
A Novel One-stage Distributed Parallel Embedding
for Virtualized Network Environment

Qiao Lu, Khoa TD Nguyen, ChangCheng Huang
Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada

Email: {qiaolu, khoatnguyen, huang}@sce.carleton.ca

Abstract—Network virtualization recognized as an enabling
technology for the forthcoming networks is utterly popular. One
of the main challenges of network virtualization is called the
virtual network embedding problem. Virtual network embedding
(VNE) aims to allocate a set of virtual machines onto a set
of interconnected physical hardware in the cloud computing
environment. Traditional exact solutions, considered as a time-
consuming process to achieve a global optimal solution, have been
proofed to be NP-hard. On the other hand, some existing heuris-
tic solutions tend to decouple VNE problems into two stages:
virtual node mapping (VNoM) and virtual link mapping (VLiM).
Undoubtedly, these kinds of decomposition would result in low
acceptance ratio and inefficient substrate resource utilization. In
this paper, we propose a distributed parallel Genetic Algorithm
combined with graph theory for solving VNE in one-stage. Our
proposed algorithm achieves better performance than previous
baseline solutions while meeting the stringent time requirements
for online VNE problems.

I. INTRODUCTION

With the rapid development of network and cloud appli-
cations, many Internet users need to deploy new protocols
or install new services on the existing network architecture.
If the service provider fails to offer these communication
requirements, the performance may suffer degradation dra-
matically. Network virtualization (NV) provisions different
services among multiple virtual network requests (VNRs)
through the sliceable management of the existing substrate
network resources. Virtual network embedding (VNE) is one of
the main tasks in the NV, which is the primary centralization
of resource allocation problem. VNE aims to bring efficient
resource utilization to the substrate network, and eventually a
prevention of an unnecessary infrastructure expansion.

To tackle VNE problems, proposed algorithms are supposed
to efficiently allocate the substrate resources for VNRs, which
becomes an optimization problem with multiple rigid objec-
tives. Solving the VNE problem is NP-hard, hence, truly
optimal solutions can be gained for small problem instances.
Additionally, in most real scenarios, the VNE problem is an
online problem, which requires a speedy and efficient solution.
The real global optimization under dynamic demands is hard
to achieve. Thus, currently, the main focus of VNE topics is
on heuristic or metaheuristic approaches.

A common approach of VNE problems is to decompose the
problem into two stages: mapping virtual network functions
(VNFs) as virtual nodes into substrate nodes (VNoM) and
mapping virtual links into one/more connected substrate links
(VLiM). Although the two-step decomposition is still NP
hard, this method reduces the computing complexity of the

VNE problem in some degrees. However, separating node and
link mappings may lead to neighbouring virtual nodes widely
separated in the substrate network. This fact increases the
cost of single/multiple paths in VLiM stage leading to low
acceptance ratio and correspondingly undesirable performance.
Even some approaches claim they consider the coordination
between VNoM and VLiM phases, the decomposition still
makes the results far from the optimal.

As mentioned in [1], with the decrease of computing cost,
cloud computing becomes prevalent and can be used to conduct
paralleled algorithms with high efficiency. In traditional exact
methods, the NP-hard programming is difficult to be decou-
pled into independent parallel tasks. Therefore, a distributed
parallel meta-heuristic algorithm becomes very promising.
These facts motivate us to design a fast, dynamic and one-
stage meta-heuristic solution with high scalability.

Recently, research work [2] indicates that genetic algorithm
(GA) achieved better performance than ant colony meta-
heuristic. This achievement inspires us to investigate GA.
Unfortunately, previous GA of VNE focused on either VLoM
or VLiM. There is no GA-based approach proposed for VNE
in one-stage. In this paper, we propose a parallel distributed
GA approach which solves VNE problems in one stage with
high performance and low complexity. The contributions of
our proposed algorithm are summarized as follows.

• To our best knowledge, our work is the first meta-heuristic
approach to solve VNE problems in one stage. As mentioned
above, an one-stage mapping method keeps the integrity
of the problem and avoid local optimal solution efficiently.
Inspired by graph theory, the one-stage mapping could be
realized in GA crossover operation in this paper.

