;) =1/a (2.41)

and we let r(k) = exp(=Ak)7(k) for k < K;. We decided to set K; = 60 based on
the intersection point of the two fitting curves. We then generate process X with the
new autocorrelation function r(k) using Hosking’s method and the process Y using
equation (2.23).

To compare our model with the original video trace, we generate a synthetic
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Figure 2.8: Autocorrelation of the empirical trace and the final simulated process.

trace that has the same length as the original video data. The final autocorrelation
result of the synthetic data trace is shown together with the empirical autocorrelation
of Fig. 2.8, indicating a satisfactory match.

In Fig. 2.9, the frequency domain MLE result of the synthetic trace is shown.
At aggregation level m = 450, an estimate for H is H =0.91 £ 0.057 consistent with
the prediction of theorem 1(i.e. Processes X and Y have the same Hurst parameter).

To compare their marginal distributions, we show in Fig. 2.10 the Q-Q plot of

the two data sets, which indicates a good agreement.

2.3.4 Modeling VBR Video with Interframe Compression

In this section, we generalize our approach to the modeling of VBR video with both
intraframe and interframe compression. The codec we used is the PVRG-MPEG 1.1

software codec based on the Santa Clara 1991 draft of MPEG-1 [55].
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Figure 2.9: Frequency domain MLE estimate Hm™ of H (solid line) and 95%-
confidence intervals (dotted lines), as a function of the aggregation level m for syn-
thetic data trace.
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Figure 2.10: Q-Q plot comparing the marginal distributions of the simulation process
and the empirical trace.
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The MPEG-1 coder [53] consists of five stages: a motion compensation stage,
a transformation stage, a lossy quantization stage, and two lossless coding stages.
The motion compensation stage subtracts the current image from the shifted view of
the previous image if they are both alike. The transform concentrates the information
energy into the first few transform coefficients, the quantizer causes a controlled loss
of information, and the two coding stages further compress the data closer to symbol
entropy.

A MPEG-1 sequence consists of three separate parts: a series of intraframes (I
frames), which are image frames coded individually without any temporal prediction;
a series of forward predicted frames (P frames), interspersed between these I frames;
and bidirectionally predicted frames (B frames) interspersed between the forward
predicted frames and the intraframes. A typical frame sequence in a GOP (group of
pictures) is as follows:

IBBPBBPBBPBBI..

Our approach to modeling interframe-encoded MPEG-1 VBR video is to gen-
erate a single stationary background process X with both SRD and LRD structures
and then generate the foreground process using three different transforms h;(X),
hp(X) and hp(X) based on the histograms of I, B and P frames, respectively, ac-
cording to above frame sequence structure. The PVRG-MPEG 1.1 software codec
used in our experiments produced video traffic in which I frames appear periodically
once every 12 frames.

We model the composite I-B-P video traffic as follows:

Step 1: Isolate I frames only and model the I-frames process according to the

previous sections. Assume rp(k) be its final autocorrelation function;
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Step 2: Rescale the estimated autocorrelation of the I frames :
r(k) =ri(k/Ky) (2.42)

where, r7(k) is the autocorrelation and K; = 12 is the period of I frames;

Step 3: By using Hosking’s technique employing the autocorrelation r(k) in
the last step we generate the process X;

Step 4: We then generate process Y using equation 2.23 where function A(.)
is replaced by functions hy(.),hg(.), hp(.) iteratively according to the GOP structure.

The similarity between the synthetic and real data trace is evaluated by means
of the corresponding estimates of autocorrelation functions and marginal distribution
histograms. Figures 2.11, 2.12, and 2.13 show the foreground autocorrelation of the
synthetic trace in comparison to the autocorrelation of the original empirical trace
from “Last Action Hero”. Figure 2.14 compares the marginal distributions of the
model process versus the empirical data trace, using a Q-Q plot. The agreement
shown in the figures above supports the use of our approach for modeling complex
traffic streams.

We have developed a software package that establishes an automatic search for
the best background autocorrelation structure and the calculation of the attenuation

factor a.
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Chapter 3

Importance Sampling Techniques

for MTP

3.1 Lindley Equation and Large Deviation Result

Consider a slotted-time single server queue with deterministic service rate g and an
arrival process X = {X;,¢ = 1,2,...}, with X} representing the number of arriving
cells within the kth time slot. Here, without loss of generality, we assume X} can
take any real value. Letting () denote the size of the queue at time £k =0.1,..., we

have the following Lindley equation [59]:
Qk = (Qk—l + Xk - M>+ = <Qk—1 + }/k>+7 for k = 1727 Tt (31)

where we refer to the process Y = {Y; : Yp = Xy — p,k = 1,...} as the netput
process and (z)* denotes max{0,z}. If we define the total netput process W as
Wy : W =X,V k=1,2,... Wy = 0} and assume @y = 0, we will have the

following Reich formula [60]

Qk:g?%(wk—m) for k=1,2,... (3.2)

39
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Now we assume that the process X is stationary and ergodic. We can then
claim that the limiting process of () as & — oo exists. This follows from a well-
known result that if (o = 0 and the total netput process W has stationary increments
with limy_., Wy = —o0 a.s., then ); converges in distribution to a proper random
variable, say @), [61]. In this case, since X is stationary and ergodic, it follows from
the Ergodic Theorem [62] that lim,_. Wi/k = E[X; — p] < 0 a.s. if utilization
is smaller than 1, which in turn implies that lim,_. W; = —oc a.s.. The above
arguments follow [63]. The difference is that here the process X is a general stationary
and ergodic process rather than FGN. Clearly the above conclusion can be generalized
to the cases where ()q are finite.

It X is a FGN process with zero mean, unit variance and Hurst parameter H,
X will be a stationary and ergodic Gaussian process [9, 35]. Duffield et al. [8] have

shown the following steady-state, large deviation result:

lim b2 1og Pr(Qo > b) = —c 20" (c 4 )22 (3.3)

b—oco

where ¢ = p/H — p,u > 0. Therefore, in contrast to traditional SRD models, the
steady-state queueing distribution decays asymptotically in a Weibull fashion rather
than exponentially. Thus the performance (in terms of buffer overflow probability)
predicted under FGN may be worse compared to the one derived using traditional
models assumptions. This intuition stems from the fact that FGN models capture the
burstiness of traffic at all time scales, contrary to traditional models which only cap-
ture burstiness at certain time scales. Under traditional (SRD) models, the burstiness
at different time scales is typically exhibited by using a complex hierarchical structure

which makes theoretical analysis and simulation increasingly difficult due to the large
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class of system parameters to be selected. In contrast, self-similar models capture
long range dependence in a parsimontous manner which makes them very attractive
from the standpoint of modeling realistic LRD traffic [2].

Results in [8] deal with the steady-state asymptotics for a single-server queue
under FGN. While the self-similar property captures the burstiness of traffic at all
time scales, realistic ATM networks are expected to have a limiting time scale. There-
fore, predicted performance based on a steady-state regime may not be accurate
enough for practical applications. Furthermore, questions regarding the transient be-
havior, small buffer sizes, multiplexing effects, and, in general, the performance of
ATM networks under LRD traffic, remain unanswered.

Due to the recursive nature of Hosking’s method, the computational effort
required for generating self-similar traffic increases approximately as O(n?) with the
length of the trace, n. Therefore, although Hosking’s method has some improvements
over McLeod’s method, it still requires a large computational effort, especially for long
traces.

Given the computational cost of trace generation, the number of replications
required becomes crucial, especially when studying ATM networks where one may
want to simulate events that are rare, e.g., cell losses with probability < 1072, or
extremely long cell waiting times. In such cases, using conventional Monte Carlo
simulation, we may need to generate millions of traces using Hosking’s method, which
is practically infeasible. In the following, we develop a fast simulation approach based

on importance sampling, that makes Hosking’s method applicable to QoS evaluation

in ATM networks.
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3.2 Importance Sampling Theory

Let U be a random variable that has a probability density function p(u) and consider

estimating the probability P = Pr(U € A) for some set A, we can write
p= /_ Li(t)p(t)dt = E,[14(U)] (3.4)

where 14(+) is the indicator function of event A. Assume that p/(u) is another density
function. Assuming that p(u) = 0 whenever p'(u) = 0 (absolute continuity condition),

we have

(V)
(V)

=

P= [ L yayde = B, (1)

BRSO | =B [L(U)LU)]  (3.5)

3

where L(u) = p(u)/p'(u) is a likelihood ratio (weight function) and the notation p’
denotes sampling from the density p’(u). This equation suggests the following vari-
ance reduction estimation scheme which is called importance sampling (1S) (see [64]
and references within): Draw N samples uq,...,uy using the density p’. Then, by

equation (3.5), an unbiased estimate of P is given by

, 1 X :
PN = NT; ]A(un)L(un) (36)

i.e., P can be estimated by simulating a random variable with a different density and
then unbiasing the output I4(u,) by multiplying with the likelihood ratio. We call
p'(u) the transformed density. Since any density satisfying the absolute continuity
condition can be used as the transformed density, the question arising is which is the
optimal transformed density, i.e., which is the density that minimizes the variance
of P. The optimal density thus defined is not practically feasible because it implies
knowledge of P [65].
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Typically, the search for p’(u) focuses on constrained or parametric solutions.
A general rule for choosing a favorable transformed density is to make the likelihood
ratio small on the set A. When A is a rare event under density p(u), by appropriately
choosing a density p'(u) we can make the event A more likely to occur and at the
same time achieve a reduction of the variance of the estimate P. For more about the
IS technique, the interested reader should consult [64] and [65]. Importance sampling
has been successfully applied to the simulation of various SRD processes. A variety
of approaches, namely analytical, large deviation-based, and statistical have been

proposed for the selection of p'(u) ([64, 65, 66, 67] and references within).

