
Lightweight Protocol Suite for Wireless Sensor
Networks: Design and Evaluation

Haiming Chen , Changcheng Huang and Li Cui †

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100080, China
Graduate School of the Chinese Academy of Sciences, Beijing, 100049, China

E-mail: {chenhaiming, huangchangcheng, lcui}@ict.ac.cn
† Tel: +86-10-6260 0724, Fax: +86-10-6256 2701

Abstract— Lots of protocols have been proposed to make sen-
sor networks more reliable, efficient and applicable. However, a
vitally important problem has been neglected, that is the feasibil-
ity to implement the protocol and compatibility with other pro-
tocols. In this paper, a layered architecture was designed to or-
ganize the sensor network protocols in a light way, with detailed
description on the interactive interfaces between layers. In ac-
cordance with the architecture, a suite of lightweight protocols
were designed and implemented as prototypes. Our proposed
protocols are featured by their low requirements on the node
resources, and high possibility to be deployed in the real world.
All these protocols were implemented and evaluated in a unified
simulation environment. Simulation results verified our expecta-
tion on the performance of the protocols.

I. INTRODUCTION

The development of wireless sensor network has given us a
chance to reveal previously unobservable phenomena [1].
Forecasting its wide application in both civilian and industrial
fields, more and more researchers are making their efforts on
various aspects of this promising area, most of which are on
the networking issues and energy consumption problems. To
date, lots of efficient protocols have been proposed, and some
of them have also been implemented in laboratory test beds.
The common characteristic of the implemented protocols is
lightweight. Due to the resource constraints on energy, stor-
age and bandwidth in the sensor network, the implemented
protocols cannot be very complicated. They have to be effi-
cient in computation and communication.

In this article, we depict a suite of lightweight protocols for
wireless sensor networks in accordance with an interactive
layered framework. Our framework inherits the merits of
function decomposition of the TCP/IP architecture, and prunes
some complicated functions from the TCP/IP architecture
making it more suitable for the resource-restricted sensor
networks. In addition, to verify the feasibility and efficiency to
implement our proposed framework and lightweight protocols,
we implement the protocols as prototypes in a unified simula-
tion environment, and evaluate their performance by exten-

This paper is supported in part by the National Basic Research Program of
China (973 Program) under Grant No. 2006CB303000, and National High
Technology Research and Development Program of China (863 Program)
under Grant No. 2006AA01Z215, and NSFC project under Grant No.
60572060.

sive simulation experiments. The preliminary results demon-
strate the feasibility to transplant the proposed framework and
protocols to real sensor nodes.

The main contributions of this paper are embodied in the
following aspects.

1. The protocol architecture proposed in the paper is
adapted from the TCP/IP and compatible with TinyOS [2]. So
any protocols designed in accordance with the framework can
be easily transplanted to the popular hardware platform.

2. The proposed lightweight protocols conforming to our
unified sensor network framework have been implemented in
a unified simulation platform, and their performances are
widely evaluated. Our motivation to establish a unified simu-
lation platform to verify our proposed framework and proto-
cols can be attributed to following reasons. Firstly, the exist-
ing common-purpose network simulation platforms, like NS2
and GloMoSim [3], are specifically for traditional wired and
wireless networks, and are built upon the tradition layered
network model, they can not be easily extended to simulate
cross-layer interaction which is required for the sensor net-
work. Secondly, the specific-purpose emulators, like TOSSIM
[4] and EmStar [5], excel in evaluating the performance of
implemented protocols in code level, but have fatal problem
in scalability.

The rest of the paper is organized as follows. We begin
with the description of the protocol architecture designed for
the sensor network. Next, details of designing a lightweight
contention-based media access control protocol is presented
in Session III, followed by elaboration on designing a light-
weight flooding protocol for the sensor network in Session IV.
And then, we present the procedure of implementing the light-
weight protocols in the application of temperature monitoring,
and evaluating their performances in the metrics of delivery
rate and packet delay in Session V. In addition, we point out
some problems and future work in Session VI. At last, we
make a brief conclusion in Session VII.