• We utilize the natural peculiarity of easy-decomposition in
the Genetic metaheuristic method, which can be run in
parallel. Some variants in GA are deployed to make it tailor-
made for VNE problems.

• In this paper, we proposed an unsplittable mapping method.
Unsplittable and splittable mapping are equally important
in network virtualization research [1], [3]. However, most
of current research only concentrates on splittable mapping.
Therefore, we believe our unsplittable approach is valuable
for allocation techniques in recent remarkable research top-
ics like Software Defined Network (SDN) and Edge Clouds.

• As mentioned, there is some recent research on VNE
problems using GA for VLoM or VLiM phase. However,
solving VNE problems in one stage is not simply combining

2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
October 11-14, 2020. Toronto, Canada

978-1-7281-8526-2/20/$31.00 ©2020 IEEE 395

Authorized licensed use limited to: Carleton University. Downloaded on January 20,2021 at 18:31:12 UTC from IEEE Xplore. Restrictions apply.

VLoM and VLiM. The one-stage algorithm is far more
complicated. Therefore, our one-stage GA-based solution is
totally different from other previous GA algorithms.
The rest of this paper is organized as follows. Section II

discusses the related work. Section III describes the network
model and problem formulations. Section IV introduces our
proposed approach. Section V shows our simulation results.
Finally, Section VI concludes the paper.

II. RELATED WORK
Previous research proposes several heuristic algorithms in

VNE problems to improve placement efficiency and global
optimality. Most existing heuristic approaches apply two-stage
approaches. For each stage, they tend to find one partial
solution that is likely to be good.

Alternatively, there are more attention attracted by meta-
heuristics which are promising for VNE problems with ac-
ceptable execution time. In addition, meta-heuristics are more
likely to avoid local optimums compared with heuristic ap-
proaches. Unfortunately, most metaheuristic algorithms only
focused on node mapping stage, and left link mapping stage
for k−shortest path (unsplittable-support) or multi-commodity
flow (MCF) algorithms (splittable-support). This two-stage
mapping would obviously restrict the solution spaces for the
link mapping stage. To our best knowledge, most of GA
approaches solved VNE problems in two separate stages,
specializing for node mapping [4] [5].Even in our previous
study [1], a GA is proposed for VLiM stage. Nevertheless, it
leaves VLoM separately solved by a greedy algorithm.

Traditional one stage VNE solutions can be achieved
through Linear Programming algorithms. However, due to the
high computing complexity, this kind of exact solutions are
designed to solve small instances of the problem. Especially
for an online dynamic VNE problems, even the exact solution
cannot guarantee an optimal solution [1]. Recently, some one-
stage heuristic methods are proposed. However, they still face
a major problem of high time complexity to generate a greedy
solution by ranking approach and breadth first search [6].
Therefore, it is of great essence to propose one-stage meta-
heuristic algorithms in order to fully coordinate the virtual
node and link embeddings for VNE problems.

III. NETWORK MODEL
The network model is the same defined as the compared

algorithms [1], [7], [8].
A. Substrate Network

We model the substrate network as a connected bidirectional
graph, Gs = (Ns, Es), which consists of a set of substrate
nodes Ns and a set of substrate links Es. Each substrate
node ns ∈ Ns is associated with capacity value C(ns) and
its geographic location loc(ns). Each substrate link es ∈ Es

has bandwidth capacity weight value B(es).

B. VN requests (VNRs) and VN embedding (VNE)
The VNR is modeled as a weighted graph as

Gv(ta, td, D) = (Nv, Ev, ta, td, D). A VNR is composed
of a set of virtual nodes Nv , and a set of virtual linksEv .
ta represents arrival time of a VNR. td is the duration of
a VNR. Each virtual node nv ∈ Nv in a VNR has CPU

capacity requirement C(nv) and a location loc(nv). The
distance between mapped substrate node and the virtual node
is denoted by dis(loc(nv), loc(ns)) which should be less
than D. Each link ev ∈ Ev has bandwidth requirement value
B(ev). We also denote N vl as the number of virtual links.
Fig. 1 shows how to map a VNR into the substrate network.