3.3 Transformed Density and Likelihood Ratio

In order to apply the theory of importance sampling to efficiently simulate rare buffer
overflow in an ATM multiplexer under VBR video traffic, we need to construct an ap-
propriate “transformed” arrival traffic stream, calculate the corresponding likelihood
ratio, and choose optimal (or simply favorable) transforming parameter values. In
[51] the transformed process and likelihood ratio were described for simulating FGN
processes. Here, we extend those results for the case of a self-similar Gaussian process
that serves as the background process for the generation of realistic VBR video traffic.

Let X be the background self-similar Gaussian process as defined in Sec-
tion 3.2, with mean value m = 0. Define a new process X' = {X'(k) : X'(k) =
X(k)+m* k=1,...}. It is easy to see that the process X', which we call the trans-
formed background process, is a Gaussian process with mean m*, and that its variance

and correlation function are the same as for X. Given a realization (z},...,z}_;) of
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process X', the corresponding realization of process X satisfies z; = 2’ —m*, for
J=1,2,...,k— 1. From equations (2.17)—(2.18),
Ex (X |z,_{,...,2}) = m"
+ Ex(Xg|z),_, —m*,...,2] —m")
= m" 4+ Ex(Xg|eg—1,...,21)

k
= m ) dri(wr-j)

71=2
k
= m + ) pj(ay_; —m")
71=2
= m +myx fork=23, ... (3.7)
where
L
mex = Y bri(ap_; —m”) (3.8)
71=2
Also from equations (2.17)—(2.18)
varx(Xj|z)_y, ..., 27) = varx (Xg|Tp—1,. .., 21) (3.9)

In IS simulation, we simulate a transformed foreground arrival process Y’
instead of the arrival process Y, where Y is defined in equation (2.23) and Y/ =
h(X}) = Fy'(Fx(X})). It is straightforward to observe that, during the simulation
we need only calculate the likelihood ratio of the background processes, X and X'.

The likelihood ratio of the corresponding background processes, X and X'
respectively, is calculated as follows: Let (2f,...,2,_;) be also taken as a realization

of the netput process X. Then,
k
Ex(Xileg_y, ..o h) = D drilah;)
71=2
= myx fork=2,3,... (3.10)

(3.11)



where
Ak
mpx = ) dki(h;)
71=2
We also have
varx (Xg|z)_ 4, ..., @) = varx (X, |2} 4., 2])
The likelihood ratio of the background processes up to time & is
! !
L(k) = fX(:L‘ll, . 7$}f)
Pt )
_ Ix(@)fx(h]2)) - fx(@leg oy, 2)
Fxo(@h) fxo(aglat) - fxo(aplel_y, .o 2h
k
=1
where
. !
Ll — f)S ('171,)
fxi(x1)
! ! !
L; = fX(ri,Mi,_l’ 7t1,) for 1=2,3,...,k
fxo(ailai_y, ... 2t)
Then, from equations (3.7) to (3.11), we have
L= =23
= ort=2,3,...
where

—m; x + m" + m; x/
: 2
o2 [Ty (1 — ¢%;)

Mi — 6—9i(—mi,X—m*—mi,X')/2

b = —
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(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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and

2777,*‘%!l —m*2

Li=¢ = 22 (3.20)

The probability Pr(Qr > b) can be estimated by observing N iid replications

of the realization w§n),...,w](cn) of W, forn =1,...,N. Let L™, n =1 N

9oy y

denote the corresponding likelihood ratio for each replication. Then, we propose the
following simulation procedure for estimating Pr(Qy > b):

1. Initialize s = 1,n = 1;

2. Generate a sample point x; by Hosking’s method described in Section 3;

3. Generate a sample point y! by the equation y! = x; + m*;

4. Generate a sample point w; by replacing the process Y with the process Y’
in the definition of total netput process;

5. If w; < band ¢ < k, then repeat from step 2 with : = ¢ + 1 ; otherwise
continue with step 6;

6. If w;, < band: =k, set [, =0 and go to step 8; otherwise continue with
step 7;

7. Set I, = 1 and calculate LU = L(7) via equations (3.14) to (3.20);

8. If n = N evaluate the estimate using P = %Zi\le I,L"); otherwise set

n=n+41,2=1 and goto step 2.
3.4 Optimal Transformed Mean Value

Based on the above description, we can apply IS by suitably modifying (transforming)
the mean of the arrival process. However, an efficient method to obtain a favorable (or

near-optimal) transformed mean remains to be devised. Here, we describe two such
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methods, namely a heuristic search and an approximate analytical approach. While
the analytical approach can be only applied to the Gaussian process, the heuristic
search approach can be applied to any processes. It has been successfully applied to
traditional (SRD) models (see [66] and references within), and will be briefly explained
in Section 3.6.

We now focus our attention on the approximate analytical approach.If X is
a FGN process with mean m, variance o? and Hurst parameter H, W will be an
stationary increment Gaussian process with mean (m — u)k and variance o?k?H.

Because stationary Gaussian processes are reversible, for ()o = 0,we have

Pr(Qr > b) = Pr(orglaé(wk —W;) >b) = Pr(orgliaém >b), for k=0,1,2,...
(3.21)

From equation (3.21), we have [9, 8]
Pr(Qx > b) > max Pr(Wi > b) 2 P (3.22)

This approximation, which is an optimistic bound for Pr(Qr > b), can be quite
accurate for any time k, when b is large. The heuristic behind this assumption is that

rare events occur in the most likely way [68, 8]. Therefore we have

Pr(Quo > b) ~ sup Pr(W; > b) 2 Pw,o for large b (3.23)
>0

By the assumptions in section 3.1 and 3.3, W; has the distribution N(—uz,o%*H).

Therefore we have

b+

s;t>1£) Pr(W; >b)=1-— 11>1£<I)( 3 2H) (3.24)
where @(.) is the cdf of a standard Gaussian distribution. And then we have
b+ ue L T B b A ..
arg glgq)( ¥ 2H) = arg gé(m) o= ks (3.25)
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where arg inf;>q denotes the value of the argument ¢ for which the minimum s achieved

and c is defined in equation (3.3)[8, 9]. Now by definition, we have
Pw:oo = PI’(VV}CS > b) (326)

Similar procedure can show that, for & > ks, Pwy = Pr(Wy, > b). Thus, loosely
speaking, k, is the time when the buffer overflow probability for the specific buffer size
approximately equals to the buffer overflow probability of steady-state,i.e. Pr(Qs >
b) ~ Pr(Wy, > b). A very accurate approximate formula for calculating Pr(Wj, >
b) (i.e., the tail of a Gaussian distribution) was recommended in [69]. The above
approximation procedures lead to quite accurate results, as our results in Section 3.5
indicate.

Since Pr(Qo > b) ~ Pr(Wj, > b), our approximate analytical approach con-
sists of finding a near-optimal transformed mean value for Pr(Wj, > b) and then
applying that same transformed value to the simulation of Pr(Q. > b). Since Wi,
is normally distributed with mean —puk, and variance o?k?¥, the likelihood ratio

corresponding to experiments with buffer size b will be

_ (btpuks)?
e 20'2k§H

_(b—m;jvks)2
202 kgH

L(k,,b) = (3.27)

(&

where mjy is the transformed mean value. By minimizing the above likelihood ratio as
suggested in [67, 70], we can find a near-optimal transformed mean mjy,  , >~ b = cks.

Hence, a near-optimal transformed mean value for process Y can be found as follows

mipt = m;V,opt/kS ~c= IU’/H — K (328)
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Furthermore, it is reasonable to assume and we will verify through simulations later
that m} , is also near-optimal for the estimation of the (transient) probability Pr(Q >
b) when k > k;.

In the next section we will show using numerical examples that the heuristic
result and the approximate result described in the last paragraph are in very close
agreement. Therefore, the above approximate value for m} , can be used directly or
provide a good initial estimate for the search of a near-optimal transformed mean

value.

3.5 Numerical Results for FGN

For IS simulation, the estimator P of the unknown probability Pr(Qy > b) is a
function of (m,m*, u, H,k,b, N,c?). Since our set-up is translation-invariant with
respect to m, we assume m = 0 without loss of generality. We let o be fixed at o = 1,
since as shown in the Appendix, by changing the number of multiplexed homogeneous
sources L, we can observe the same effect as if scaling o.