II. A UNIFIED FRAMEWORK FOR SENSOR NETWORKS

A. Principle and concepts

Neither the traditional network reference model proposed
by ISO, nor that of IEEE 802, is fit for sensor networks, due
to the specific characteristics which make the sensor network
essentially differ from the traditional wired and wireless net-

1155

1-4244-0977-2/07/$25.00 c© 2007 IEEE

work. Since the traditional wired networks are usually com-
posed of high performance computers or routers, their pri-
mary goal is to provide high-speed service for the customers,
so the existing protocols for the wired networks are mostly
based on the principle of achieving high throughputs and
maintaining reasonable flexibility. As for the protocol archi-
tecture of the wireless local area network or ad hoc network,
although there are some resemblance between those networks
and sensor networks, the former ones do have looser restric-
tions on resources of computation, communication, and power
supply. Taken into consideration the strict constraints on these
resources in sensor networks, some simplified protocol archi-
tectures have been proposed. But so far there has been no
consensus on the architecture which is really suitable and fea-
sible for sensor networks. So the authors of [6] called on a
unified architecture of sensor networks for both simulation
environments and hardware platforms. The advantage of uni-
fying the network architecture is to allow the protocols devel-
oped in different environments and platforms be easily inte-
grated together, more reusable and more compatible.

We believe a unified protocol architecture is essential for
the further development of sensor networks, but it can never
make sense to cast the architecture of the traditional networks
to the sensor network without much adaptation. Taking into
accounts the merits of the TCP/IP model on function decom-
position, we adopt the idea of layering and adapt it to the sen-
sor network.

B. A unified protocol architecture for the sensor network

The traditional TCP/IP architecture categorized the proto-
cols into five layers, of which the networking layer and trans-
port layer are in the core. As was mentioned above, the pri-
mary goal of the traditional networks is to provide high-speed
services for the customers. At present, protocols in the net-
working layer of the traditional wired or wireless networks
have high requirements on the capacity of computation and
communication. To guarantee the reliability of end-to-end
transmission, the transport layer is becoming more complex
and computation-concentrated. These heavyweight protocols
are necessary for the traditional networks to provide accept-
able services, but for sensor networks it is too expensive to
provide such services. So we designed a unified protocol ar-
chitecture for the sensor networks by pruning the transport
layer from the TCP/IP suits and simplifying the interfaces
between layers.

The adapted protocol architecture is shown as Fig. 1. From
top to bottom, they are application, routing, media access con-
trol and physical layers. Data flow and interaction between
the layers are accomplished by the interfaces provided be-
tween the adjacent layers. However, interfaces defined in our
proposed architecture for the sensor network is much more
light-weighted than that in the traditional TCP/IP suite.

C. Application layer

Nodes in a sensor network all have communication mod-
ules, but not all of them are supposed to be equipped with
sensing modules. Only the nodes embedded in the physical
environment, namely sensor nodes, are responsible for sens-

ing and generating data, which can be driven by time, event or
command. The generated traffic is characterized with both
spatial and temporal correlation, which makes the application
protocols of sensor network different from that of the tradi-
tional one. Other kinds of nodes, namely network nodes and
sink nodes, take the responsibilities of relaying and collecting
data.

From the perspective of traffic flow, the sensor node and
sink node are the source and destination respectively, while
the network node is the intermediate. So sensor nodes need an
application protocol to perceive the environment and inject
the results to the network, and the sink node need an applica-
tion protocol to collect data from the network. In general, for
the application layer of the nodes in the sensor network, fol-
lowing two interfaces should be provided.

1. One is provided by the sensor node to interact with the
sensing module so that readings can be injected into the net-
work, which is named as appSense;

2. The other is provided by the sink node to collect the data
from the network, which is referred to as appReceive.

D. Routing Layer

Routing layer is assigned to deliver the generated data from
the sensor nodes to the sink node, or disseminate query com-
mand from the sink node to the sensor nodes, by establishing
a multi-hop path. The traditional routing schemes, such as
shortest path first or energy efficient, are still suitable for sen-
sor networks, but are not optimal. It is suggested that the rout-
ing protocols should be data centric [7] to provide support for
data aggregation and fusion. When designing the architecture,
we only take into consideration the basic function that the
routing protocol is supposed to provide, but not the exact
processing procedures. For us, the basic function of the rout-
ing protocol is to establish routes rooted at the sink node ac-
cording to specific metrics, and route the data along the estab-
lished path. So the indispensable interfaces for the routing
layer are listed below.

