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Abstract—For embracing the ubiquitous Internet-of-
Things (IoT) devices, edge computing and Network Func-
tion Virtualization (NFV) have been enabled in branch
offices and homes to provide network functions on top
of generic physical Customer-Premises Equipment (pCPE).
While latency can be greatly reduced as most traffic does
not need to be transmitted to a remote, centralized cloud,
the resource limitation of a single pCPE makes it difficult
for VNFs to be elastic enough upon usage surge. In this
paper, we present VNF-B&B, an architecture featuring
resource sharing of pCPE across the network edge. SP
utilizes idle, shareable pCPE nodes as bed-and-breakfast
places to deploy VNFs of other users for a certain period.
By keeping the VNFs at the network edge, the cost is
minimized for processing real-time data burst from IoT
devices. Meanwhile, the traffic load to the core network
and service delay is substantially reduced.

I. INTRODUCTION

In the wake of cloud computing and Network Func-
tion Virtualization (NFV), Service Providers (SPs) lever-
age virtual Customer Premises Equipment (vCPE) as
Virtual Network Function (VNF) instances on top of
generic physical Customer-Premises Equipment (pCPE),
in search of rebuilding a dynamic revenue stream [11].
There may be enough resources for pCPE to deploy
VNFs locally [10], while pCPE can also coordinate with
the cloud if VNF scale-out is needed to accommodate
heavier usage. Taking advantage of centralized cloud
services in the core networks has benefits [3] because of
scalable and flexible computing capabilities. However,
large-scale deployments of Internet-of-Things (IoT) de-
vices bring challenges to VNFs running in a centralized
cloud, as the network traffic load would be drastically
increased by transmitting data between the core and the
edge of the network, causing high processing delay or
even service outage due to the congestion of the network.
Meanwhile, high usage of the cloud networks would jack
up the price per usage, resulting in higher-than-expected
operating expense (OPEX).

The concept of edge computing [8] was proposed
to move the initial handling of raw data down to the
Provider Edge (PE). While a single pCPE node has
limited resources and typically serves a designated cus-
tomer, the aggregated computing capabilities of pCPE
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Fig. 1: The architecture of VNF-B&B based on the ETSI NFV
[2] enables pCPE resources as part of NFVI along with PE
cloud. E.g., when pCPE-B needs more VNFs, they can be
deployed on both pCPE-A (VNF-B3) and PE (VNF-B4).

across the network edge can be powerful. If the spare
resources of pCPE can be shared within the edge, VNFs
will be able to roam around. It is certainly promising
to utilize hidden computing resources. However, CPE
resource sharing faces challenges:

(i) Lack of models to describe how offloading to the
edge can mitigate the core network throughput and
minimize the OPEX.

(ii) The pCPE availability will be jeopardized if it no
longer has enough resources to host VNFs.

(iii) Users need to be motivated to consent contributing
their vCPEs for resource sharing. A pricing strategy
is required to benefit both the SP and its end users.

In this paper, we propose an architecture to allow
sharing resources of pCPE within the network edge,
namely VNF-B&B. When sharable pCPE is not actively
used by its owner, it will be treated as a ”bed-and-
breakfast” place for VNF to ”stay”. As shown in Figure
1, SP will have the permission to deploy VNFs for other
users from the same edge network. The goal of VNF-
B&B is to find the optimal strategy to deploy the VNFs
with minimal cost.

We divide the contents into the following sections.
The related work is illustrated in Section II. Section III
formulates the problem. Section IV proposes the VNF-
B&B algorithm. Simulation results are shown in Section
V and Section VI concludes the paper.978-1-5386-3531-5/17/$31.00 c© 2017 IEEE



II. RELATED WORK

NFV has been widely adopted by SPs and vendors to
reduce cost and to provide scalable and elastic services
[4]. Research on cloud-based NFV has been done to
ensure that VNFs run at optimum levels in the cloud
[7].

Fog computing was proposed in [1] and was antici-
pated to become an essential part of cloud computing
with the number of Internet-of-Things (IoT) growing
explosively. Vaquero et al. [12] proposed a compre-
hensive definition of the fog covering its features and
impact, including device ubiquity, challenges on service
and fog-based network management, levels of device
connectivity, and privacy. Edge clouds were presented
as entry points for IoT, which could be parts of the
Enhanced Packet Core (EPC). The scenarios of fog
computing in several domains were discussed in [9],
which pointed the research direction of leveraging the
edge of the network from high levels.

Virtualization in edge networks as a form of fog
computing, including NFV, have been given a close look.
Manzalini et al. visioned potential value chain shifts
and business opportunities in [6] by emerging paradigms
such as SDN and NFV. A platform called Network
Functions At The Edge (NetFATE) was proposed in [5]
as a proof of concept of an NFV framework at the
edge of a Telco operator networks. Each CPE node was
realized with a generic-purpose computer installed with
a hypervisor and virtual switches.

