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      Abstract- We develop a framework of using effective 
bandwidths under dynamic weighted round robin scheduling to 
study the statistical quality of service assurance issue in self-sizing 
networks supporting differentiated service. A traffic measurement-
based adaptive effective bandwidth allocation algorithm aiming at 
improving the performance of effective bandwidths is proposed.  
We evaluate our proposed mechanism with a set of simulations that 
use Poisson and Markov modulated Poisson process sources as 
input. The simulation results show that the adaptive effective 
bandwidth allocation allows different quality of service 
requirements to be satisfied at the same time while overcoming the 
conservative nature of the pure effective bandwidth allocation. 
      Keywords- Effective Bandwidth, QoS, Bandwidth Management 
 

I. INTRODUCTION 

As a promising approach to achieve the tradeoff between 
network utilization and the provision of QoS, the concept of 
effective bandwidth has been widely accepted. In the 
literature, there are many approaches to estimate the effective 
bandwidth of a bursty source. In general, we can categorize 
these approaches into two classes: The first one includes the 
analytic approaches based on traditional queueing theory.  By 
hypothesizing the traffic models, an explicit expression for 
the effective bandwidths for some traffic sources (such as 
Markov and fBm processes) can be obtained. There are rich 
researches about such approaches, see, for example, [1] [2] [3] 
[4] [5] [6] [7] etc. The second categorization is to use Kelly’s 
mathematical definition to calculate the effective bandwidths 
for different kinds of traffic. Based on large deviation theory, 
Frank Kelly defined a mathematical framework [8] for the 
effective bandwidth of a stationary arrival process as follows:                

α(s,t) = 
st
1

logE[esX[0,t]]      0<s,t<∞                   (1) 

where s is the space-scale parameter and t is the time-scale 
parameter, X[0,t] denotes the amount of data that arrives 
from a source during the interval of length t. In practice, there 
are two methods to calculate the operating point of s and t. 
One is the many sources asymptotic [9] approach, which 
assumes that as the number of independent input increases, 
the buffer size and service rate per input stay fixed; the other 
one is the large buffer asymptotic [6] [10]  method, which is 
concerned with how buffer overflow probability decays as 
buffer size increases.  In the many sources asymptotic, a sup-
inf algorithm is used to calculate the s and t. Since the sup-inf 
calculation can be computationally intensive and needs the 
whole traffic trace beforehand, many sources asymptotic is 

only suitable for off-line effective bandwidth approximation. 
According to a large buffer asymptotic, s is approximated by 

s=−ln(Q>B)/B                                                         (2) 
where B is the buffer size. We may choose a suitable time 
interval for t for on-line measurement-based effective 
bandwidth estimation.  
    Note that (2) is a simplifying form of  

P (Q>x) sxCe−≈            as x→∞                           (3) 
by assuming C=1, where C is an undetermined asymptotic 
constant.  This simplification, as well as the additive property 
of effective bandwidths without considering the statistical 
multiplexing gain, may result in the conservatism of effective 
bandwidth allocation [2] [5] [11] [12]. In some cases, the 
effective bandwidth approximation may overestimate the 
target loss probabilities by several orders of magnitude [12]. 
To solve this problem: we develop the measurement-based 
adaptive effective bandwidth allocation (AEBA) approach: 
(1) we use the effective bandwidth as a rough approximation 
of the bandwidth to be allocated; (2) we adjust the bandwidth 
to be allocated according to the measured QoS. 

Section II describes the AEBA algorithm. We study the 
performance of AEBA under dynamic weighted round robin 
(DWRR) scheduling instead of a FIFO queueing discipline, 
aiming at providing differentiated services to traffic flows. 
Section III provides the simulation results. And Section IV 
states the conclusion. 