1. routeEnqueue: Determine the next hop of the packet gen-
erated in the application layer or received from the MAC, and
put the routed data into the queue if the current node is not the
destination. In view of the limit on the storage resource for the
sensor and intermediate nodes, the permitted maximum queue

Fig. 1. Unified protocol architecture for the sensor network

Application

PHY

Routing

MAC

routeEnqueue

macSend

phySend macReceive

routeDequeue

appCollect

1156 2007 International Symposium on Communications and Information Technologies (ISCIT 2007)

INIT-BO CONG-BO

IDLE

TRANS

C1

C2

C3

C4

C5
C6

Fig. 2. Finite state automaton of the TinyMAC protocol

length of the sensor networks is far less than that of the tradi-
tional networks.

2. routeDequeue: Provided for the MAC layer to fetch a
packet from the queue and put it into the buffer of MAC layer
when it is in the idle state.

E. MAC layer

The principal function of the media access control layer is
to provide a fair access scheme for all the nodes in the net-
work. Current proposed schemes can be divided into two cate-
gories. One is based on contention; the other is based on
scheduling. Whatever the scheme is based on, the core proce-
dures of the MAC is the same, that is, fetching a packet from
the routing queue, then waiting until the media is available,
and then transmitting the packet to the physical layer. So the
two interfaces required for the MAC layer are shown as fol-
lows.

1. One is provided for the routing layer to send the routed
packet to the MAC layer, which is named as macSend.

2. The other is provided for the physical layer to deliver the
received frames to the MAC layer, which is named as macRe-
ceive.

As for the procedures of contending or allocating the media
to the nodes, they are specific for different protocols. So it
cannot be abstracted as an interface.

F. Physical layer

The main functions of the physical layer are transmitting
the bits after modulating, and delivering the received error-
free bits to the MAC layer. Another important function sup-
posed to be implemented in the physical layer is informing the
MAC layer of the current state and state change of the physi-
cal radio model to avoid access collision. So the following
interfaces should be provided by the physical layer.

1. phySend: Called by the MAC layer to send the frame
when the physical radio module is idle.

2. phyReceive: Triggered by the physical radio model when
sensing the arrival of signal.

From the above description of the framework, we can see
its compatibility with TinyOS. Besides that, our proposed
framework is more general than that implemented in TinyOS,
for both simulation environments and hardware platforms.

The following sections will be dedicated to describing the
details of designing a suite of lightweight protocols, espe-
cially on the MAC layer and routing layer. As for the physical
layer protocol, we take it for regarded that it provides the ba-
sic services, namely transmitting, receiving and feeding back
the states of radio module, to the upper layer.

III. A LIGHTWEIGHT MEDIA ACCESS CONTROL PROTOCOL

The traditional goal of the media access control protocol is
to achieve fairness and high utilization among the nodes. But
in the sensor network, where traffic is not so heavy and colli-
sion is not so severe, the media access control scheme should
not be so complicated. Inspired by the radio control model
integrated in the TinyOS, we designed a lightweight media
access control protocol, named TinyMAC. Since the protocol

should be refined further, we firstly established a simple
model, which does not take the power saving mechanism into
consideration. The finite state automaton of the protocol is
shown as Fig. 2.

In the above automaton, there includes four states, namely
idle (IDLE), initial back-offing (INIT-BO), congestion back-
offing (CONG-BO) and transmitting (TRANS). The words
capitalized with C stand for the conditions to trigger the
change of the states. For example, supposing the current state
is idle and a packet needs to be sent, if the current state of the
physical layer is idle (that is C1), the node changes its state
into initial back-offing; otherwise (that is C5), the node starts
congestion back-offing. When the congestion back-off ends
(that is C6), it returns to idle and repeats the above described
process. During initial back-offing, notification of state
change (from idle to busy, that is C2) from the physical layer
can stop its progress, but cannot make the current state
changed. When the initial back-off ends (that is C3), the node
starts transmitting the packet in the buffer. The node does not
return to idle until the last bit of the packet is sent (this is C4).

As our preliminary work, the length of the initial back-off
or congestion back-off is random, but not adjustable. In the
standard of IEEE 802.11, the window size of back-off is sug-
gested to be increased exponentially with the times of colli-
sion, which is detected by the sender with the timeout of the
arrival of the expected acknowledgment from the receiver. In
order to reduce the complexity of the media access protocol in
the sensor network, we temporarily exclude the reliable trans-
mission mechanism from the link layer. So it is impossible to
adjust the length of back-off like IEEE 802.11. Inspired by the
radio control model implemented in TinyOS, we adopt the
following equations to determine the length of the initial
back-off and congestion back-off.

