

Mitigating SIP Overload

Using a Control-Theoretic Approach
Yang Hong, Changcheng Huang, James Yan

Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada

E-mail: {yanghong, huang}@sce.carleton.ca, jim.yan@sympatico.ca

Abstract—Retransmission mechanism helps SIP maintain its
reliability, but it can also make an overload worse. Recent server
collapses due to emergency-induced call volume in carrier
networks indicate that the built-in overload control mechanism
cannot handle overload conditions effectively. Since the
retransmissions caused by the overload are redundant, we
suggest mitigating the overload by controlling redundant message
ratio to an acceptable level. Using control-theoretic approach, we
model the interaction of an overloaded downstream server with
its upstream server as a feedback control system. Then we
develop an adaptive PI control algorithm to mitigate the overload
at the downstream server by controlling the retransmission
message rate of its upstream servers. By performing OPNET
simulations on two typical overload scenarios, we demonstrate
that: (1) without overload control algorithm applied, the overload
at the downstream server may propagate to its upstream servers;
(2) our control-theoretic solution not only mitigate the overload
effectively, but also achieve a satisfactory target redundant
message ratio.

Index Terms—SIP, Overload Control, Retransmission Rate Control,
Redundant Message Ratio, Control System Stability, Phase Margin

1. INTRODUCTION

SIP (Session Initiation Protocol) [1] is becoming the dominant

signaling protocol for Internet-based communication services

such as Voice-over-IP, instant messaging, and video

conferencing. 3GPP (3rd Generation Partnership Project) has

adopted SIP as the basis of its IMS (IP Multimedia Subsystem)

architecture [2-4]. With the 3G (3rd Generation) wireless

technology being adopted by more and more carriers, most

cellular phones and other mobile devices are starting to use or

are in the process of supporting SIP for multimedia session

establishment [3].
SIP introduces a retransmission mechanism to maintain its

reliability [1, 5]. In practice, a SIP sender uses timeout to
detect message losses. One or more retransmissions would be
triggered if the corresponding reply message is not received in
predetermined time intervals. When the message arrival rate
exceeds the message processing capacity at a SIP server,
overload occurs and the queue increases, which may result in a
long queuing delay and trigger unnecessary message
retransmissions from its upstream servers. Such redundant
retransmissions increase the CPU loads of both the overloaded
server and its upstream servers. This may propagate the
overload and bring potential network collapse [4, 6-18].

SIP RFC 3261 [1] suggests that the SIP retransmission
mechanism should be disabled for hop-by-hop transaction
when running SIP over TCP to avoid redundant
retransmissions at both SIP and TCP layer [1]. However,
nearly all vendors choose to run SIP over UDP instead of TCP

for the following reasons [4, 6-21]: (1) The reliability function
provided by TCP does not consider real time application
which is a critical requirement for SIP protocol; (2) SIP works
at application layer while TCP works at transport layer. Even
TCP can provide reliability at transport layer, SIP messages
can still be dropped or corrupted while being processed at
application layer; (3) Designed for preventing congestion
caused by bandwidth exhaustion, the complex TCP congestion
control mechanism provides little help for SIP overload which
is caused by CPU constraint.

RFC 5390 [19] identified the various reasons that may
cause server overload in a SIP network. These include poor
capacity planning, component failures, flash crowds, denial of
service attacks, etc. Recent collapses of SIP servers due to
“American Idol” flash crowd in real carrier networks have
motivated several overload control solutions. For example,
both centralized and distributed overload control mechanisms
for SIP were developed in [9]. Three window-based feedback
algorithms were proposed to adjust the message sending rate
of the upstream SIP servers based on the queue length [10].
Retry-after control, processor occupancy control, queue delay
control and window based control were proposed to improve
goodput and prevent overload collapse in [6]. However, these
overload control proposals suggested that the overloaded
receiving server advertises to its upstream sending servers to
reduce their sending rates. Such pushback control solution
would produce overload propagation and block a large amount
of calls unnecessarily, thus reducing the revenue of the service
providers. Since retransmissions caused by the overload bring
extra overhead instead of reliability to the network and
exacerbate the overload [16], we suggest mitigating the
overload by reducing the retransmission rate only.