Fig. 1: An example of VNE with its associated substrate network.
To allocate the VNR, there are two kinds of constraints

that we have to consider about: node capacity constraints and
link bandwidth constraints. There are two constraints in node
mapping:

C(nv) ! Rn(M(nv)) (1)

dis(loc(nv), loc(M(nv))) ! D (2)
where,

M(nv) ∈ Ns, Rn(M(nv)) ! C(M(nv))

M(nv) is the substrate node mapping from a virtual node
nv . Rn(M(nv)) is the remaining CPU capacity of the sub-
strate node, which is updated after allocating/releasing each
VNR. We define all the substrate nodes within the distance
requirement D of a virtual node nv as the candidate nodes of
nv . We define a link mapping M(nv,mv) from a virtual link
to a substrate path. Re(es) is the remaining bandwidth of a
substrate link es. P(M(nv),M(mv)) is defined as a set of all
substrate paths from source node M(nv) to destination node
M(mv). The link mapping should follow the constraints:

B(ev) ! Re(nv,mv) (3)
where,

ev = (nv,mv), M(ev) ∈ Ps(M(nv),M(mv))

Re(es) ! B(es), Re(nv,mv) = min
es∈M(ev)

Re(es)

When a VNR mapping satisfies all the constraints above,
the embedding is defined as a feasible solution.
C. Augmented Graph

Inspired by the approach adopted in [7], we also create
an augmented substrate graph Gs′ = (Ns′ , Es′). For each
nv ∈ Nv , we define a meta-node µ(nv). We connect each
candidate substrate node of nv ∈ Nv to the meta-node
through a bidirectional meta-link with infinite bandwidth. We
set Ns′ = Ns ∪ {µ(nv)|nv ∈ Nv} and Es′ = Es ∪
{(µ(nv), ns)|nv ∈ Nv, ns ∈ N c(nv)}. N c(nv) denotes the
set of all candidate nodes for nv . If the start and end nodes of
a virtual link are nv

i and nv
j , µ(nv

i), µ(nv
j) ∈ Ns′ \ Ns will

denote the corresponding meta nodes. The augmented graph
for the example in Fig. 1 and Fig. 2. With the help of the
augmented graph, the node mapping and the link mapping
phases could be solved coordinately in one stage.

Previous research [7] proposed to solve the one-stage map-
ping problem by Mix Integer Programming, which has been

396

Authorized licensed use limited to: Carleton University. Downloaded on January 20,2021 at 18:31:12 UTC from IEEE Xplore. Restrictions apply.

observed to take too much time. This is because this technique
introduces meta nodes and meta edges, which in turn increases
the number of variables and constraints in the problem. In
this paper, we still adopt this augmentation idea. However, we
tend to deploy the augmentation in the crossover and mutation
operations of the Genetic Algorithm. The novel approach not
only keeps the integrity of VNE problems in one stage, but also
increases the mapping speed for online dynamic placement
requirement.
D. Objectives

In our proposed Genetic Algorithm (GA), we try to min-
imize the resource mapping costs as well as balance the
load across different substrate links and nodes. The objective
function in this paper is also called fitness function in GA
terminology. For the load of each substrate node and link, we
count all the resources (capacity or bandwidth) allocated for
the virtual nodes/links. It means the fitness function takes all
resource usage for the VNR as a whole, as opposed to other
heuristic mapping approaches [7][8], which consider the virtual
nodes/links sequentially based on a ranking method.

FNLP =
∑

uv∈ES

αuv

Re(u, v)−
∑

i f
i
uv + σ

+
∑

w∈NS

βw

Rn(w)−
∑

m∈Ns′\Ns

xmwC(w) + σ

(4)

Existing solutions use linear objective functions [1], [7]
to simplify optimization process. In our proposed algorithm,
we applied the nonlinear function as shown in (4), where the
bandwidth usage of the current virtual link allocations becomes
part of the denominator. Previous study [9] has proved that a
non-linear function has the similar computing complexity with
a linear function, but it has better performance than the same
algorithm using linear fitness. In equation (4), σ is a small
positive constant to avoid the denominator becoming zero. f i

uv

describes the total amount of flow from u to v for the ith virtual
link under the specific mapping scenario. And xmw denotes
a binary variable, which has the value 1 if the meta link is
activated; Otherwise, it is set to 0. 0 ! αuv ! Re(u, v) and
0 ! βw ! Rn(w) are parameters to control the importance of
load balancing while mapping the request. Obviously, a fitness
function like (4) improves the resource efficiency by avoiding
a small residual substrate resource which may cause resource
fragmentation.