 InitBO=randInt(0,31)+1 (1)

 CongBO=randInt(0,15)+1 (2)

The function of randInt(a, b) is defined to return a random
number between a and b. So the maximum length of the ini-
tial back-off is 32 bytes, which implies about 13.3 milli-
seconds when the channel bandwidth is 19.2 Kbps. For the

2007 International Symposium on Communications and Information Technologies (ISCIT 2007) 1157

same reason, the maximum length of congestion back-off is
about 6.7 milli-seconds.

From the above description, we can confirm that TinyMAC
is really light-weighted, but at the cost of losing reliability in
the link layer than the traditional wireless networks.

IV. A LIGHTWEIGHT ROUTING PROTOCOL

Routing protocols are considered specific for the sensor
network, since it is suggested to provide support for data ag-
gregation or fusion to reduce the volume of data and energy
consumption. In this paper, we don’t put our effects to design
a data-centric or power-efficient routing protocol for the sen-
sor network. Instead, we concentrate on designing a light-
weight routing protocol based on flooding, which is referred
to as TinyFlood.

Flooding is considered to be the simplest scheme to route
data in the multi-hop network. But it is also well known that
flooding can lead to inner explosion and overlapping, which
can waste a lot of bandwidth and other network resources. To
reduce the overhead resulting from the uncontrolled flooding,
we make following improvements to avoid flooding loop and
infinite re-forwarding of outdated packet.

One way to avoid looping packet in flooding is making the
node remember the previously flooded packets. When an in-
termediate node receives a flooded packet, it firstly checks
whether it has been flooded by the current node; if not, it will
relay the packet by flooding and keep the packet in the mem-
ory; otherwise, it will drop the packet. For nodes in the sensor
network, memory is severely constrained, so tracing the pre-
viously flooded packet seems impractical.

In TinyFlood, we make the packet carry the information of
the route through which it has been flooded. When an inter-
mediate node receives a flooded packet from the upstream, it
checks whether itself has been included in the trace list of the
packet; if not, add itself to the trace list and re-flood the
packet to the downstream; otherwise, it will drop the received
packet. Supposing the upper bound of the number of nodes in
the sensor network is 65536, the length of identity of each
node will not exceed 2 bytes. So the maximum length of the
extra payload added to the packet depends on the TTL (Time
To Live) configured by the user, which can be expressed as
equation (3). Through this improvement, the problem of
flooding loop is solved without requiring large memory.

Lmax_extra_payload=2 TTL (3)

Considering the limited bandwidth of the sensor network,
each packet cannot be so long, or else the network will always
in burst state. Supposing the total packet size can not exceed
36 bytes, and the average length of data generated by the sen-
sor node is 24 byes, it can be easily deduced from (3) that the
TTL can not be more than 6.

To focus our efforts on the lightweight of the protocol, we
don’t add any other complicated characteristics to the routing
protocol, such as data-centric and energy efficient. But we
believe that as our future work goes, we will take these factors
into consideration.

V. IMPLEMENTATION AND EVALUATION

To evaluate performances of the above described protocols,
we implemented them as prototypes in a unified simulation
environment.

A. Implementation of TinyMAC

As described in Section II, the protocols in the MAC layer
are supposed to provide an interface named macSend for the
routing layer, and another interface named macReceive for the
physical layer. For TinyMAC, we implemented these two in-
terfaces named macTinySend and macTinyReceive respec-
tively.

For macTinySend, it takes the responsibility of fetching a
packet from the queue of the routing layer to the buffer of the
MAC layer, and contending for the access to the channel by
back-offing. Due to the constraint on storage resource, we
assume that there is limited space to hold only one packet in
the MAC layer. Table I shows the procedures of the algorithm.

As for the macTinyReceive, it simply delivers the success-
fully received packet to the routing layer if it is destined to the
current node or it is a broadcast packet. The brief description
of the above procedure is presented in Table II.

Due to space limitation, we leave out other details, such as
the process of interrupt of the initial back-off by the notifica-
tion from the physical layer (changing from idle to busy).