We divide our simulation experiments into two cases, one with H = 0.7, which
represents less bursty traffic, and one with H = 0.9 representing more bursty traffic.
In each case, we consequently discuss dependence on the transformed mean value
m*, on service rate g, on stopping time k, on the buffer size b, and on the number
L of multiplexed homogeneous sources. By homogeneous sources we mean sources
which have the same Hurst parameter. In the final part, we simulate multiplexing
two heterogeneous sources, one with H = 0.7 and one with H = 0.9. We also provide
example values of the improvement factor of our IS technique over conventional MC

simulation.
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3.5.1 Casel: H=0.7

1. The dependence on m*:
It is important to point out that the IS estimator of Pr(Q) > b) is always unbiased,
regardless of the value of m*. However, the sample path properties as well as the
variance of the IS estimator are dramatically affected by the choice of m*. This is
the basis for the heuristic search procedure for the optimal transformed mean value,
described in [66]. Fig. 3.1 is an example of plotting the estimated Pr(Q, > b), while
Fig. 3.2 plots the normalized variance U%/PZ of ]3, both versus the transformed mean
value m*. The value corresponding to m* = —0.5 is in fact the result of direct
(conventional) Monte Carlo (MC) simulation. We can see that, as m* increases, the
normalized variance exhibits a clear “valley” around the most favorable values of
m*. This behavior, as well as the behavior of the estimated Pr(Qr > b) versus m*,
is discussed in detail in [66] and the references therein. The minimum normalized
variance appears around m” = 0.2 which coincides with the approximate value m}
from equation (3.28).

2. The dependence on pu:
Fig. 3.3 shows the estimated log Pr(Q. > b) versus the service rate y. Each simula-
tion is based on 1000 iid replications. In all simulations, we apply the IS technique
using the near-optimal transformed mean value of equation (3.28). Our simulation
result is compared with the optimistic bound obtained from equation (3.22).

3. The dependence on k:
Fig. 3.4 depicts the estimated log Pr(Q; > b) versus the stopping time k. Each

simulation is based on 1000 iid replications. The dependence of log Pr(Q) > b) on k



51

log Pr(Q >b)

Twisted mean value m*

Figure 3.1: Estimated log Pr(Q., > b) versus the transformed mean value m*. The
Hurst parameter is H = 0.7.6 = 50, p = 0.5.
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Figure 3.2: Normalized variance 0125/]32 of estimated log Pr(Q) s > b) versus the trans-
formed mean value m*. The Hurst parameter is H = 0.7.b = 50, p = 0.5.
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Figure 3.3: Estimated log Pr(Q. > b) versus the service rate g. Each simulation is
based on 1000 iid replications. The Hurst parameter is H = 0.7.6 = 50.

reflects the transient nature of our experiments. The curves show how the queueing
state approaches asymptotically the steady-state as k increases. In order to see how
the time of entering steady-state depends on the buffer size b, in Fig. 3.4 we show
results with different buffer sizes. For b = 20, we also show the direct MC simulation
result in order to illustrate that the IS approach is in agreement with direct simulation.
When b becomes larger, a direct simulation would have become impractically long,
while IS simulation gives very good result even with only 1000 replications. Notice
that the empirically observed times of entering steady-state are very close to the k;
predicted by equation (3.25), with ¢ = p/H — p.
4. The dependence on b:

We simulate the dependence of log Pr(Q)x > b) on b for two stopping times k: one
is time ks predicted by equation (3.25), and the other is 2 x k;. We compare our

simulation results with the large deviation result of equation (3.3) and the optimistic
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Figure 3.4: Estimated log Pr(Qr > b) versus stopping time k. Each simulation is
based on 1000 iid replications. The Hurst parameter is H = 0.7.u = 0.5.

bound of equation (3.22) in Fig. 3.5. Each simulation is based on 1000 iid replications.
It can be seen that, with increasing stopping time, the results are approaching the
large deviation result. This was to be expected since the large deviation result is
based on a steady-state regime while our simulation captures the transient behavior.
5. The dependence on L:
Fig. 3.6 shows the estimated log Pr(Q); > b) versus the number of homogeneous
multiplexed sources L, for H = 0.7. Each simulation is based on 1000 iid replications.
Fig. 3.6 also depicts the optimistic bound of equation (3.22). With changing L, both
the buffer size b and the utilization are kept constant(i.e. The service rate is in fact
Ly in order to maintain the same load on the queue). The multiplexing gain (i.e.,

reduction in Pr(Q) > b) with increasing L) is evident.
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Figure 3.5: Estimated log Pr(Qx > b) versus the buffer size b with their corresponding
95% confidence intervals(CI). Each simulation is based on 1000 iid replications. The
Hurst parameter is H = 0.7.p = 0.5.
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50.
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Figure 3.7: Estimated log Pr(Qx > b) versus the service rate g. Each simulation is
based on 1000 iid replications. The Hurst parameter is H = 0.9.6 = 50.

3.5.2 Casell: H=0.9

The simulation procedures are basically the same as for H = 0.7. Therefore, we only
comment on those features which are different from previous experiments.

1. The dependence on pu:
Fig. 3.7 shows the estimated log Pr(Qx > b) versus the service rate p, for H = 0.9.
Each simulation is based on 1000 iid replications. Comparing this result with Fig. 3.3,
we see that increasing p is more efficient for burstier sources. Based both on the
optimistic bound (3.22) and the large deviation result (3.3), it is easy to obtain
Pr(Qs > b) = de= " where a, d are positive, slowly changing functions of p. This
result is in close agreement with our simulation results.

2. The dependence on b:

Fig. 3.8 depicts the dependence of the estimated log Pr(Qx > b) on b, for H =
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Figure 3.8: Estimated log Pr(Qx > b) versus the buffer size b with their corresponding
95% confidence intervals(CI). Each simulation is based on 1000 iid replications. The
Hurst parameter is H = 0.9.p = 2

0.9. Each simulation is based on 1000 iid replications. Comparing this result with
Fig. 3.5, we find that increasing the buffer size is less efficient in reducing the overflow
probability than for less bursty sources (H = 0.7), while always less efficient than for
SRD models (estimated log Pr(Qr > b) decays less than exponentially fast). This

_gb2(1—H)

agrees with large deviation theory that predicts Pr(Q. > b) &~ de , where a,
d are positive, slowly changing functions of b.

3.The dependence on L:
Fig. 3.9 shows the estimated log Pr(Qx > b) versus the number of multiplexed sources
L, for H = 0.9. Each simulation is based on 1000 iid replications. Also similar
to Fig. 3.6, with changing L, both the buffer size b and the utilization are kept

constant. Comparing Fig. 3.9 with Fig. 3.6, we see that increasing the number of

multiplexed sources leads to higher gains (larger reductions in overflow probability)
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Figure 3.9: Estimated log Pr(Q) > b) versus the number of multiplexed sources L.
Each simulation is based on 1000 iid replications. The Hurst parameteris H = 0.9.6 =
50.

for burstier sources (higher values of H). Using large deviation theory (but also from
the optimistic bound of Section 4) we obtain that the dependence with respect to L
of Pr(Qe > b) ~ de=*L*" ™" where a, d are positive, slowly changing functions of L.

This result is, again, in close agreement with our simulation results.

3.5.3 Case III: Multiplexing Heterogeneous Sources

We now consider the aggregation of two independent FGN processes X; and X,.
We assume that X; and X, have zero mean and unit variance. Their corresponding
correlation functions are defined as in (2.9) with H = H; for X; and H = H; for X,.
We assume H; > H; and the service rate to be p. Then the mean of total work load
process W is —u k, k = 1,2,..., and the variance is k"t 4+ k22, We can show the

following lemma:
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Lemma 1. Let X;, ¢ = 1,2, be two FGN traffic processes with zero mean,

variances o?, and Hurst parameters H;, i = 1,2, respectively. Let H; > H, and
1/2 < H; < 1,1 =1,2. Then the queue length process resulting from the aggregate

FGN traffic satisfies:
blim o220 60 Pr(Qoy > b) = —c 2071 (¢ 4 4)? /2 (3.29)

The proof is given in the Appendix.

Clearly, we have the same result as in equation (3.3) with H = H;. This
indicates that the steady-state tail distribution is dominated by the arrival process
with the larger Hurst parameter.

We will find that the simulation procedures for multiplexing heterogeneous
sources are similar to the steps for single source if we note that the aggregate process
is still a Gaussian process and its mean, variance and autocorrelation function can
be calculated from the corresponding values of individual sources.Fig. 3.10 shows the
result of multiplexing two self-similar sources, one with H = 0.7 and another with
H =0.9. As we aggregate the two arrival sources, we also increase accordingly the
total service rate in order to maintain constant load while buffer size is kept constant,
and observe the gain from increased buffer capacity. As shown in Fig. 3.10, the
burstier source (H = 0.9) will dominate the queueing tail distribution, which agrees

with the large deviation result in the Appendix.