 
II. EFFECIVE BANDWIDTHS UNDER DWRR 

A. Measurement-based effective bandwidths 

It requires a full characterization of the underlying process 
to calculate (2), which is not trivial.  For practical purposes, 
we use the measurement-based method to calculate the 
effective bandwidths. The performance of different methods 
for measuring effective bandwidths such as the direct 
estimator, the block estimator, the Kulback-Leibler distance 
(KLD) estimator and the linear regression (LR) estimator is 
compared in [13]. Among them, the block estimator is the 
fastest one. Therefore, it is suitable for the calculation of 
effective bandwidths in the real-time self-sizing network     
environment.  
    The block estimator method was proposed by Duffield et 
al. in [14]. It considers the non-overlapping blocks of arrivals 
over an interval of length t. By applying the block estimator 
method to (2), we can obtain the following equation: 
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where N is the window size. The essential idea behind 
formula (4) is to transfer the calculation of ensemble average 
in (2) into time average calculation, by assuming that the 
underlying processes have ergodic characteristics. 
 
B. AEBA under DWRR 

    As shown in Fig. 1, at the ingress points of the networks, 
the incoming traffic streams are classified into different 
classes. Each class of traffic has the similar traffic 
characteristics and QoS requirements and is isolated into its 
own separated buffer. It is difficult to achieve a priori link 
dimensioning in self-sizing networks, so a traffic prediction 
method is required. Noting that the most effective way to 
predict the traffic is to use the latest second to predict the next 
second, the latest minute to predict the next minute, there is 
not too much benefit to increase the number or lengths of the 
accounted time intervals in past [7]. We use the effective 
bandwidth estimated in the current time window to predict 
the bandwidth to be allocated in the next time window. 

According to the (sub)additive and independent properties 
[15] of effective bandwidths, we may wish to allocate the 
overall bandwidth according to the sum of effective 
bandwidth of individual class and adjust the weight assigned 
to each class according to its effective bandwidth estimated in 
the current time window. However, such pure effective 
bandwidth allocation ignores the effect of multiplexing 
multiple classes together. Due to statistical multiplexing, the 
bandwidth required to carry a set of classes with a certain 
QoS is less than the sum of the bandwidths that would be 
needed to carry each class separately with the same QoS. To 
exploit the statistical multiplexing gain among multiple 
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Fig.1 DWRR with traffic prediction in self-sizing networks 
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 Fig. 2 Adaptive effective bandwidth allocation 
 
classes, we develop the adaptive effective bandwidth 
allocation approach  (AEBA) as described in Fig. 2.  
    According to the measured loss ratio in one window and 
the measured overall loss ratio, we adjust the value of 
multiplexing gain factor g, which adjusts the bandwidth to be 
allocated for the next window in the following way: 
    BWnext= Min {Max{EB(1-g),average rate},peak rate}   (5) 
where BWnext is the bandwidth to be allocated for the next 
window and EB is the effective bandwidth estimated in the 
current window. We define a upper threshold, Thlosshigh, 
and a lower threshold, Thlosslow, for measured packet loss 
ratio: 
   0<Thlosslow<Thlosshigh< Target loss ratio         (6) 
We also define two step control parameters, Ssmall and 
Slarge, for adjusting the value of g: 
   Slarge>Ssmall>1                                                    (7) 
 If the measured loss ratios are lower than Thlosslow in two 
successive windows, the over-allocation may have occurred. 
We increase the value of g by multiplying Ssmall, which will 
reduce the bandwidth allocation according to (5). If the 
measured loss ratio in the current window is higher than 
Thlosshigh, with high probability, g is too large. We reduce 
the value of g to the former value by dividing Ssmall. If the 
measured overall ratio is higher than Thlosshigh at the same 
time, we need to reduce the loss ratio in the next several 
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windows to reduce the overall loss ratio to the target loss 
ratio. To achieve this goal, we reduce the value of g by 
dividing Slarge.   
 