The contributions of this paper are: (1) Using a
control-theoretic approach to model an overloaded
downstream server and its upstream server as a feedback
control system (as shown in Fig. 4 later on); (2) Proposing a
novel PI control algorithm to mitigate the overload and
achieve a satisfactory target redundant message ratio by
controlling retransmission rate; (3) Performing OPNET
simulations under two typical overload scenarios to validate
our overload control algorithm. Experimental results will
demonstrate that our control-theoretic solution can help the
overloaded downstream server to mitigate the overload and
prevent the overload from propagating to its upstream servers.

2. SIP RETRANSMISSION MECHANISM OVERVIEW

Fig. 1 describes a basic SIP operation among originating UA
(User Agent), SIP P-server (Proxy-server) and terminating UA.
To set up a call, an originating UA sends an “Invite” request to

a terminating UA via two P-servers. The P-server returns a
provisional “100(Trying)” response to confirm the receipt of
the “Invite” request. The terminating UA returns a
“180(Ringing)” response after confirming that the parameters
are appropriate. It also evicts a “200(OK)” message to answer
the call. The originating UA sends an “ACK” response to the
terminating UA after receiving the “200(OK)” message and
the call session is established. The “Bye” request is generated
to close the session thus terminating the communication.

Invite

100Trying
Invite

Invite
100Trying

180Ringing
180Ringing

180Ringing

200OK
200OK

200OK

ACK
ACK

ACK

Session Data

Bye
Bye

Bye

Originating

UA

Terminating

UA

SIP

Proxy-2

200OK
200OK

200OK

SIP

Proxy-1

Fig. 1. A typical procedure of session establishment.

The hop-by-hop Invite-100(Trying) transaction is the
major workload contributor in case of overload [9]. Therefore,
given the proportionate nature and the general similarity of the
retransmission mechanisms between the “Invite” and
“non-Invite” messages in a typical session [1], we will focus
on the hop-by-hop Invite-100(Trying) transaction in this paper.
For each hop, the sender starts the first retransmission of the
original message at T1 seconds, and the time interval doubles
after every retransmission (exponential back-off), if the
corresponding reply message is not received. There is a
maximum of 6 retransmissions [1].

UA

UA

UA

UA

UA

UA

UA

UA

1 2

P-Server P-Server

Originating Servers Terminating Servers

Fig. 2. SIP network topology with an overloaded downstream receiving Server
2 (which is marked in red color) and its upstream sending Server 1.

3. CONTROL-THEORETIC APPROACH TO MITIGATE SIP
OVERLOAD

The topology of a real SIP network can be quite complex. Fig.
2 depicts a typical SIP network topology [9]. To focus our
study on the interactions between overloaded receiving Server
2 and its upstream sending Server 1, we assume the upstream
servers of Server 1 and the downstream servers of Server 2
have sufficient capacity to process all requests,
retransmissions, and response messages immediately without
any delay. Practical buffer sizes vary with the actual service
rates and system configuration plans. With the memory

becoming cheaper and cheaper, typical buffer sizes are likely
to become larger and larger. We assume that the buffer sizes
for all servers are large enough to avoid message loss. Instead,
we focus on the delay caused by the overloaded server, which
may trigger premature retransmissions.

3.1 Queuing Dynamics of Overloaded Server

Fig. 3 depicts the queuing dynamics of Server 1 and Server 2.
There are two queues at each server: one to store the messages
and the other to store the retransmission timers [9, 12]. We can
obtain the queuing dynamics for the message queue of Server
2 as

)()()()()(22222 tttrttq   , (1)

where q2(t) denotes the queue size and q2(t)0; 2(t) denotes
original message rate; r2(t) denotes retransmission message

rate; 2(t) denotes response message rate; 2(t) denotes the
message service rate.