B. Implementation of TinyFlood

From the algorithm of macTinySend, we can see that an in-
terface should be provided by the protocols in the routing
layer, through which packets in the queue can be fetched by

TABLE I
ALGORITHM OF MACTINYSEND

1: Examine the state of the MAC layer macState;

2: IF macState is idle THEN

3: Fetch a packet, pktToBeSend, from the queue of the routing layer;

4: Put pktToBeSend into the buffer of MAC layer;

5: Examine the state of the physical layer phyState;

6: IF phyState is idle THEN

7: Start initial back-offing;

8: ELSE

9: Start congestion back-offing;

10: ENDIF

11: ENDIF

TABLE II
ALGORITHM OF MACTINYRECEIVE

1: Examine the intermediate address of the received packet interAddr;

2: IF interAddr is identical to the current node OR

3: it is a broadcast address THEN

4: Put the received packet into the queue of the routing layer;

5: ELSE

6: Drop the received packet;

7: ENDIF

1158 2007 International Symposium on Communications and Information Technologies (ISCIT 2007)

TABLE IV
ALGORITHM OF ROUTEFLOOD

1: Check the route trace carried in the head of the received packet;

2: IF the current node has been in the list THEN

3: Return failure to route the packet;

4: ELSE IF the length of the route trace is equal to TTLa THEN

5: Return failure to route the packet;

6: ELSE

7: Add the current node to the route trace;

8: Return success in routing the packet;

9: ENDIF
a

The value of TTL in our implemented prototype is 6.

SinkSensors

1

100 m

2 3 4 5 6 7

Fig. 3. Topology setting for performance evaluation

the MAC layer. The principle of the dequeuing algorithm for
the sensor network resembles that for the traditional network,
in more detail that is scheduling a packet with the highest
priority to be sent to the lower layer. Considering the limited
storage resource in the sensor nodes, we assume there is only
one FIFO queue in the routing layer in each node. So the
scheduling mechanism is also very simple in TinyFlood, just
moving the head packet in the queue of routing layer to the
buffer of MAC layer. We implemented the interface as rout-
eDequeue, which is consistent with the interface definition in
the protocol architecture.

According to the protocol architecture defined above, the
other interface supposed to be implemented is routeEnqueue.
From the algorithm of macTinyReceive, we can also see the
necessity to implement an interface to put the received packet
into the queue of the routing layer. As mentioned above, there
is only one queue in the routing layer for storing the packets
to be sent to the MAC layer, so the packet should be routed to
the next hop before it is put into the queue. Since the process-
ing speed of CPU is sufficiently high compared with the
transmission rate in sensor network, it is reasonable to remove
the input queue and integrate the process of routing with en-
queuing. The space reserved for the queue in our implemented
protocol is 3600 KB, which is sufficient to buffer about 100
packets if the maximum packet size is 36 bytes. Table III
shows the algorithm of routeEnqueue in detail.

As described above, the mechanism for routing the packet
to the next hop is based on flooding. The improved algorithm
of flooding is presented in Table IV.

C. Performance Evaluation

To illustrate the performance of the above described proto-
cols clearly, we set up a typical scenario which is composed
of a line of nodes. As shown in Fig. 3, six sensor nodes and
one sink node positioned in a horizontal line comprise the
typical topology setting. Distance between two adjacent nodes
is 100 meters, which is equal to the transmission range of
each node.

Sensor nodes are assigned to read the temperature every 1
second after 20 seconds preparation, and send the readings to
the sink node. All the nodes keep working for 1 hour. So the
sensor nodes are supposed to send 3580 temperature data to
the sink node. Fig. 4 shows that all the packets can be
collected by the sink if the bandwidth is 2.4 Kbps. But the
delivery rate will decrease as the number of hops increases if
the bandwidth is 1.2 Kbps, more specifically about 60% of the
data generated by node 1 can be received by the sink, while
almost 100% of data generated by node 5 and node 6 can be
collected by the sink.

The factor leading to the packet loss can be easily found
from Fig. 5. When the 6th node or the 5th node is assigned as
the sensor node, collision happened in its adjacent node (in
the direction to the sink) is zero, but when the other nodes are
to send their readings to the sink, collisions occurred in their
adjacent nodes are severe, which arise from the flooding and
lack of scheme to solve the problem of hidden terminal in the
MAC layer. However, the results are in our expectation, be-
cause our protocols are designed by taking the lightweight as
our main objective.

Fig.6 shows the average delay of packets collected by the
sink node. From the results we can see that packet delay from
the sensor node to the sink increases linearly with the number
of hops, whatever the bandwidth is. The result is also in our
expectation, since we do not take priority into consideration
when implementing the queue, so that packets sent from the
farther nodes are expected to reach the sink later.

The effectiveness of the improvement of the flooding pro-
tocol is presented in Fig. 7. When the nodes in the two ex-
treme are the sensor nodes, the total packets dropped by the
intermediate nodes are more than ten thousand. The results
show that the lightweight mechanism can effectively avoid
looping in flooding.