C. Quick detection of sustained burstiness   

 
To improve the performance of AEBA under DWRR for 

the traffic sources exhibiting burstiness over multiple time 
scales, we develop the quick persistent burstiness detection 
mechanism described in Fig. 3.   
    We define two thresholds, Thbw1 and Thbw2, for the 
measured arrival rates; and two parameters, N1 and N2, for 
the measurement length.  

Thbw1>Thbw2>BWnow                                         (8) 
N2>N1>=3                                                              (9) 

We monitor the traffic in each measured epoch, if the 
measured traffic rate is higher than Thbw1 for N1 successive 
epochs or higher than Thbw2 for N2 successive epochs, we 
assume that a sustained burstiness occurs. If the measured 
loss ratio exceeds Thlosshigh, a bandwidth reallocation is 
needed. 
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 Fig. 3 Quick detection of sustained burstiness  

 
III. SIMULATION RESULTS 

 
    To evaluate the performance of our proposals, we perform 
the following simulations with Poisson traffic and MMPP 
traffic as input. In scenario 1, we use homogeneous Poisson 
traffic as input. In scenario 2, we use MMPP traffic as input.  

 
A. Scenario 1 

 
    In this scenario, we evaluate the performance of AEBA 
under DWRR with three homogeneous classes of Poisson 
traffic as input. Each class has the same arrival rate of 2000 
cell/s, same buffer size of 50 cells and same loss ratio 
requirement of 10-3. We measure the traffic at the resolution 
of 50 milliseconds with measurement window size set to 60, 
i.e. each measurement epoch is 50 milliseconds long and each 
measurement window is 3 seconds long. We set the initial 
value of multiplexing gain factor g=0.05, upper loss ratio 
threshold Thlosshigh=0.98*target loss ratio, lower loss ratio 
threshold Thlosslow=0.6*target loss ratio, small step control 
parameter Ssmall=1.1 and large step control parameter 
Slarge=1.5.  
    Fig. 4 gives the measured loss ratio with pure effective 
bandwidth allocation under DWRR. Fig. 5 gives the 
measured loss ratio with AEBA under DWRR. Fig. 6 gives 
the measured overall multiplexing gain achieved with AEBA 
under DWRR. The measure multiplexing gain is calculated as 
follows: 
              Gain=(BWp-BWa)/BWp                                          (9) 
where BWp is the overall bandwidth that would have been    
allocated with pure effective bandwidth allocation, BWa is 
the actual bandwidth that has been allocated with AEBA. 
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 Fig. 4 95%CI of loss ratio using pure effective bandwidth allocation    
 under DWRR  
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Fig. 5 95%CI of loss ratio with AEBA under DWRR 
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   Fig. 6 95%CI of multiplexing gain with AEBA under DWRR 
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       Fig. 7 Sensitivity of loss ratio (class 1) to initial value of g 
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       Fig. 8 Sensitivity of multiplexing gain to initial value of g 
 
The simulation results show that the measured loss ratio is 

approximately 10-8 while the target loss ratio is 10-3. So the 
pure effective bandwidth allocation is too conservative. Using 
AEBA under DWRR, the QoS requirement of each traffic 
class in terms of loss ratio can be satisfied while a statistical 
multiplexing gain of around 4.6% can be achieved at the 
same time. 

The simulation results in Fig. 7 and Fig. 8 show that the 
measured loss ratio and the overall multiplexing gain are not 
sensitive to the initial value of g (using class 1 as an example 
in Fig.7, we obtain the corresponding simulation results for 
classes 2 and 3). 

 
B. Scenario 2 

 
    In this scenario, we use three different two-state MMPP 
classes with different QoS requirements as input to evaluate 
the performance of DWRR with AEBA. We set the initial 
value of g=0.05, bandwidth thresholds Thbw1=1.5*current 
allocated bandwidth and Thbw2=1.2*current allocated 
bandwidth, time control parameters N1=3 and N2=5.  