While existing work can prove that deploying VNFs
on the edge of the network is feasible, the benefits of
resource sharing across different CPE nodes are not
addressed and demonstrated.

III. PROBLEM FORMULATION

A network edge is defined to be formulated by a PE
router and all pCPE nodes under it, modeled as a directed
graph G = (V,L). Set V represents all pCPE nodes in
the network. Set L has all connected paths between each
two pCPE nodes. A pCPE node in V is denoted by v,
such that v ∈ V . Define Nv as the total number of pCPE
nodes in V , so that any pCPE node can be represented
by vi ∈ V,∀i ∈ [1..Nv]. For any data transmitted from
one node vi to another node vj in V , there exists a link
lij via between the PE switch and the datacenter, such
that lij ∈ L,∀i, j ∈ [1..Nv] , i 6= j. The network edge
is connected to the core network via one single link,
denoted by lc.

A. VNF Types and Flavors

A VNF provisions a specific type of service. We use
f to define a VNF instance. The CPU, memory, and
bandwidth requirements of f is then denoted by U(f),
M(f), and B(f), respectively. We assign a to identify
a specific type of network function and na to be the

number of network function types. An instance of VNF
with type a can then be represented by f(a).
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Fig. 2: An example of VNF instances grouped by u1, while
they are deployed on 3 different pCPE nodes.

B. Places to Deploy VNF instances

Regardless of where the instances are deployed, we
represent a pCPE node’s owner by ui, i ∈ [1..Nv], with
the assumption that each pCPE node is owned by a
unique user. Figure 2 illustrates an example of VNF
instances grouped by u1. Placement decisions are made
based on the flavors of VNF instances and the resource
capacities of pCPE nodes. A VNF instance of a certain
user ui, denoted by f(a, ui), can be deployed at either
of the locations below.

1) B&B deployment: For a VNF instance f(a, ui),
any pCPE node within the same network edge can be
considered as a candidate place to deploy, also known as
B&B deployments. For a B&B deployment of f(a, ui),
its notation can be extended to f(a, ui, vj), where vj is
the place to deploy f .

2) Cloud deployment: For a cloud deployment of
f(a, ui), its notation can be extended to f(a, ui, c),
where c is the remote cloud to deploy f . We use the
set Fc to define all VNF instances deployed on cloud.

C. Factors to Impact Placement Decisions

1) pCPE Resource Capacity: Every pCPE node v has
its own resource capacity to host a limited number of
VNF instances. Our discussion focuses on resources of
virtual CPUs (vCPUs) and memory. Let U(v) denote the
number of vCPUs v can provide. Let M(v) be the total
amount of memory for VNF instances from v.

2) Remote Function Delay: The remote function de-
lay of a VNF instance f offloaded to the cloud is defined
as the latency introduced by offloading the VNF to the
cloud, denoted by t(f), while Tmax(f) is the maximum
allowed network delay for a specific network function
instance. Let B(lc) be the total bandwidth of lc, and
t(lc) be the remote function delay of lc. VNF instances
take up the bandwidth of lc to communicate with the
pCPE nodes. The latency of the core network is therefore
highly correlated to the bandwidth consumption of lc.

During peak hours, the severity of congestion is re-
flected by the residue bandwidth of the path from the
edge switch to the cloud, denoted by R(lc). Let Fc

denote the set of VNF instances deployed in the remote
cloud. R(lc) is then R(lc) = B(lc)−

∑
f∈Fc

B(f),∀f ∈
Fc. We define the delay not directly caused by the



network edge as a constant Td. For all VNF instances
offloaded to the cloud, there must be

t(lc) ≤ Tmax(f),∀f ∈ Fc (1)
Equation (1) draws a limit of how much VNF of-

floading can be done, since a busier cloud environment
would increase t(lc). We model t(lc) to be inversely
proportional to R(lc) + b, and proportional to Td with
b as a constant scoping the maximum remote function
delay when the bandwidth of lc is depleted. Combined
with Equation (1), there is

Td
R(lc) + b

≤ Tmax(f),∀f ∈ Fc (2)

D. Cost of Offloading to Edge Network

By encouraging resource sharing participation, it is
necessary to give incentives to users based on the amount
of resource shared. We denote the unit incentive of
CPU, memory and bandwidth usage for a pCPE node
v as wU (v), wM (v) and wB(v), respectively. The cost
of offloading a VNF instance f to any of the pCPE
node, denoted by S(f, v), is calculated as S(f, v) =
wU (v)U(f) + wM (v)M(f) + wB(v)B(f).