3.5.4 IS Improvement Factor

The speed-up or improvement factor of IS over conventional MC simulation denotes

the relative decrease in the required number of replications in order to achieve the
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Figure 3.10: Estimated log Pr(Q > b) versus the buffer size b (heterogeneous sources,
traffic I with H = 0.7, traffic II with H = 0.9). Each simulation is based on 1000 iid
replications.

same statistical accuracy. Let o3, (N) denote the estimator variance after N replica-
tions using conventional MC simulation. Furthermore, let 074(N) denote the estima-
tor variance after N replications using IS simulation. Then the improvement factor
is defined as o3,.(N)/ois(N).

Denote with P the probability to be estimated using N replications. Then,
o3;c(N) =P(1 —P)/N. Since only an estimate P of P is known, we use the approxi-
mation 62,(N) ~ P(1 — P)/N. We also approximate the true o2¢(N) with a sample
variance estimate. Fig. 3.11 shows the estimated improvement factor versus buffer
size, b, for Case I (H = 0.7), and Case II (H = 0.9), respectively.

We observe significant improvement factors for both cases. The improvement

factor increases dramatically as the buffer size increases (i.e., as the overflow proba-

bility decreases), as is desirable.
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Figure 3.11: Estimated IS improvement factors over conventional MC simulation.
Improvement factors denote the ratio of required number of replications for the same
statistical accuracy, and are plotted here versus buffer size, b, for Case I (H = 0.7),
and Case II (H = 0.9), respectively.

3.6 Buffer Overflow Studies in an ATM Environ-
ment

In this section, we use the video model we built in Section 2.3.3 to conduct the
study of buffer overflow in an ATM environment. For the convenience of plotting, we
normalized all buffer sizes with the mean source arrival rate(i.e. 6005.2 bytes/frame
for “Last Action Hero”) througout this section. Analytical approaches to optimizing
the form and amount of transforming for SRD models have been investigated in
[64, 65, 67]. For the case of FGN processes, analytical arguments for optimizing the
transforming process were given in last section. However, after the transformation
in (2.23), a closed-form optimization becomes intractable, therefore we resort here

to the heuristic search approach, which is based on the fact that the IS estimator
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of Pr(Qr > b) is always unbiased, while the sample path properties as well as the
variance of the IS estimator are dramatically affected by the choice of transforming
parameter values. Typically, if we observe estimates of Pr(Qr > b) and its normalized
variance as the transforming parameters change, the normalized variance exhibits
a clear “valley” around the most favorable parameter values, which can be thus,
approximately identified. This approach has been successtully applied to traditional
(SRD) models (see [66] and references within) and to FGN processes in [51].

An optimal selection of the (transformed) mean will result in a greatly reduced
variance of the estimator for P(Qr > b). A favorable (near-optimal) background
(transformed) mean value can be found from plots such as the one shown in Fig. 3.12.
For our experiments, we found the value 3.2 to be a near-optimal transformed mean
value for our simulation scenario shown later, resulting in a variance reduction of
approximately 1000 (conversely, the required number of replications for the same
accuracy is reduced by a factor of 1000). In the figures that follow, when we refer to
buffer size we will essentially mean the normalized buffer size, i.e., the ratio of true
buffer size to mean arrival rate.

All the simulations that we have described thus far have a transient nature
in the sense that they provide an estimate of the probability of buffer overflow at a
given time slot & with initial zero buffer occupation. It is of particular interest to
decide on a simulation run length in order to achieve steady state results, i.e. how
large should k be? Fig. 3.13 shows the transient buffer overflow probability for a given
buffer size b, corresponding to two initial buffer occupancy conditions, namely empty
and 200. From this figure we can see that the transient time in a simulation may

be reduced if the initial conditions are chosen properly. Since the generation of the
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Figure 3.12: Plot of the estimated normalized variance of the estimator versus the
mean value of background process transforming, m*. Results correspond to a stopping
time k = 500, utilization 0.2, buffer size b = 25, and 1000 replications.

background process X’ may be computationally demanding, a small transient period
may be highly desirable.

Fig. 3.14 shows approximately steady state results (k = 2000) for several ser-
vice rates (corresponding to different system utilization values). Clearly enough, the
decay of overflow probability is far from exponential, contrary to the prediction of
traditional models. This is further illustrated in Fig. 3.15, where we compare three
models. The first video model possesses only the SRD and includes only the expo-
nentially decaying part of the autocorrelation as it was derived in Section 2.3.3. The
second model is the one exhibiting both the SRD and LRD. The third model captures
only the LRD structure, based on a single FGN background process (i.e., there is no
short-term exponential component). It is easy to see that for small buffer size the

difference in the probability of buffer overflow is not significant, but as the buffer size
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Figure 3.13: Transient buffer overflow probability, using 1000 replications, b = 200,
and a utilization of 0.4.

increases the estimate based on the SRD model decays much faster than the one based
on the model characterized by both LRD and SRD. Finally, as expected, although
the third model exhibits the appropriate asymptotic behavior, the corresponding loss
probability decays too fast for small buffer sizes.

In Fig. 3.16, we compare our approximate steady state results with the results
using the empirical video trace. Different from the results in Fig. 3.14, the steady
state results in Fig. 3.16 treat the Hurst parameter H as Gaussian random variable
with parameters as measured by Frequency Domain MLE in the last chapter rather
than a constant. The 95% confidence intervals for the steady state results are also
displayed. From Fig. 3.16, we can see that although both results agree closely at
high utilizations, they are significantly different at low utilizations. We believe that
the reason behind these errors is that, for the steady state results, simulations were

based on 1000 independent replications for each different utilization and buffer size.
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Figure 3.14: Overflow probability versus buffer size b, for different utilization values,
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Figure 3.15: Overflow probability versus buffer size b for three cases: using the sim-
ulated model with both LRD and SRD, using a simulated model without LRD, and
using a model with only LRD.
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Since only one empirical trace was available, it was impossible to perform independent
replications for each simulation involving real data. Even if the real data were split
into batches we would expect significant correlations between batches due to the self
similar nature of the traffic. Therefore, very few independent samples can be used to
estimate buffer overflow rates causing significant variance. This argument is further
illustrated in Fig. 3.17 where we try to compare the queueing deviation results of the
model with both SRD and LRD structures and the model with SRD only. For the
simulation cases with a single long synthetic trace, we deliberately choose the stop
time equal to the length of the empirical video trace so that they may reflect possible
deviations of real video traces. It is clearly shown in Fig. 3.17 that the model with
both LRD and SRD structure results in a much larger deviation than the model with
SRD only. This agrees with the conclusion in [12] where it is shown that SRD model
can have a closer match than LRD if simulation is performed with one replication
only and the buffer size in a queueing system is small.

For lower utilizations and larger buffer sizes however this disagreement is ex-
pected to be more profound as shown for the cases with utilizations 0.4 and 0.2 in
Fig. 3.16 since in addition to the above mentioned reasons, a cell loss event now
becomes a rare event making the number of meaningful independent samples even

less.
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Chapter 4

Network Design Issues

4.1 Implications of Self-similar Traffic

Integrated telecommunication networks carry traffic of several different classes, includ-
ing real-time traffic, each with its own set of traffic characteristics and performance
requirements. Two different types of solutions have been advanced to deal with this
phenomenon: In circuit-switched networks, sufficient bandwidth is allocated to each
call to handle its maximum bandwidth requirement; this guarantees that the call
will receive the QoS it requires, but may be wasteful of system resources. In packet-
switched networks, traffic from all sources is packetized, and statistical multiplexing
techniques are used to combine all network traffic through a single switching fabric.
This allows higher network utilization, but requires more sophisticated controls to
ensure that the appropriate QoS is provided.

Different from circuit-switched networks, packet-switched networks derive their
delay from several more causes. In addition to the transmission delay caused by the
propagation of the packet at nearly the speed of light, there is the so called “stop-
and-forward” delay at each switching point waiting for the entire packet to arrive

before commencing the next stage of transmission. Also added to this fixed delay

67
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is a variable amount of delay related to the time that each packet spends in service
queues in the switches. This delay variation is what must be bounded or minimized
if adequate real-time service is to be achieved. Unfortunately, this variation is highly
dependent on traffic characteristics and network resources.

Earlier packet-switched networks (e.g., Internet) only provide datagram service
to which the network makes no service commitments at all, except to promise not to
delay or drop packets unnecessarily (this is sometimes called “best-effort” service).
For this kind of network, traffic models have often been devised and selected for the
analytical tractability they induce in the corresponding queueing systems.

The most striking feature of LRD traffic is that burstiness is displayed across
several time scales (i.e., from milliseconds to years [2]). This burstiness can drive
queueing systems into overflow state for a longer time than traditional models have
predicted as shown in the last chapter(also in [8, 9]). Although significant multiplex-
ing gain can be achieved for LRD traffic streams, the burstier stream will dominate
the queueing tail distribution as it was also shown in the last chapter. This means
that a traffic stream with a lower Hurst parameter may suffer the same mean delay
as a traffic stream with a higher Hurst parameter. In extreme cases, a starvation
problem may be introduced where an unfortunate call may have to wait an indef-
initely long time before it receives service. This kind of problem cannot be solved
by traditional priority strategies. As pointed out in [3], for self-similar traffic, high
priority traffic may block low priority traffic for quite a long time, making it enter
into starvation.