Fig. 3. Queuing dynamics of an overloaded server and its upstream server.

Like Eq. (1), we can obtain queuing dynamics for the
message queue of Server 1 as

)()()()()()(11
'
2111 tttrtrttq   , (2)

where q1(t) denotes the queue size and q1(t)0; 1(t) denotes
original message rate; r1(t) denotes retransmission message

rate corresponding to 1(t);)(2 tr denotes retransmission

message rate generated by Server 1 for 2(t); 1(t) denotes

response message rate corresponding to 1(t), and the response
messages will remove the corresponding retransmission timers

from timer queue qr1; 1(t) denotes the message service rate.
When Server 2 performs its routine maintenance and

reduces its service capacity for signaling messages, the

original message rate 2(t) is larger than the service rate 2(t),
the queue size q2(t) tends to increase according to Eq. (1) (i.e.,

0)(2 tq). After a short period, the queuing delay of Server 2

is long enough to trigger the retransmissions r'2(t) which enter
the queue of Server 1. If the total new message arrival rate of

1(t), 1(t) and r'2(t) is larger than the service rate 1(t), the

queue size q1 would increase (i.e., 0)(1 tq , as indicated by

Eq. (2)) and may trigger the retransmissions r1(t) to introduce
overload to Server 1. After queuing and processing delay at
Server 1, the retransmitted messages r'2(t) enter Server 2 as r2(t)
to increase the queue size q2(t) more quickly (as described by
Eq. (1)), thus making the overload at Server 2 worse.

3.2 Overload Controller Design Using a Control-Theoretic
Approach

As the retransmitted messages r'2(t) may increase queue sizes
at both Server 1 and Server 2 and bring the overload to both
servers, our goal for mitigating the overload is to control the
retransmission rate r'2(t) using a control-theoretic approach,

1

100Trying response



)('2 tr

Invite request
2

100Trying response



Invite request

Server 1

Server 2



Message buffer

Timer buffer

Timer starts
Reset timer Timer fires

Timer expires

q2(t)

qr1(t)

2(t) 1(t) q1(t)

r2(t) r1(t)
2(t) 1(t)

thus preventing the queue sizes at both Server 1 and Server 2
from increasing continuously.

Only a retransmitted message for message loss recovery is
a non-redundant request message as well as an original
message, while a retransmission caused by the overload delay
is redundant. Thus a response message corresponding to a
redundant retransmitted message is redundant. When overload
happens, most of retransmitted messages r'2(t) are redundant [9]

and acknowledged as the response messages 1r(t) after a

round trip delay , i.e., 1r(t)r'2(t). We define the redundant

message ratio  as the ratio between the redundant response

message rate 1r and the total response message rate 1, i.e.,

(t)=1r(t)/1(t) r'2(t)/1(t). (3)

In the real-time implementation, we count the number N1r
of the arrival redundant response messages and the number

N1 of the total arrival response messages during a sampling

time interval Ts, then we can obtain 1r and 1 as 1r=N1r/Ts

and 1=N1/Ts. Considering average 8% packet loss in the
Internet [22], it is necessary to maintain a target redundant

message ratio 0 for message loss recovery. Our numerous

experiments suggest that 0=0.1 is a good choice.
Now we assume that the system is locally stable and

therefore  and 1(t) are constant. The transfer function

between the instantaneous redundant message ratio (t) and the
retransmission rate r'2(t) is given by

P(s)=(s)/r'2(s)=[r'2(s)e-s/1]/r'2(s)=e-s/1. (4)

C(s) P(s)

r'2(t)e(t)0 (t)+


G(s)

Fig. 4. Feedback SIP overload control system.

Fig. 4 depicts a feedback SIP overload control system,
where the overload control plant P(s) represents the interaction
between an overloaded downstream receiving server and its
upstream sending server, and adaptive PI controller C(s) is
designed for mitigating the overload and achieving a desirable

target redundant message ratio 0, when the overload is
anticipated at the downstream server.