E. Cost of Offloading to Cloud

We use c to represent the remote cloud location to
deploy VNF instances. The total amounts of vCPUs,
memory, and network bandwidth available in the cloud
are denoted by U(c), M(c), and B(c). Let wU (c) and
wM (c) stand for the unit cost for consuming the cloud’s
CPU and memory resource. We model wU (c) and wM (c)
to be inversely proportional to the cloud’s remaining
vCPUs and memory with the constant of proportionality
WU and WM . The remaining number of vCPUs and
memory are denoted by RU (c) and RM (c). The total
cost of vCPUs and memory for a VNF instance f to be
offloaded to the cloud, SU (f, c) and SM (f, c), are then:

SU (f, c) = wU (c)U(f) =
WUU(f)

U(c)−
∑

f ′∈Fc
U(f ′) + δ

SM (f, c) = wM (c)M(f) =
WMM(f)

M(c)−
∑

f ′∈Fc
M(f ′) + δ

(3)
In Equation (3), δ is a small positive number to avoid
dividing by zero. Let wB(c) denote the unit cost of the
remote cloud’s network bandwidth. Define wB(c) to be
proportional to t(lc) with the constant of proportionality
WB . we define the total cost of bandwidth used between
the VNF instance f and the cloud as SB(f, c),

SB(f, c) = wB(c)B(f) =WBt(lc)B(f)

=
WBTdB(f)

B(lc)−
∑

f ′∈Fc
B(f ′) + b

(4)

From Equations (3) and (4), the cost of offloading a
VNF instance f to the cloud, denoted by S(f, c), is then
calculated as

S(f, c) = SU (f, c) + SM (f, c) + SB(f, c) (5)

In Equation (5), δ is a small positive number to avoid
dividing by zero.

F. Objective and 0-1 Integer Programming Formulation

Define X(f, v) as a group of Boolean variables
representing if each VNF instance f is deployed on
the B&B node v. Define X(f, c) as another group of
Boolean variables representing if each VNF instance f
is deployed on the remote cloud c. The objective of the
optimization is to minimize the total offloading cost.

X(f, v) =

{
0, f not deployed on v
1, f deployed on v

(6)

X(f, c) =

{
0, f not deployed on cloud
1, f deployed on cloud

(7)

Minimize
∑
f∈F

∑
v∈V

S(f, c)X(f, c) + S(f, v)X(f, v)

(8)

w .r .t . X(f, v), X(f, c)

s.t . X(f, c) +
∑
v∈V

X(f, v) = 1,∀f ∈ F (9)

U(c)−
∑

U(f)X(f, c) ≥ 0 (10)

M(c)−
∑

M(f)X(f, c) ≥ 0 (11)

Td
B(lc)−

∑
B(f)X(f, c) + b

≤ Tmax(f),∀f ∈ Fc

(12)

U(v)−
∑

U(f)X(f, v) ≥ 0,∀v ∈ V (13)

M(v)−
∑

M(f)X(f, v) ≥ 0,∀v ∈ V (14)

Remarks:
• Function (8), the objective function, minimizes the

total cost of offloading VNFs instances.
• Constraint (9) ensures that every VNF instance f ∈
F is only deployed at one place.

• Constraints (10) and (11) are the capacity bounds
of the CPU and memory of the cloud.

• Constraint (12) sets a limit for instances offloaded
to the cloud due to the residue bandwidth of lc.

• Constraints (13) and (14) are the capacity bounds
for CPU and memory of every pCPE node.

IV. VNF-B&B PLACEMENT ALGORITHM

From the 0-1 integer programming, we design an
algorithm to achieve the minimal cost by choosing the
optimal place to deploy all VNF instances.

For every request of deploying a VNF instance, we
first use Algorithm 1 to check the placement eligibility
of each pCPE node and the remote cloud. By calling the
function GETCANDIDATES(f ), a list of candidate places



Algorithm 1 VNF-B&B Resource Eligibility Algorithm
1: function GETCANDIDATES(f )
2: create an empty list candidates
3: for all v ∈ V do
4: if ISRESOURCEENOUGH(v,f ) then
5: add v to candidates
6: if ISRESOURCEENOUGH(c,f ) then
7: add c to candidates
8: return candidates
9: function ISRESOURCEENOUGH(v, f )

10: if v is c then . Check delay for cloud
11: link_bw← B(lc) + b
12: for all f ′ ∈ Fc do
13: link_bw← link_bw−B(f ′)

14: delay ← Td/ link_bw
15: if delay < Tmax(f) then
16: return false . Too much delay

return RU (v) ≥ U(f) and RM (v) ≥M(f)
17: and RB(v) ≥ B(f)

will be returned from the input of a VNF instance f and
the current resource level. Algorithm 2 and 3 provide
implementation of the cost model from Section III and
define functions to choose the place for a VNF instance
f at the lowest cost.