To solve these problems, congestion control must be implemented in such a

way that the network is shared so that clients (1) receive better service than if there
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were no sharing (as in a circuit switched or TDM network), and (2) are protected
from the potentially negative effects of sharing [71]. The principle of isolation is
fundamental for any real-time traffic control algorithm: The network cannot make
any commitments if it cannot prevent the unexpected behavior of one source from
disrupting others.

While there are numerous congestion control schemes proposed in the litera-
ture, they can be generally classified into three types [72, 71]: One kind of service
commitment, which is called guaranteed service, depends on no other assumptions.
That is, if the network hardware is functioning and the client is conforming to its
traffic characterization, then the service commitment will be met. In recent years,
several guaranteed service based algorithms have been developed. They are WFQ [73],
Delay-EDD [16, 24], Virtual Clock [17], and PGPS [18, 19]. Similar to circuit-switched
networks, these algorithms isolate each source from the others by providing it a spec-
ified share of the bandwidth under overload conditions through a proper scheduling
strategy. Service is guaranteed under worst-case bounds. Other approaches such as
Jitter-EDD [20], RCSP [21], Stop-and-Go [22] and Hierarchical Round Robin [23],
attempt to solve the propagation of delay jitter existing in the approaches above
and further decouple the interference between nodes by relaxing the work-conserving
constraint.

The above guaranteed service-based approaches are very promising under tra-
ditional models because they provide a congestion-free and topology-independent
solution to the high speed packet switch network. Unfortunately, they all require
certain burstiness constraints [74] at the access node. A well-known such constraint

is the so-called (o, p) constraint which can be implemented by a leaky bucket. A leaky
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bucket can be modeled by a virtual queue.

As shown in Fig. 4.1, where ()1 is the user access queue and ()3 is a virtual
queue which we use to model the leaky bucket, if (); > 0, we have ()1 = @5 — b.
Therefore, queueing results in [9, 6, 51] can be directly applied to estimate the loss
probability at the access node regulated by a leaky bucket. The result is that, although
the user can be guaranteed loss-free transport within the network using the approaches
above, the user may suffer heavy losses at the access node. Without raising the
bucket rate, losses may become intolerable. But increasing the bucket rate results in
a loose control or no control at all over the burstiness of the user traffic. Therefore
a network that uses guaranteed service must work in a low utilization region. While
guaranteed service is appropriate for intolerant and rigid clients, since they need
absolute assurance about the service they receive, it is not appropriate for tolerant
and adaptive clients for which a small percentage of violation can be tolerated in
exchange for higher network utilization.

The second congestion control approach does not provide for the worst-case
scenario. Instead it guarantees a bound on the probability of lost packets based
on statistical characterization of traffic [75, 76, 77, 78, 79, 80, 81, 82]. In such an
approach, each flow is allotted an effective bandwidth that is larger than its average
rate but less than its peak rate; network utilization is thus increased. Most of these
approaches focus on finding statistical results for the steady state of the network
through a priori characterization of flows based on a statistical model. For LRD
traffic, steady state results may still play an important role in network planning
or long term performance prediction. But as a tool to predict the QoS of a single

user session, steady state results cannot be used as in traditional models. As our
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Figure 4.1: Equivalence of leaky bucket and virtual queue in terms of loss rate.

simulations indicated in the last chapter, the buffer overflow rate of a single user
session may be far from the steady state results due to the inherent LRD structure.
This poses significant challenges to the probabilistic service based approach [83].
In addition, analytical and simulation results in the last chapter have shown that
LRD traffic shows strong subadditivity rather than linearity as effective bandwidth
approach has assumed. Therefore, effective bandwidth solutions for LRD traffic can
become a loose bound and result in low network utilization again.

To overcome the problems discussed above, applying a dynamic bandwidth
allocation scheme seems unavoidable. Predicted service is therefore proposed in the
literature. This approach has two components: First, the network commits to meet-
ing service requirements under the assumption that past traffic is a guide to future
behavior. This component embodies the fact that the network can take into account

recent measurements of the traffic load in estimating what kind of service it can de-
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liver reliably. Second, the network attempts to deliver a service that will allow an
adaptive source to minimize the post facto delay bound and maximize throughput [71].
Several protocols to provide predicted service have been proposed (see, for example,
[84, 71, 85, 86] and references therein). While these approaches differ from each other
in how to react to congestion, they all require a well-behaved traffic predictor.

Traditional traffic predictors are based on heuristic assumptions or autore-
gressive (AR) filters. While heuristic assumptions typically cause over-reaction, AR
filters may introduce long response times. Furthermore, an AR filter is quite difficult
to implement in real-time.

In this chapter, we propose a new traffic predictor called the Double Threshold
Moving Window Detector (DTMW). Our analytical results show that DTMW can
detect and predict traffic streams with LRD robustly, in the sense that it is not sensi-
tive to the marginal distributions and short range dependence (SRD) characteristics
of individual sources. As an example, by integrating DTMW with the RCBR proto-
col [86], we establish a congestion control scheme which can be easily implemented
in real-time. Simulations based on empirical video traces show that our scheme can
get nearly optimal performance in terms of utilization as achieved through off-line
approach. Because DTMW is not sensitive to the characteristics of individual video
streams, users do not need to declare detailed traffic parameters before they are al-
lowed to enter the network. This makes call admission control (CAC) simpler and

easier to apply to realistic networks.
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4.2 Predicted Service and Predictor

In this section, we will examine in detail two protocols which provide predicted service.
They are the Available Bit Rate (ABR) service and the Renegotiated Constant Bit
Rate (RCBR) service. The reason that we select ABR service as an example is because
ABR is being standardized by the ATM Forum and will likely see wide usage in the
near future [87].

The primary goal of the ABR service is the economical support of applications
with vague requirements for throughputs and delays which are best expressed as
ranges of acceptable values [85]. The congestion control approach chosen by the
ATM Forum as the best match for the goals of the ABR service is to control the
bandwidth of connections directly.

One of the earliest closed-loop schemes for rate control was proposed to the
ATM Forum by Hluchyj and Yin [88]. Their proposed scheme used Explicit Forward
Congestion Indication (EFCI), a code-point in the header of ATM data cells, as a
single-bit indicator of congestion in the forward direction of the connection. A node
on the connection path will set the EFCI bit upon the detection of a congestion
state (typically determined by a buffer threshold crossing). At regular intervals, the
destination for the connection would check whether EFCI was set in the most recently
received data cell and, if not, would transmit an ATM RM cell back to the traffic
source to increase its rate by a fixed increment. If, over an interval of the same
length, the source did not receive permission to increase its rate, it would decrease
its allowed rate instead by an amount proportional to its current rate. The allowed

rate of a connection would adapt between a minimum and a maximum value.
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The use of a linear increase and exponential decrease of rates(or recently the
exponential increase and exponential decrease of rates [87]) is a heuristic approach to
the prediction of traffic. It is more network protection-based than traffic prediction-
based. This algorithm typically results in a slow-start and over-shooting iteratively
and wastes a certain percentage of bandwidth. To solve this problem, some au-
thors advocated rate-based schemes in which the network would provide the source
explicitly with its allowed rate rather than with single-bit feedback. Under some
circumstances, this could allow the rate of a source to adapt more rapidly and to
oscillate less widely than with single-bit feedback.

Most of the proposed approaches to the calculation of the explicit rate are
based on current available bandwidth. Due to the burstiness of traffic, the current
available bandwidth may only reflect the available bandwidth in the short term.
Direct usage of this information may still cause unnecessary oscillation. Another
approach is to combine the explicit rate with EFCI and interpret explicit-rate feed-
back as a dynamic upper bound (see [85] and references therein). This reduces the
oscillation but again is conservative in terms of network utilization.

While the ABR service is potentially usetul for a wide variety of applications,
the main motivation for its development has been the economical support of data
traffic. It does not support different QoS requirements for each individual connection
except for a guaranteed minimum bandwidth. In [86], a RCBR (Renegotiated CBR)
service discipline is introduced. The basic idea of RCBR is to augment standard
(static) CBR service with a renegotiation mechanism. In static CBR service, at the
time of call setup, an end-system initiates a signaling message requesting a certain

constant bandwidth from the network. In the forward path, each switch performs
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an admission control test, and if this is successful, makes a tentative reservation and
passes on the call setup message to the next switch along the path. On the reverse
path, if all the switches have admitted the call, the tentative reservation is confirmed,
and the call is allocated a VCI.

Users of RCBR service are given the option to renegotiate their service rate
at any time. Renegotiation consists of sending a signaling message along the path,
requesting an increase or decrease of the current service rate. If the request is feasible,
the network allows the renegotiation, and upon completion of the request, the source
is free to send data at the new CBR rate. During renegotiation, a switch controller
does not need to compute routing, allocate VCI or acquire housekeeping records. This
reduces the renegotiation overhead.