IV. PROPOSED ONE-STAGE VNE ALGORITHM

Nowadays, cloud computing is becoming prevalent. With
the decrease of computing cost, people concern more on exe-
cution time rather than computing cost. Parallel and distributed

�

�

�

��������	� ��	�

�

�

�

�

�

	

�	���
��	� �	����

�� ��
�
���	�
��	���	��

Fig. 2: The augmented graph of the example in Fig 1.

�!��!

���!�������?��!���

�����!�������� �#��

���!�������?��!���

&?!�!���

�

�� ���&?!�!���

���!�������?��!���

�����!�������� �#��

���!�������?��!���

&?!�!���

�

�� ���&?!�!��������

���#��
���
�1

���#��
���
�

�A�������%�!���
���

�������!���

���� �

�
�

�������!���

�

�������!���

�

�C���!��� �!�����������!������
���

������!�����������
��

��

Fig. 3: Parallel execution flow chart

computing has recently emerged as an effective mechanism to
tackle large and complex problems with less time consuming
and lower cost by supporting the concurrency. Nevertheless,
how to design the parallel structure for VNE problems is still
a stringent problem. Thanks to previous research [10], it has
proved that parallel computing can be applied naturally to
GA to reduce the execution time. Instead of achieving partial
parallelism (parallel link mapping) in [1], We improve the GA-
based VNE solution by realizing both node and link mapping
in one-stage, thereby fully parallelizing VNE problems.

Our proposed parallel Genetic Algorithm can be run over
many machines in a distributed way as shown in Fig. 3.
At the beginning, the set of candidate nodes will be refined
in the master working node and then sent to slave working
nodes as the inputs. Each parallel slave working machine runs
independently and generate descendant solutions. The process
of GA in each slave machine starts with the selection of an
initial population. The slave working machines use crossover
and mutation operations to produce offspring which inherit
the characteristics of their parents. The produced offspring
are added and sorted into the next generation. If parents have
better fitness values which are calculated through our objective
function in (4), their offspring have a better chance to survive.
This process keeps on iterating and at the end, the fittest
individuals are achived. The fittest individual amongst all slave
machines will be selected as the final solution.

A. Refine the sets of candidate nodes

As described in section III, we define the set of all candidate
nodes for a virtual node as N c(nv). The set includes all
substrate nodes within the maximum distance of the virtual
node. However, the constraints to map a virtual node are not
only related to the distance factor, but also concerning the
remaining capacity of the substrate nodes as shown in (1) and
(2). In this step, we try to restraint the set of candidate nodes
for each virtual node by checking the constraint in (1). Its

397

Authorized licensed use limited to: Carleton University. Downloaded on January 20,2021 at 18:31:12 UTC from IEEE Xplore. Restrictions apply.

initiative is to avoid infeasible substrate nodes entering the
population and make the genetic production more effective.

B. Parallel slave procedure
After the candidate nodes have been refined by node

mapping constraints, all the slave nodes start the Genetic
procedures independently.

1) Genetic representation: In our problem, a request con-
sists of several virtual links, which connect virtual nodes
together. Our proposed GA encoding denotes each gene as a
virtual link mapping method based on augmented graph. That
is to say, a gene is started and ended by meta links. Each
chromosome acts as a VNR mapping solution.