Based on the instantaneous redundant message ratio (t),
the retransmission rate r'2(t) can be obtained by the following
PI control algorithm expressed via









t
IP

t
IP

KtK

eKteKr

0 00

0
'
2

))d(())((

)d()((t)




. (5)

where KP and KI denote the proportional gain and integral gain
of the PI controller at the upstream server. In the real-time
implementation, a retransmission probability is equal to the
ratio between the retransmission rate r'2(t) and the measured
timer expiration rate. It can be easy to obtain the transfer
function between the retransmission rate r'2(t) and the
redundant message ratio deviation e(t) as
C(s)=KP+KI/s. (6)

Since the control plant described by Eq. (4) is valid only
during the overload period, we only activate the PI control
algorithm when overload happens. The open-loop transfer
function of overload control system becomes

G(s)=C(s)P(s)=(KP+KI/s)e-s/1. (7)

It is well known that a positive phase margin (m>0) can
guarantee the stability of the control system in accordance
with the Nyquist Stability Theorem [23]. A common control
engineering practice suggests an interval of phase margin as

300m600 for a good response [23]. From the definition on

the phase margin m of G(s) [23], we can obtain

mg
I

gP

K

K













2
arctan , (8)

1
1

222

1

222


















g

IgP

j

g

IgP KKeKK
g

, (9)

where g is the gain crossover frequency of the overload
control system. To simplify our controller design, we set

Kpg=KI. Thus we can rewrite Eqs. (8) and (9) as

mg 


 
4

3
, and 1

2

1


g

IK
. (10)

Using the relationship KP=KI/g, we can obtain KP and KI
from Eq. (10) as

2

1PK , and




2

)4/3(1 m
IK


 . (11)

When each retransmission timer fires or expires
if  <1

Overload Control Algorithm

else

Retransmit the message

Fixed parameter:

Varying parameter:
: Round trip delay

Retransmit the message with a retransmission

probability corresponding to a retransmission

rate r'2 calculated by a PI controller

r'2 : Message retransmission rate

T1 : First-time retransmission timer

Adaptive PI control algorithm:

(1) Specify target redundant message ratio 

and phase margin m; Set the initial values for ,

 and ; Obtain PI controller gains using Eq.

(11).

(2) Calculate ,  and  upon response

message arrivals.

 : Response message rate
 : Redundant message ratio
KP: Proportional gain of PI controller
KI: Integral gain of PI controller

: Monitoring parameter

 : Target redundant message ratio

(3) If  >1.5 or  <0.5, self-tune PI

controller gains using Eq. (11) and update =;

Otherwise, PI controller remains unchanged.
(4) Calculate the retransmission rate r'2 using

Eq. (5); Go to Step (2).

m : Phase margin

Fig. 5. Overload control algorithm using control-theoretic approach.

So far we have assumed 1 and  be constant. In reality, this
is not necessarily true. If the PI controller parameters KP and

KI are kept constant, the varying queuing dynamics of the
overloaded server may cause the change in two SIP network

parameters (1 and ), thus may drive the phase margin to
negative and the overload control system into instability.
Lemmas 1 and 2 show the impact of the two SIP network
parameters on the phase margin or the system stability. The
proofs of the two lemmas are omitted due to space limitation.

Lemma 1: If current response message rate '1 is lower than

previous response message rate 1 (that is, '1<1) and the PI

controller is designed based on 1, then the overload control

system with '1 will have less phase margin than that with 1

(that is, 'm<m).

Lemma 2: If the current round trip delay ' is longer than the

previous round trip delay  (i.e., '>) and the PI controller is

designed based on , then the overload control system with '
will have less phase margin than that with  (that is, 'm<m).

To maintain the stability of the system, we self-tune PI

controller when dramatic change of network parameters (1

and ) drifts the heuristic parameter =/1 out of its interval.

We use the round trip delay  to detect the overload, thus

determining whether to activate PI control algorithm. If <T1,
retransmit all the messages whose retransmission timers fire or

expire; If T1, overload is anticipated at the downstream
server, thus the upstream servers retransmit the messages with
the retransmission rate calculated by PI controller. Summary
of our overload control algorithm is shown in Fig. 5.