If a renegotiation fails, a trivial solution is that the source that failed rene-
gotiation can try again. Of course, data will build up in the access queue while the
second request proceeds, and there is the possibility of data loss. This may not be
acceptable for some users. Such users might reserve resources at or close to the peak
rate, so that the frequency of renegotiation is highly reduced, and so is the possibility
of renegotiation failure. There is a clear trade-off between buffer size, requested rate
and the frequency of renegotiation. In any case, note that even if the renegotiation
fails, in contrast to ABR service, the source using RCBR service can keep whatever
bandwidth it already has.

Second, because the high frequency of renegotiation failure explicitly expresses
the congestion state, during admission control a switch controller might reject an

incoming call in order to reduce the frequency of renegotiation failure. This allows
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the network operator to trade off call blocking probability and renegotiation failure
probability.

While similar to ABR service, since RCBR also provides best-effort bandwidth
utilization through dynamic bandwidth allocation, it is different from ABR service in
that it provides guaranteed bandwidth for users. With ABR service, there is much
less protection among streams, since each user’s bandwidth depends on the demand
of the others. This feature makes RCBR service ideal for traffic streams with hard
real-time requirements.

The two key mechanisms for RCBR are renegotiation and rate prediction.
Stored (off-line) and interactive (on-line) applications may use RCBR services dif-
ferently. Off-line sources can compute the desired series of CBR rates (the optimal
renegotiation schedule) in advance, and so renegotiation to increase the service rate
can be carried out before actually increasing the data rate. Based on this optimal
schedule, analytical and simulation results in [86] have shown that, stored sources
which use RCBR service can extract close to maximum multiplexing gain and at the
same time keep the cell loss rate at a low value.

For interactive applications, the renegotiation schedule cannot be calculated
in advance. Instead, the authors of [86] proposed a heuristic AR(1) filter to monitor
the buffer occupancy. For this heuristic AR(1) approach, three parameters have to be
tuned: a high and a low buffer threshold B; and Bj, respectively, and a time constant
T, which should reflect the long-term rate of change of the rate function. The rate
predictor is

722'_|_1 = (1 — T_l)fi + T_I(T‘Z' + max{bi — Bh, 0}) (41)
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where r; is the actual incoming rate during slot ¢, and b; is the buffer size at the end of
slot i. The additional term 7 ~'max{b; — By, 0} in the estimator adds the bandwidth
necessary to flush the current buffer content within 7. This is necessary to have a

sufficiently fast reaction to sudden large buffer build-ups. Let

Snew = [TZI—‘A (42)

with A the bandwidth allocation granularity. The algorithm specifies that a new

bandwidth s,.,, is requested if
(b; > Bp, and Spe, > 8) or (b; < By and sy < 8) (4.3)

Similar approaches can also be found in [84, 89].
Although this AR(1)-based heuristic shows some improvement over static
bandwidth allocation, it is still far from optimal as is pointed out in the paper.

There are several problems with the heuristic AR(1)-based approach:

(1) AR(1) is a low-pass filter which introduces an inherent unbounded response delay;
(2) AR(1) has only one parameter to adjust for accommodating different traffic
streams;
(3) AR(1) is not robust with respect to traffic streams with different characteristics;
(4) AR(1) requires a multiplier which is costly to implement.
(5) The performance of the AR(1) filter is difficult to estimate if the input traffic has
non-Gaussian marginal distribution.

We will discuss the above points in detail in later sections. It should be

noted that bounded response delay is especially important in real-time applications.
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Figure 4.2: Segment of a VBR MPEG video sequence from “BBC News”.

Fig. 4.2 shows a segment of a VBR MPEG video trace from the “BBC News”. At
frame number 35, there is a sharp increase in frame size. For the AR(1) approach, it
is difficult to react to this kind of change in time due to the AR(1)’s “infinite average”
nature.

In [90] a predictor for Fractal Gaussian Noise (FGN) is devised and shown to
have good performance. Unfortunately, it requires a priori knowledge of the Hurst
parameter and is limited to the FGN process only. As shown in [5, 6], real traffic
has an arbitrary marginal distribution which may deviate far from the Gaussian
distribution. Furthermore, in interactive applications, it is not possible to estimate
the Hurst parameter beforehand.

In summary.for both ABR and RCBR services, the detection of significant and
long-term changes in the characteristics of a connection are key in providing users

with the type of performance they expect while allowing for efficient usage of network
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resources. In the following parts, we will propose a new traffic prediction algorithm
which can help solve the problems above. We will start in an intuitive way and then

justify our solution using analytical and simulation results.

4.3 The DTMW Scheme

Intuitively speaking, in the sample path of a process with LRD, high values are more
likely to be followed by high values and low values are more likely to be followed
by low values. Therefore, in a sense, it is possible to predict future sample values
based on past values. Because self-similar traffic displays burstiness at all time scales
and because the buffer at the access node can smooth efficiently the burstiness at
small time scales, our goal is to predict the burstiness at relatively large time scales.
Therefore, the predictor should not be too sensitive so as to respond to short-term
burstiness. Based on these observations, we introduce the Double Threshold Moving
Window (DTMW) detector in the following.

Let N denote the window length, and 7} and T3 denote values of the first and
second threshold, respectively. Define the detection quantity Sny(¢), ¢ = N, N +1,...
as follows:

N-1
Sn(i) = 2 I(Y(i—j) > Th) (4.4)
=0
where [(.) is an indicator function and Y = {Y(z), e = 1,2,...} is the input process.
If Sn(2) > Ty, we set the detector output to 1, meaning that congestion is about to
occur in the near future, otherwise we set the detector output to 0.
It is easy to see that only a comparator, a single-bit shift register and a counter

are needed. An illustrative diagram is shown in Fig. 4.3. The first threshold 7} is set
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Figure 4.3: Implementation of DTMW.

to detect those high values that are larger than Ty. The Ty-out-of-N criterion is for
smoothing burstiness at small time scales and detecting the existence of burstiness
at large time scales. In the following paragraphs, we justify the above intuition using
an analytical approach.

A general analytical solution for the performance of the DTMW under arbi-
trary input processes can be difficult if not impossible. But, under certain types of
source models, it is possible to give analytical results. An example is the CBR model.
It is easy to see that, if the input process Y is a CBR process, then DTMW will work
as predicted in the last section with a maximum initial response delay of N. In the
following parts, we analyze the performance of the DTMW under the MTP model
we proposed in chapter 2. It has been shown in chapter 2 that this model is general
enough to include most of the existing models (e.g., FGN, FARIMA) and can match

empirical data up to second-order statistics.
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Lemma 2. Let X = {X;,2 = 0,1,...} be a zero mean, unit variance Gaus-
sian process defined on a probability space (Q,F, P) with autocorrelation function
(rx (k) : k > 0). Suppose rx(k) ~ k*=2L(k) when k — oo, where L(k) is a slowly
varying function of k£ and 1/2 < H < 1. Let Y = ¢g(X), where g : R — R
is a nondecreasing function. If 0 < Pr(Y > Ti) < 1 and Ty > 0, then the

process Zy = {Zn(7) = (Snj(Nj) — Pr(Y > T1)Nj)/dn = 5 = 0,1,...} with

d% ~ (QH_QI)QHNQHL(N) converges weakly as N — oo to J(1)By(j) where J(1) =
Pr(Y > Ty) and process By = {Bg(t) : t > 0} is a Fractional Brownian Motion
(FBM) process with parameter H.

Proof: Define h : R —— R such that

WX) = 1Y 2 T1) = 1(g(X) = Ty) (1.5)
Then we have
ERX))=EI(Y >Ty))=Pr(Y >TY) (4.6)
and
VAR(R(X)) <1 (4.7)

Given that ¢(.) is a nondecreasing function, we have

Pr(Y >T)) = Pr(¢g(X) >T) = Pr(X > g ' (Th)) (4.8)

Because 0 < Pr(Y > Ty) < 1 and X is a zero mean Gaussian distributed

random variable, we have |¢7*(7})| < oo and therefore we have
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E(R(X)X) = E(l(9(X) > T1)X)

o0

— /{ ¢dP(z) > 0 (4.9)

wig(z)>T1}

Therefore we have E(h(X)X) # 0. Consequently, the Hermite rank of A(.) is
one.(See Section 3 of [37] for the definition.) Applying Corollary 5.1. in [37], the
proof of the Lemma is complete.O

In the modeling approach of Chapter 2, the function ¢(.) will be the marginal
transformation function which will always be nondecreasing. Other conditions in
Lemma 2 will be generally satisfied except in degenerate cases.

From the above Lemma, we have the following conclusions:

(1) For N large enough, the quantity (Sy(:) — NPr(Y > Ti))/dn, © > N,
will converge to the Gaussian distribution with variance equal to J(1). This means
that, the detection quantity Sy(¢),¢ > N is totally decided by the LRD structure and
Pr(Y > Ty). The influences of SRD structure and marginal distribution are removed
by the summation procedure in DTMW.

(2) For N and T, large enough, the higher the Hurst parameter H, the larger
the probability with which DTMW outputs a value of 1.