VI. FUTURE WORK

So far, we have evaluated performances of our proposed
protocols with typical scenario in a simulation environment.

TABLE III
ALGORITHM OF ROUTEENQUEUE

1: IF the current node is the destination of the packet THEN

2: Deliver the received packet to the application layer;

3: ELSE

4: Route the received packet to the next hop;

5: IF the packet has been sucessfully routed to the next hop

6: and the queue is not full THEN

7: Put the routed packet to the tail of the queue;

8: ELSE

9: Drop the packet;

10: ENDIF

11: ENDIF

2007 International Symposium on Communications and Information Technologies (ISCIT 2007) 1159

0

2000

4000

6000

8000

10000

12000

6 5 4 3 2 1

ID of The Sensor Node

N
um

be
r

of
 P

ac
ke

t D
ro

pp
ed

in
 F

lo
od

in
g

Bandw idth=1.2 Kbps

Fig. 7. Total number of packets dropped in flooding

0

500

1000

1500

2000

2500

1 2 3 4 5 6

Number of Hops

P
ac

ke
t D

el
ay

 (
m

s)

Bandw idth=1.2 Kpbs

Bandw idth=2.4 Kbps

Fig. 6. Average delay of packets collected by the sink

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6

Number of Hops

D
el

iv
er

y
R

at
e

Bandw idth=1.2 Kpbs

Bandw idth=2.4 Kbps

Fig. 4. Delivery rate for each sensor node with different hops to sink

0

500

1000

1500

2000

2500

3000

6 5 4 3 2 1

ID of The Sensor Node

T
im

es
 o

f P
ac

ke
t C

ol
lis

io
n

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Fig. 5. Number of collision occurred in each node

Although the results have verified our expectations on the
protocols, the performance of our proposed lightweight archi-
tecture and protocols should be further evaluated in a large
scale random environment. In addition, we plan to implement
the protocols in a hardware platform.

Besides that, we will add some efficient power saving
mechanisms into the above proposed protocols. A suite of
lightweight energy efficient protocols will be designed and
implemented in the end.

VII. CONCLUSIONS

In our opinion, establishing a unified protocol architecture
and implementing a suite of lightweight protocols are of vital
importance for the further development of sensor networks,
especially for the promotion of its applications.

In this paper, we firstly proposed a protocol architecture,
which combined the merits of the architecture of TCP/IP and
TinyOS; then we designed a suite of lightweight protocols in
accordance with the proposed architecture. At last, we evalu-
ated the performance of the above protocols by extensive
simulations. Results demonstrated the correctness and effec-
tiveness of our proposed architecture and protocols. Due to
page limitation, here we only elaborated the protocols of
MAC layer and routing layer, which we referred to as Tiny-
MAC and TinyFlood. However, in future more work will be
done to improve the architecture and the protocols.

REFERENCES

[1] D. Estrin, D. Culler, K. Pister, and G. Sukhatme, “Connecting
the Physical World with Pervasive Networks,” IEEE Pervasive
Computing, vol. 1, pp. 59-69, Jan. 2002.

[2] J Hill, P Bounadonna, D Culler, “Active message communica-
tion for tiny network sensors”, in Proceedings of INFOCOM,
2001.

[3] X. Zeng, R. Barodia, and M. Gerla, “GloMoSim: A Library for
Parallel Simulation of Large–Scale Wireless Networks,” In Pro-
ceedings of Workshop on Parallel and Distributed Simulation,
pp. 154–161, 1998.

[4] P. Levis, N. Lee, M. Welsh, and D.Culler, “TOSSIM: Accurate
and Scalable Simulation of Entire TinyOS Applications,” In
Proceedings the 1st ACM Conference on Embedded Networked
Sensor Systems(SenSys03), pp. 126–137, 2003.

[5] J. Elson, L. Girod, and D. Estrin, “EmStar: Development with
High System visibility,” IEEE Wireless Communication, pp.
70–77, December 2004.

[6] V. Handziski, A. Kopke, H. Karl, and A. Wolisz, “A Common
Wireless Sensor Network architecture?” Technical report of the
Telecommunications Networks Group, Technische Universitat
Berlin, 2003.

[7] B. Krishnamachari, D. Estrin, S. Wicker, “Modelling data-
centric routing in wireless sensor networks,” in Proceedings of
the IEEE INFOCOM, 2002.

1160 2007 International Symposium on Communications and Information Technologies (ISCIT 2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