Algorithm 2 VNF-B&B Cost Estimation Algorithm
1: function CLOUDCOST(f )
2: cpu_left← U(c) + δ
3: memory_left←M(c) + δ
4: link_bw← B(lc) + b
5: cost← 0
6: for all f ′ ∈ Fc do
7: cpu_left← cpu_left− U(f ′)
8: memory_left← memory_left−M(f ′)
9: link_bw← link_bw−B(f ′)

10: cost← cost+WUU(f)/cpu_left+WMM(f)/
memory_left+WBTdB(f) / link_bw

11: return cost
12: function BNBCOST(f, v)
13: cost← 0
14: if user of f does not own v then
15: cost ← [cost + wU (v)U(f) + wM (v)M(f) +
wB(v)B(f)]× (1 + γ)

16: return cost

V. NUMERICAL RESULTS

The numerical results based on simulations are shown
in this section. Our goals are to verify the benefits of
leveraging B&B nodes, compared to using a centralized
cloud alone. We first choose the constants used in the
algorithms: Td = 50000, WU = WM = WB = 1000,
δ = 1, b = 1, γ = 1.

We create 99 pCPE nodes with random levels of initial
resources. With the cloud as an extra node, there are 100
nodes for deployments. As seen in Figure 4a, we color
the cells according the resource type of the lowest level
of a node.

Algorithm 3 VNF-B&B Place Selection Algorithm
1: function CHOOSEPLACE(f )
2: place← none
3: cost← +∞
4: candidates ← GETCANDIDATES(f )
5: for all candidate in candidates do
6: if candidate is c then
7: cur_cost← CLOUDCOST(f )
8: else
9: cur_cost← BNBCOST(f , candidate)

10: if cur_cost < cost then
11: place← candidate
12: cost← cur_cost
13: return place

TABLE I: Pre-defined flavor types for simulation

Name U /M (GB)
/B(Gbps)

Tmax

(ms)
Name U /M (GB)

/B(Gbps)
Tmax

(ms)
F1 1/1/1 1000 F6 4/4/4 1000
F2 2/2/2 100 F7 4/4/4 10000
F3 2/2/2 1000 F8 8/8/8 100
F4 2/2/2 10000 F9 8/8/8 1000
F5 4/4/4 100 F10 8/8/8 10000

We pre-define 10 types of VNF flavors, as shown in
Table I, with different requirements of resources and max
delays allowed. The system can work in three modes:

1) Local Mode: Deploy only on the pCPE node the
user owns. Cloud and B&B nodes are not allowed.

2) Local+Cloud Mode: Deploying locally on the pCPE
node the user owns, as well as on the remote cloud.

3) Local+Cloud+B&B Mode: local, cloud, and B&B
deployments are all enabled.

Figure 5 shows the numbers of deploying each of the
10 pre-defined flavors with the 3 modes. From the re-
sults, we learn that the numbers of instances deployed for
all 10 flavors have dramatically increased by leveraging
B&B nodes. The bottleneck of remote function delay
is greatly relieved by the B&B nodes hosting instances,
because B&B deployments do not put extra traffic to the
core network.

Three flavors, F3, F6, and F9, are picked to investigate
the trends of cost increase as more VNF instances are
deployed in the system. Figure 3a and 3b demonstrate the
changes of costs to deploy a new VNF instance on the
cloud in two different modes, as the numbers of deployed
instances go up. In Local+Cloud+B&B Mode, the costs
are lower when deploying the same numbers of instances
in the system. The results have demonstrated the ability
of the B&B nodes to redirect the load off the cloud and
to reduce the overall cost, even if offering incentives to
the users.

When Td is higher, the ability of the cloud host-
ing VNF instances may be reduced. Under Lo-
cal+Cloud+B&B Mode and for the three flavors F3, F6,
and F9, we increase the level of Td by 1 each time,
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Fig. 3: Numerical results of the VNF-B&B algorithm.
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network edge with various flavors and modes.

and repeat the deployment for 10 times, as shown in
Figure 3c. From the results, the capacity of the system
is affected by the increase of Td. However, the impact
becomes less significant as the level of Td increases.

In Local+Cloud+B&B Mode, all B&B nodes partici-
pate in hosting VNF instances. We examine the resource
levels after the system resources are depleted. When
all VNF instances deployed are of the flavor F1, the
resource levels after the maximum number of instances
are deployed are displayed in Figure 4b. The results have
demonstrated the ability of the VNF-B&B algorithm to
extract the resources to deploy more instances following

the best-effort basis.

VI. CONCLUSIONS

In this paper, we have presented the architecture and
algorithms to share resources of pCPE nodes and deploy
VNFs at the network edge for reducing delay. Future
work includes factoring in the service up and down of
B&B nodes and considering more factors impacting the
deployment placement.
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