These two conclusions justify our intuition in the previous section. While we
will demonstrate the usage of DTMW through RCBR service and real-time video
applications in the following sections, it should be noted that DTMW can be applied
to other types of LRD traffic as well as protocols (e.g., ABR) which also provide

predictive services.
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4.4 Integration of the DTMW into the Access
Node

The selection of the measure of resource congestion has broad implications for the
implementation complexity, stability and performance of the corresponding system.
The simplest approach, and the one most commonly implemented, consists in observ-
ing the instantaneous length of the queue of cells waiting to be transmitted out of a
switch port. The switch port is then considered congested whenever the queue length
is found to be larger than a given threshold.

Beyond this basic approach, there exist a multitude of alternatives avail-
able [85]. A few illustrative examples proposed in the literature include: 1) the use of
multiple thresholds on the queue length; 2) the use of the derivative (differential) of
the queue length, where an increasing queue reflects more directly an instantaneous
bandwidth demand exceeding the available port bandwidth; 3) the explicit estimation
of the aggregate bandwidth demand at a port; and 4) the estimation of the variation
of the delay perceived in the service of successive cells from the same connection at a
switch port.

An interesting theoretical insight on the stability of rate-based congestion con-
trol systems is presented by Altman et al. [91], who show that queue length informa-
tion must supplement bandwidth information for stable rate-based control of systems
achieving 100% utilization of the available bandwidth.

While our conclusions in the last section are based on monitoring the traffic
rate process, they are also valid for monitoring the queueing increment process based

on the following facts:
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Consider a slotted-time single server queue with deterministic service rate p
and an arrival rate process A. Let us define 6Q = {6Q(¢) = Q(¢) — Q(z — 1),7 =
1,2,...} as the increment process of the queueing process which is denoted by Q =

{Q(7) : ¢ =1,2,...},then by equation 3.1 we have

Y(i)= A1) — p=6Q(1) >0 when A(z) > p

Y(i)=A() — p <6Q(1) <0 when A(z) < p (4.10)

where the process Y = {Y;: Y, = A; — p, e = 1,...} is the netput process.

So when Ty > 0, 6Q(¢) > T3, we must have 6Q(¢) > 0 , and by equation 4.10,
we have 6Q(¢) > T if and only if A(7) — p > Ti. Therefore monitoring 6Q(z) using
DTMW is the same as monitoring A(z) differing only by a constant. Thus, our
conclusion in the last section can be applied to the queueing increment process.

When we apply the DTMW to the queueing increment process 6Q, we are
in fact monitoring the increasing rate of buffer occupancy. When DTMW outputs a
value of 1, it indicates that buffer occupancy is increasing at a rate larger than 7}
per slot. To interpret this in another way, it means that the server needs at least T}
more bandwidth to keep the buffer occupancy constant. This allows us to integrate
DTMW smoothly with RCBR where T} can be used as the granularity of the RCBR
bandwidth reallocation.

Similarly, we can build a detector which can detect the decreasing rate ot buffer
occupancy as follows:

N-—

Sy(i)= S I(Y(i—j) < T)) (4.11)

—

J=0



85

where T7 must be a negative value. If Sy(i) > T3, we set the detector output to be 1.
We will call this detector the Inverse Double Threshold Moving Window (IDTMW)
detector.

While DTMW can monitor increasing rates which are larger than T}, rates
smaller than 7} can still drive the buffer into overflow although in a slower fashion. To
further control overflow, we can set a “high buffer” boundary. When buffer occupancy
reaches this high buffer boundary, we will always request a bandwidth increase by
the quantity 77.

Similarly, to increase the bandwidth utilization, we need to monitor a “low
buffer” boundary (which is typically zero), therefore when buffer occupancy reaches
the low boundary we will request a bandwidth decrease by the quantity 7.

The final integrated structure is shown in Fig. 4.4, where HLBC refers to
high /low buffer occupancy control. The flow chart for the whole algorithm is shown in
Fig. 4.5, where H BC refers to “high buffer boundary check”. When buffer occupancy
is equal or larger than the high buffer boundary, then H BC = 1, otherwise HBC = 0.
Similarly, LBC' refers to “low buffer boundary check”. When buffer occupancy is
equal or smaller than the low buffer boundary, then LBC = 1, otherwise LBC = 0.

While bandwidth decrease requests can always be granted without delay, band-
width increase requests always suffer from a round trip delay. We have taken these
factors into account in Fig. 4.5. While the last bandwidth increase request has not
been acknowledged, a new bandwidth increase request is not permitted. This pre-
vents excessive bandwidth increase requests being generated due to the round trip

renegotiation delay.
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Figure 4.4: Integration of DTMW with RCBR.
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Figure 4.5: Flow chart of integration of DTMW with RCBR.
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4.5 Simulation Results

To test our scheme described in the last section, we simulate our algorithm using
four empirical video traces, namely, “Last Action Hero”, “Ghost”, “Star War”, and a
segment from BBC News that were digitized in our Laboratory. All empirical traces
are collected at the frame level. In the following, a slot is equal to a frame interval,
i.e., approximately 33ms. Buffer occupancy values are always normalized by the mean
arrival rates of corresponding sources(e.g. 6005.2 bytes/frame for I frame only “Last
Action Hero”). We consider separately video segments with intraframe compression
(I frames) only and video segments with interframe compression (I, B, P frames). For
segments with I, B, and P frames, only the “Last Action Hero” and “Ghost” traces

are available.

4.5.1 Video with Intraframe Compression Only

As a scenario, in all cases, we will try to control the normalized buffer occupancy to a
value below 100. Assume the round trip delay for bandwidth increase renegotiations to
be equal to 20 frame intervals (approximately 0.66s) and that bandwidth reallocation
requests are always granted.

First we discuss how to select the control parameters in DTMW. Unlike the
AR(1) heuristic, DTMW results in a bounded response delay which is equal to the
window size N. To control the normalized buffer occupancy within 100, we need
to select the window size N plus the round trip delay to a value smaller than 100
so that the response will not be too late. But an excessively small N will reduce

the effect of smoothing out the SRD structure. As a compromise, we set N = 15.
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Because N cannot be set too large, we have to use T5 to reduce the influence of short
term fluctuation. As shown in Lemma 2, the higher the value T3, the less frequent
the renegotiations. So we set Ty, = N = 15. For controlling the buffer occupancy
below 100 and accommodating a round trip delay at 20 frame periods, the high buffer
boundary is set to 80. The parameters of IDTMW are set exactly the same except
that the T} is negative. The low buffer boundary is set to zero.

The first threshold 7} of DTMW is more difficult to set. A small 7} will
cause the algorithm to react more frequently, therefore introducing more overhead in
terms of bandwidth renegotiations. A large T will make DTMW ineffective most of
the time and leave the control burden to the high buffer check which may overreact
due to the large T7. In Fig. 4.6, we plot the frequency of renegotiations versus 7,
for the movie “Last Action Hero”. Fig. 4.6 shows that there is a low value around
4000. Notice, however, that, around 77 = 4000, the frequency of renegotiations is in
general not sensitive to the value of 7 over wide ranges. We will further illustrate
this conclusion later by using different movies. Based on the results in Fig. 4.6, we
set 17 = 4000. To simplify the simulations, the bucket size of the Leaky Bucket in
Fig. 4.4 is set to zero.

Fig. 4.7 to Fig. 4.9 depict the results for the movie “Last Action Hero”. Fig. 4.7
shows the bandwidth increase/decrease requests versus the queueing process. When
the buffer occupancy increases very fast, DTMW requests a bandwidth increase earlier
than the time that the buffer occupancy reaches its high boundary. Fig. 4.8 shows the
corresponding arrival and departure processes. It can be clearly seen that the service
rate tracks the long term arrival rate closely. The histogram of the queueing process

is shown in Fig. 4.9. Comparing with Fig. 4.10 which uses CBR service and no control
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Figure 4.6: Frequency of renegotiations versus threshold 7 for the video trace “Last
Action Hero”.

mechanism, the improvement is significant. In Fig. 4.9, most of the normalized buffer
occupancy values are within 100, according to our target and the maximum buffer
size without any loss is only 350, which is in stark contrast to 18000 under static CBR
in Fig. 4.10. Because the probability of the buffer occupancy larger than 100 now is
much smaller than in Fig. 4.10, for a cell-loss tolerant application, the overflow traffic
can be dropped.

We applied the same set of control parameters to the other three video traces
and list all the results in Table 4.1. From Table 4.1, we can see that, for all video clips,
the mean utilization is very close to 1 and the maximum buffer occupancy without
loss is very close to our target. This shows that DTMW is robust with respect to
different traffic streams.

To compare the performance of DTMW with the heuristic AR(1) approach,

we apply the AR(1) approach also to the above video traces. As for the simulation of
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Figure 4.7: Queueing process and bandwidth increase/decrease requests: Utiliza-

tion=1, RCBR service, DTMW /IDTMW control.
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Figure 4.8: Arrival rate process and service rate process: Utilization=1, RCBR ser-

vice, DTMW/IDTMW control.
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Figure 4.10: Histogram of queueing process: Utilization=1, CBR service, no control.