Specifically, the process begins with a set of chromo-
somes/solutions which is called a population. A chromosome
ci denoted by (5) represents a feasible VNR solution. A gene
gij is a mapping solution for the corresponding virtual link.
Similarly, A node denoted by nijk represents a substrate/virtual
node. The first two subscripts indicate its gene, and the third
one denotes its position in the gene. A gene can be denoted
by (6) with a variable length dij . The first and the last links in a
gene represent the node mapping results while the intermediate
links indicate the link mapping solutions. Therefore, the first
and the last nodes of a gene should be meta nodes. Each gene
gij can be divided into two partial paths as (7): head Hijk

and tail Tijk.
ci = {gi1, gi2, ..., gij , ..., giNvl} (5)

gij = {nij1, ..., nijk, ..., nijdij} (6)
gij =

[
Hijk,Tijk

]
, ∀k ∈ (0, dij) (7)

where, Hijk =
[
nij1, nij2, . . . , nijk

]

Tijk =
[
nij(k+1), nij(k+2), . . . , nijdij

]

2) Initial Population: The purpose of the initialization is
to generate a population of M chromosomes, where each
chromosome is a feasible embedding solution. To select a
chromosome, we need to choose genes that form a feasible
solution. This is done in two steps. The first step is to randomly
choose the substrate node for each virtual node from the set
of candidate nodes. After all the substrate nodes have been
selected, all the meta links are set in a chromosome. The
second step is to look for a substrate path of each gene. To
find some good potential substrate paths, we introduce the
shortest path pool [1] which can be done before any online
VNR arrives. For each source-destination pair in the substrate
network, we identify K shortest paths as our path pool.

P =





c1
c2
...
ci
...

cM





=





g11 . . . g1j . . . g1Nvl

g21 . . . g2j . . . g2Nvl

...
.

...
gi1 . . . gij . . . giNvl

...
.

...
gM1 . . . gMj . . . gMNvl





(8)

After all candidate genes in a chromosome have been
selected, we should check the feasibility of the chromosome
as described in Section III-B. Only the feasible chromosome is
added to the population denoted by P . This process continues
until a feasible chromosome is selected. P can be described
as a matrix shown in (8).

3) Selection and Crossover: We select one-pair parents
from the population as the inputs of crossover operation.
Each gene in a chromosome conducts the crossover with
its corresponding gene in the other parent chromosome. We
denote two parent chromosomes as cs, cr and two generated
children chromosomes as c(M+1), c(M+2). Each gene in the
chromosome should crossover with the counterpart of the other
parent chromosome. If there is a node nsju in gsj is equivalent
to a node nrjv in grj , where u and v are not the indexes of
source or destination node, we denote the node as a common
node. There are two scenarios in the crossover operation:

a) : There are one/more common nodes in parent genes.
We select one common node and utilize it as an intermediate
node. The partial parts of the two genes are swapped as shown
in (9) and (10).

g(M+1)j =
[
Hsju,Trjv

]
(9)

g(M+2)j =
[
Hrjv,Tsju

]
(10)

b) : There is no common node in two-parent genes. In
this scenario, a crossover link is selected in each gene. To
make sure the children’s genes are still valid paths, the partial
paths are obtained from the shortest path pools and connect
the genes. For example, we randomly identify a crossover link
(nsju, nsj(u+1)) for gsj , and select (nrjv, nrj(v+1)) for grj .
A substrate path Pnsju,nrj(v+1)

between nsju and nrj(v+1) is
selected from the source-destination path pool. The results of
crossover without common node are shown in (11) and (12).

g(M+1)j =
[
Hsju, Pnsju,nrj(v+1)

,Trj(v+1)

]
(11)

g(M+2)j =
[
Hrjv, Pnrjv,nsj(u+1)

,Tsj(u+1)

]
(12)

After crossover, the child gene may contain loops, which is
an invalid path. Therefore, each gene has the validation check
to remove loops. Then it is the time to compose a chromosome.
In the proposed algorithm, there is only one way to compose
the children chromosomes based on the node mapping results.
Specifically, the parent genes swap partial nodes and generate
the children genes. This operation intermingles the node map-
ping combinations if the meta links are exchanged between
parent genes. Thus, we have to carefully organize the children
genes and make sure a virtual node mapped into the same
substrate node in different genes of a child chromosome.

In graph theory, the composition of a chromosome becomes
a matching problem [11]. It means that, for a given VNR,
a matching M in the VNR graph is a set of pairwise
non-adjacent edges, none of which are loops. The matching
problem could be explained as the graph coloring problem,
which requires different colors for the all adjacent nodes. A
special case in the matching problem is that the request is a
bipartite graph, whose nodes can be divided into two disjoint
and independent sets. Determining whether or not the graph is
bipartite is computable in linear time using breadth-first search
or depth-first search. Taking Fig. 1 as an example, we select the
meta links in parent chromosomes, the children genes could be
integrated into children chromosomes without node mapping
disorder since it is a bipartite VNR graph.