TABLE 1 Traffic sources with different QoS requirements 

Traffic 
sources 

Target 
loss 
ratio 

Arrival 
rate in 
state 1 
(cell/s) 

State 1 
lasting 
time(s) 

Arrival 
rate in 
state 2 
(cell/s) 

State 2 
lasting 
time(s) 

Buffer 
size 
(Cell) 

Class1 10-3 1000 200 2000 200 200 
Class2 10-2 1000 600 1500 600 100 
Class3 10-1 200 300 300 300 50 

 
    Table 1 lists the traffic source characteristics. Fig. 9 and 
Fig. 10 list the simulation results with window size=60. Table 
2 and Fig. 11 give the simulation results with different 
window sizes. To obtain a better understanding of the 
performance of DWRR with AEBA and quick burstiness 
detection, a sample of how our approach adjusts the effective 
bandwidth allocation and tracks the traffic fluctuations during 
a period of three simulated minutes is given in Fig. 12.  

The simulation results show that the different QoS 
requirements of all classes can be satisfied at the same time. 
Meanwhile, the overall statistical multiplexing gain of 
approximately 3.1% is achieved.  
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          Fig. 9 Measured loss ratio for each class 
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         Fig. 10 95% CI of measured overall multiplexing gain 

 
TABLE 2 Sensitivity of loss ratio to window size 

Traffic 
sources 

Window size Measured loss 
ratio 

95% CI 

60 9.867E-4 [9.830E-4, 9.904E-4] 
120 9.717E-4 [9.680E-4, 9.754E-4] 
180 9.658E-4 [9.627E-4, 9.689E-4] 
240 9.610E-4 [9.586E-4, 9.634E-4] 

Class 1 

300 9.722E-4 [9.574E-4, 9.870E-4] 
60 9.686E-3 [9.664E-3, 9.708E-3] 
120 9.604E-3 [9.572E-3, 9.636E-3] 
180 9.533E-3 [9.487E-3, 9.579E-3] 
240 9.450E-3 [9.365E-3, 9.535E-3] 

Class 2 

300 9.392E-3 [9.311E-3, 9.472E-3] 
60 7.198E-2 [7.129E-2, 7.267E-2] 
120 6.871E-2 [6.776E-2, 6.966E-2] 
180 6.622E-2 [6.549E-2, 6.659E-2] 
240 6.495E-2 [6.422E-2, 6.568E-2] 

Class 3 

300 6.908E-2 [6.804E-2, 7.012E-2] 
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      Fig. 11 Sensitivity of overall multiplexing gain to window size 
 

The difference of the measured loss ratio of each class is 
very small for different measurement window sizes. The 
reason is that we use the fast detection approach to track 
sustained burstiness quickly. It seems that the measured 
overall gain decreases a little with the increase of 
measurement window size. The reason may be that: the 
decrease of the traffic is not detected in the sustained 
bursiness detection algorithm.  

Fig. 12 gives a sample of the effective bandwidth, allocated 
bandwidth and measured traffic rate of class 3 during the 
simulated time period [3240, 3420]. We can see that the 
allocated bandwidth is lower than the effective bandwidth, 
i.e., there exists a multiplexing gain. There is also a big 
change of traffic rate at the time point of around 3320s, the 
allocated bandwidth tracks it well.  
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 Fig. 12 Effective bandwidth vs. allocated bandwidth vs. traffic rate during  
 the simulated period (54m, 57m) 
   

 
IV. CONCLUSION 

     
    In this paper, we have quantified the statistical 

multiplexing gain obtained by using the AEBA approach 
under DWRR. We accomplished this with a set of 
simulations that use Poisson and MMPP traffic as input. The 
simulation results show that the adaptive effective bandwidth 
allocation algorithm can exploit the multiplexing gain 
efficiently. The persistent burstiness detection approach can 
track the traffic fluctuation quickly. Therefore, using AEBA 
under DWRR can allocate bandwidth more efficiently than 
the pure effective bandwidth allocation.  
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