92

Video name | Tota frames |Mean utilization |Max buffer | Frequency of Mean Source
occupation | renegotiations(l/s) | rate(b/frame)

LAH 238000 0.9997 340 0.31 6005.2

Ghost 217000 0.9978 200 0.26 9909.0

Star War 170000 1.000 140 0.54 27791.0

BBC News | 26000 0.9993 103 0.26 12709.0

Table 4.1: Simulation results for intraframe compression videos using DTMW.

DTMW approach, we chose the parameters for AR(1) approach based on the video
trace of “Last Action Hero” and applied the same set of parameters to the other video
traces in order to examine the robustness of the AR(1) approach. Similar to the case
of DTMW, we set B, = 80 and B; = 0 where B, and B, are all normalized by the
mean source arrival rate. While the maximum bandwidth increase range for DTMW
is the same as the granularity of bandwidth allocation (i.e., the first threshold 7}),
they can be significantly different for the AR(1) approach. Higher bandwidth increase
ranges are more likely to be rejected by the network.

To provide a fair comparison, we set the maximum bandwidth increase range
of the AR(1) approach to be the same as for the DTMW approach by appropriately
tuning the value of T'. This results in choosing 7" = 5000. A comparison of a source
arrival sample trace with the corresponding service rate sample trace is shown in
Fig. 4.11 where the slow response nature of the heuristic AR(1) approach is clearly
shown.

The final results are shown in Table 4.2. From Table 4.2 we can see that the
heuristic AR(1) approach performs much worse than DTMW in terms of utilization

(more than 20% lower) and is less robust with respect to different traffic streams.
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Figure 4.11: Arrival rate process and service rate process: Utilization=0.6, RCBR

service, heuristic AR(1) control.

Video name| Max Bandwidth |Mean Max buffer | Frequency of
increaserange | Utilization | occupation | renegotiations(1/s)

LAH 4000 0.6019 248 0.27

Ghost 4700 0.6386 190 0.36

Star War 11200 0.7743 176 0.51

BBC News 3300 0.6644 140 0.42

Table 4.2: Simulation results for intraframe compression videos using heuristic AR(1).




94
4.5.2 Video with Intraframe and Interframe Compression

Video traces with both intraframe and interframe compression typically exhibit a
strong periodic structure associated with their group of picture (GOP) structure.
While this may indicate a non-stationary property, we can still treat it as a station-
ary process with strong short term burstiness in most cases where GOP sizes are
small. DTMW is designed to predict fluctuations in long-range dependent streams,
therefore it should also work for video streams with both intraframe and interframe
compression. To test this conclusion, we apply DTMW to video streams with both
intraframe and interframe compression. While keeping all other parameters the same
as in the last section, we only optimize again the parameter 7 through a similar
search based on the video trace of “Last Action Hero” as in the last section. The
resulting service rate process is shown together with the source arrival rate process in
Fig. 4.12. From Fig. 4.12 we can see that the service rate process tracks the arrival
rate process closely.

In [86], assuming a mean renegotiation interval of 1 sec, it is shown that
current technology can already handle up to 40,000 RCBR sources. The fact that all
our results above require less than one renegotiation per sec on the average, indicates
that the overhead of our DTMW scheme is acceptable.

We only have two available video traces with both intraframe and interframe
compression. The results for both movies are listed in Table 4.3 where the control pa-
rameters are the same for both movies. From Table 4.3, we can see that all utilization

values are very close to 1 and the robustness of DTMW is satisfactory.
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Figure 4.12: Arrival rate process and service rate process: Utilization=1, RCBR

service, DTMW/IDTMW control, 77 = 1000.

Video name Total frameg Mean utilization Max buffer Frequency of Mean source
occupation renegotiations(1/s)| rate(b/frame)

LAH 238000 0.9940 495 0.60 2481

Ghost 217000 0.9944 420 0.50 4077

Table 4.3: Simulation results for videos with both intraframe and interframe com-

pressions using DTMW.



Chapter 5

Conclusions and
Recommendations for Future
Research

5.1 Conclusions

Recently extensive measurements have shown that the LRD traffic model is more
adequate to capture the natures of various traffic streams than are traditional traf-
fic models. In this thesis, we firstly propose a new traffic modeling approach which
combines a direct modeling of both LRD and SRD autocorrelation structures with
marginal inversion and Hosking’s technique. Through an analytical approach we
have shown that, in addition to capturing the marginal distribution of empirical data
traces, this approach can also preserve both the SRD and LRD autocorrelation struc-
tures. The large class of transformations which have the above transform-invariant
nature forms a new class of models (MTP). We then proceed to develop a fast simu-
lation approach for the MTP models based on importance sampling technique. This
allows us to efficiently simulate the performance of network with LRD traffic. Exten-

sive simulation results in this thesis have shown that traditional congestion control

96
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schemes cannot handle congestion caused by LRD traffic and result in low network
utilization. Instead, we propose in this thesis a new congestion control scheme which
fits into a predicted service principle smoothly.

Predicted service provides dynamic bandwidth allocation for traffic streams
with tolerant delay and loss requirements. The crucial part of realizing predicted
service is a good predictor that can measure traffic and predict future bandwidth in
real time. The DTMW scheme we proposed in this thesis can predict bandwidth
requirements of LRD traffic through on-line measurement. Analytical and simulation
studies employing real video traces have led us to the conclusion that DTMW is
flexible and tolerant to different traffic streams in terms of the setting of control
parameters. Using DTMW, users do not need to declare detailed traffic parameters,
which in most cases is impossible. Typically DTMW gives close to 100% bandwidth
utilization and buffer occupancy values that are significantly lower compared to the

static CBR case.

5.2 Recommendations for Future Research

Traditional CAC approaches typically use a priori knowledge of different traffic streams
and make decisions based on a static rule. In real application, it may be very difficult
to get accurate a priori traffic characteristics and rough traffic characterization typi-
cally leads to overly conservative decisions. As discussed above, DTMW is robust to
different traffic streams. Users of DTMW do not need to declare their detailed traffic
behaviors. A high rejection rate for bandwidth renegotiation requests of DTMW is

a clear indication of the network congestion state. This information can be used to
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make a CAC decision on a dynamic basis. The detailed CAC mechanism based on

DTMW and its performance study in a network environment are left for future study.



Appendix A

Proof of Lemma 1

First, we briefly summarize some important results that appear in [8] which are
necessary for our results. Due to space restrictions, we restrict our presentation to
the very essentials leaving most of the algebraic manipulations to be checked by the
interested reader. We start by the following two assumptions:

Hypothesis A [8]: (i) There exist functions a,v : Z; — Ry that increase to
infintty, such that for each 8 € R, the cumulant generating function defined as the
limat

A(0) £ lim v log Be’+!e/ex (A.1)
exists as an extended real number.

(it) X(.) is essentially smooth, lower semi-continuous and there exists 6 > 0
for which A\(6) < 0. Note that X is automatically convez.

11) There exists an increasing function h : Z. — Ry such that the limit
g + +

o(0) & 1im 2B/ (A.2)

k—oo hk’

exists for which ¢ > 0, where
a”'(z) 2 sup{s € Ry :a(s) <z} (A.3)
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Hypothesis B [8]: There exists d > 0 such that
(i)

inf g(c)A*(c) = inf g(c)A"(¢) < o0

(it)

A* ()
lim inf (c)vr = inf A"(¢)g(c)

k—o0 c>d h(ca,k) c>d

(iii) for each v > 0

limsuph; 'log > e < —inf g(c)\*(c)
beo k=l (5/d)] i

(iv)
limsup hy ' loga™"(b/d) = 0

b—oco

where

A*(z) 2 sup {0z — A(0)}
cR

Now, we have the following theorem [8]:

Theorem 2. Suppose that Hypotheses A and B are satisfied, then

lim sup k; ' log Pr(Q > b) = — iggg(c))\*(c)

b—o0

Proof of Lemma 1: Define

ag é k
N k?
Vg = O.%kQHl n U%szQ
k?(l—Hl)
hy =

2
g1

100

(A.6)

(A7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)
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We first check Hypothesis A:

(i) It is easy to see that both aj and vy increase to infinity, and

A(0) = lim vyt log Eefvsti/as (A.13)

2

= E_QM for all § € R (A.14)

(ii) It is also easy to check that A(f) is a smooth function and there exists
6 > 0 for which A(6) < 0.

(iii) For each ¢ > 0, we can show

o) = Jim D (A.15)
= M2 (A.16)

Therefore Hypothesis A is satisfied, and we can easily get

A(z) = sup{fz — A(0)} (A.17)
R
_ @ (A.18)

We now check Hypothesis B: Conditions (i) and (ii) can be checked in a

straightforward manner. To check conditions (iii) we note that 3K > 0 such that

Vk> K
k2—2H1
' A.19
Vg > 2072 ( )
Hence,
_ k(2=2H1)
e <e ¥ for 4> 0 (A.20)

Conditions (iii) and (iv) follow after some algebra. Then by Theorem 2, our

conclusion is proved. O
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