However, the VNR graph sometimes, is not a bipartite graph.
For example, a request contains a triangle: there is a extra
virtual link between A and C for the request in Fig. 1. To

398

Authorized licensed use limited to: Carleton University. Downloaded on January 20,2021 at 18:31:12 UTC from IEEE Xplore. Restrictions apply.

solve this issue, a set of meta links is built to record the node
mapping results. Once a meta link is set for one virtual link,
the following crossover must follow the restriction to map the
virtual node based on the recorded meta link .

4) Mutation: The mutation operation is essentially aimed
for expanding the solution space and broadening the search.
Each gene in the children chromosomes go through mutation
operation with a fixed probability called mutation rate. In
our proposed algorithm, both of the node mapping and link
mapping are encoded to the genes. If the node mapping is
mutated, all genes in a child chromosome have to be updated.
Therefore, we have two steps in the mutation operation.

The first step is node mapping mutation that checks if a
meta link is included between the mutated nodes. A meta
link represents the mapping of a virtual node to a substrate
node. We have to update the node mapping over the whole
chromosome if meta link mutation happens. To mutate a node
mapping of nv , an alternative node ns

a from our refined set
of candidate nodes N c(nv) is selected to replace the current
mapping node ns

c. We evaluate the new node ns
a and the non-

meta mutated node as the updated mutated nodes.
Before the first step finishes, we have to find all other genes

including µ(nv) and update all corresponding meta links. As
we know the genes are valid paths in the augmented graph,
hence, if we change one node in the gene, we have to make
sure the gene is still a connected path. Therefore, we mark
the new node ns

a and its neighbouring substrate node as the
updated mutated nodes for the next step. Then the mutation
operation goes to the second step: path mutation. An alternative
path chosen from the path pool replaces current partial route
and connects two updated mutated nodes.

5) Sorting and terminating condition: The children chro-
mosomes generated and mutated by previous operations are
added into the population P . Only the best M chromosomes
are kept in the population, then the slave procedure goes back
to select parent chromosomes from the population for the next
generation. This reproduction stops either the best solution has
not been changed in tsuc successive times or the number of
generations has reached a fixed number tmax.
C. Synchronization and Allocation

After all slave procedures have obtained the solution, all
results are synchronized and the best placement mapping is
found. The last step is to allocate the VNR into the substrate
network according to the mapping solution.
D. Execution time analysis

With the computing cost deceasing and online network re-
sources demands increasing, we propose a parallel distributed
GA framework to achieve fast, efficient online embedding.
In this framework, the parallel level (the number of slave
procedures) can be tuned according to the trade-off between
available computing resource and expected performance. In
this section, we concentrate on how much time could be
saved in the proposed architecture. We first consider all slave
procedures running sequentially. The total time consuming for
sequential running can be calculated by the sum of each par-
allel slave procedure. Therefore, the complexity for sequential
running grows linearly along with the parallel level.

For parallel running scheme as shown in Fig. 3, except the
time consuming on refining the set of candidate nodes (Tcs)
and the time on synchronization (Tsyn), all the procedures
can be executed in parallel. The execution time denotes the
maximum execution time among all parallel nodes for the
reason that the parallel algorithm should wait until the slowest
parallel procedure finishes its task. Hence, the total parallel
execution time is the sum of the slowest parallel procedure’s
execution time and the master procedures’ execution time. The
master procedures’ execution time, through the simulation,
accounts for 0.9% of the total parallel execution time on
average. We approximate the total parallel execution time
as the execution time of the slowest parallel procedure. We
evaluate the upper bound of mean value of the total parallel
execution time according to Cramer-Chernoff method and
Jensen’s inequality. Finally, we found the parallel running
scheme can improve the execution time from linear time to
logarithmic time. The detailed derivation can be found in [1].

V. PERFORMANCE EVALUATION
In this section, we present the performance of our proposed

algorithm. To make the comparison fairly, we set the simula-
tion with the same evaluation environment of other previous
compared algorithms.
A. Simulation settings

To compare the algorithms fairly, we use the same simula-
tion setting in previous research [1] [7]. We randomly generate
three different substrate network typologies with 50 nodes in
25 × 25 grids by the waxman algorithm. The capacity and
bandwidth resources of the substrate networks are real numbers
uniformly distributed. We assume that the VNRs dynamically
arrive in a Poisson distribution.
B. Comparison Method

In this paper, we compared our proposed one-stage approach
GAOne with five algorithms. D-ViNE and R-ViNE [7] are
considered as the benchmark algorithms of mapping virtual
networks. Another algorithm in the comparison list is G-SP [8],
which deploys a greedy node mapping and the shortest path
algorithm for link mapping. We choose it for the comparison
because the shortest path method is widely used in several
meta-heuristic algorithms, and also it is considered the fastest
algorithm due to its simplicity. We also compared PBGA and
SBGA algorithms [1], which adopt a greedy approach for
VLoM stage and a path based Genetic Algorithm (PBGA) and
a segment based Genetic Algorithm (SBGA) for VLiM stage.
Comparing with [1], we can clearly learn about how much our
one-stage algorithm improves the performance.
C. Evaluation Results

The performance metrics that we measure in this simulation
are the average acceptance ratio, the average remaining band-
width percentage and the total execution time. We pay more
attention on link utilization analysis than node utilization, since
we assume the node mapping is unsplittable. The acceptance
ratio in Fig. 4a indicates the node utilization. The link mapping
solution generally contains multiple substrate paths, thereby
deserving more attentions in this paper. Fig.4 describes the

399

Authorized licensed use limited to: Carleton University. Downloaded on January 20,2021 at 18:31:12 UTC from IEEE Xplore. Restrictions apply.

4 5 6 7 8

Arrival Rate

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
v
e
ra

g
e
 A

c
c
e
p
ta

n
c
e
 R

a
ti

o

GAOne

SBGA

PBGA

SP

D-ViNE

R-ViNE

(a) Average acceptance ratio over arrival
rates

4 5 6 7 8

Arrival Rate

0.45

0.50

0.55

0.60

0.65

A
v
e
ra

g
e
 R

e
m

a
in

in
g
 B

a
n
d
w

id
th

GAOne

SBGA

PBGA

SP

D-ViNE

R-ViNE

(b) Average remaining bandwidth over
arrival rates

4 5 6 7 8

 Arrival Rate

2.0

2.5

3.0

3.5

4.0

4.5

A
v
e
ra

g
e
 P

a
th

 L
e
n
g
th

GAOne

SBGA

PBGA

SP

D-ViNE

R-ViNE

(c) Average path length over different
algorithms over arrival rates

GAOne SBGA PBGA SP D-ViNE R-ViNE

Algorithms

0

50

100

150

200

250

T
im

e
(m

s
)

(d) Total execution time analysis

Fig. 4: Performance comparison

average value over arrival rates from 4 to 8 per 100 time units
with 95% CI (confidence interval).

We measure the execution time for each procedure as shown
in the Fig. 3. We set the parallel level as 16. According
to the convergence analysis [1], the acceptance ratio reaches
converged values when the parallel level goes up to 16.
Definitely, the parallel level could be adjusted freely in terms
of a time limitation or a high acceptance requirement.

We summarize the observation of results as following:
1) As shown in Fig.4a, GAOne has the best acceptance ratios.
This observation implies that our GA with a comprehensive
objective function can generate more efficient solutions. More-
over, the results verify the benefits of one-stage strategy.
2) The greedy solutions (G-SP, D-ViNE, R-ViNE) occupy
more resources in Fig.4b, while the load balanced solutions
(GAone, SBGA, PBGA) utilize the bandwidth more effi-
ciently. Moreover, the utilization of the bandwidth is increased
in GAone. The higher acceptance ratio of GAone than SBGA
and PBGA comes from the higher bandwidth utilization.
3) The average path length in Fig. ?? depicts the bandwidth
saving for load balanced algorithms. They take less average
path lengths, and save more bandwidth resource for future
VNRs. Another observation is that GAOne consumes more
bandwidth than other load balanced algorithms, but it has the
shortest average path length. Since it accepts more requests as
illustrated in Fig. 4a, it consumes more bandwidth resource.
4) As shown in Fig. 4c, D-ViNE and R-ViNE take more time
to generate the solution due to their relaxed linear program-
ming mechanism. The G-SP performs the greedy VLoM and
greedy shortest path VLiM, which simplifies the problem with
small consuming time. However, G-SP still takes longer time
than the distributed parallel solutions.
Among the parallel algorithms, SBGA and PBGA essentially
realize a partial parallelism as they still run VLoM stage
sequentially. The average execution time is 18.74ms for SBGA
and 16.62ms for PBGA. SBGA consumes longer time because
it considers the path restructuring while PBGA is a path based
algorithm. Our proposed algorithm GAOne considers the node
and link restructing in one-stage and takes 16.05ms on av-
erage. The consuming time is smaller than both SBGA and
PBGA by reason of one-stage full parallel running scheme.

VI. CONCLUSION

There is few existing research discussing one-stage online
VNE problems due to the high complexity. In this paper,
we propose a one-stage distributed parallel Genetic Algorithm

which takes both scalability and optimality into account. We
realize the one-stage mapping for both virtual nodes and their
associated links through the genetic reproduction mechanism
in combination with graph theory. Our intensive simulation
shows that GAOne algorithm achieves a better performance
both on acceptance ratio and time saving aspects. Besides,
the results confirm our argument that the one-stage mapping
greatly broadens the solution space and provides more efficient
mapping results. We also extend our previous research [1]
by realizing full parallelism of Genetic Algorithm. The new
distributed parallel structure saves more time for online VNE
problems, which is significantly important for the 5G network,
IoT demands and future SDN deployment.

REFERENCES

[1] Qiao Lu, Khoa Nguyen, and Changcheng Huang. Distributed parallel
algorithms for online virtual network embedding applications. Interna-
tional Journal of Communication Systems, page e4325, 2020.

[2] Isha Pathak and Deo Prakash Vidyarthi. A model for virtual network em-
bedding across multiple infrastructure providers using genetic algorithm.
Science China Information Sciences, 60(4):040308, Mar 2017.

[3] G. S. Paschos, M. A. Abdullah, and S. Vassilaras. Network slicing
with splittable flows is hard. In 2018 IEEE 29th Annual International
Symposium on PIMRC, pages 1788–1793. IEEE, 2018.

[4] Peiying Zhang, Haipeng Yao, Maozhen Li, and Yunjie Liu. Virtual
network embedding based on modified genetic algorithm. Peer-to-Peer
Networking and Applications, 12(2):481–492, 2019.

[5] Isha Pathak and Deo Prakash Vidyarthi. A model for virtual network em-
bedding across multiple infrastructure providers using genetic algorithm.
Science China Information Sciences, 60(4):040308, 2017.

[6] H. Cao, S. Wu, Y. Guo, H. Zhu, and L. Yang. Mapping strategy for
virtual networks in one stage. IET Communications, 13(14), 2019.

[7] M. Chowdhury, M.R. Rahman, and R. Boutaba. Vineyard: Virtual
network embedding algorithms with coordinated node and link mapping.
IEEE/ACM Transactions on Networking (TON), 20(1):206–219, 2012.

[8] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking virtual network
embedding: substrate support for path splitting and migration. ACM
SIGCOMM Computer Communication Review, 38(2):17–29, 2008.

[9] Q. Lu and C. Huang. Distributed parallel vn embedding based on genetic
algorithm. In 2019 IEEE Symposium on Computers and Communications
(ISCC), 2019.

[10] H. Mühlenbein. Parallel genetic algorithms in combinatorial optimiza-
tion. In Computer science and operations research. Elsevier, 1992.

[11] L. Lovász and M. Plummer. Matching theory. American Math. Soc.

400

Authorized licensed use limited to: Carleton University. Downloaded on January 20,2021 at 18:31:12 UTC from IEEE Xplore. Restrictions apply.