4. PERFORMANCE EVALUATION AND SIMULATION

To verify our PI controller, we conducted OPNET simulations
to observe the transient behaviour of the overloaded server and
its upstream servers based on the network topology in Fig. 2.
Four originating servers generated original request messages
with equal rate. Both message generation rate and service rate

are Poisson distributed
1
. Since processing a response message

takes much less time than processing a request message, the
time ratio is set to be α=0.5. The mean service capacity of a
Proxy server is 1000 messages/sec measured based on the
processing time of request message, i.e. C1=C2=1000 request
messages/s. That is, the mean processing times for a request
message and a response message are 1ms and 0.5ms
respectively. The mean service capacity of an originating
server or a termination server is equal to 500 request

messages/sec. The total message service rate  is bounded by

the service capacity C at each server, i.e., ≤C. The target

redundant message ratio 0 is set as 0.1. The phase margin is
set as 450. Average message loss probability is 10%.

Two typical overload scenarios were simulated: (1)
Overload at Server 1 due to a demand burst; (2) Overload at
Server 2 due to a server slowdown. The simulation time is 90s,
and the 1st-time retransmission timer is T1=500ms [1]. In each
scenario, we performed our simulations with overload control
algorithm and without overload control algorithm separately.
In all the simulation plots in this paper, we use
“OLC”/“NOLC” to indicate that overload control algorithm
“was”/“was not” applied to all servers in the SIP network.

1 Currently there is no measurement result for the workload in the real SIP

networks. Poisson distributed message arrival rate and service rate are widely

adopted by most existing research work (e.g., [10]).

4.1 Overload at Server 1

In this scenario, the mean message generation rate for each

original server was 200 messages/sec (i.e., 1=800
messages/sec, emulating a short surge of user demands) from

time t=0s to t=30s, and 50 messages/sec (i.e., 1=200
messages/sec, emulating regular user demands) from time
t=30s to t=90s. The mean service capacities of two proxy
servers were C1=C2=1000 messages/sec.

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8
x 10

4

Time (sec)

Q
u
eu

e
si

ze
 q

1
 (

m
es

sa
g
es

)

NOLC q
1

OLC q
1

(a)

0 10 20 30 40 50 60 70 80 90
0

2000

4000

6000

8000

10000

N
O

L
C

 Q
u
eu

e
si

ze
 q

o
 (

m
es

sa
g
es

)

Time (sec)

0 10 20 30 40 50 60 70 80 90
0

10

20

O
L

C
 Q

u
eu

e
si

ze
 q

o
 (

m
es

sa
g
es

)NOLC q
o

OLC q
o

(b)

Fig. 6. (a) Queue size q1 (messages) of Server 1 versus time. (b) Queue size qo
(messages) of an originating server versus time.

0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

2500

Time (sec)

O
ri

g
in

al
 m

es
sa

g
e

ra
te

 (
m

sg
s/

se
c)

NOLC 
1

OLC 
1

NOLC 
1avg

OLC 
1avg

(a)

0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

2500

3000

Time (sec)

R
et

ra
n
sm

is
si

o
n
 r

at
e

(m
sg

s/
se

c)

NOLC r
1

OLC r
1

NOLC r
1avg

OLC r
1avg

(b)

Fig. 7. (a) Original message rate 1 and moving average original message rate

1avg (messages/sec) of Server 1 versus time. (b) Retransmission rate r1 and
moving average retransmission rate r1avg (messages/sec) for Server 1 versus
time.

0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (sec)

R
ed

u
n
d
an

t
m

es
sa

g
e

ra
ti

o




0

(a)

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (sec)

R
ed

u
n
d
an

t
m

es
sa

g
e

ra
ti

o




0

(b)

Fig. 8. Redundant message ratio  versus time. (a) Overload scenario 1.
(b) Overload scenario 2.

Figs. 6 and 7 show the dynamic behaviour of overloaded

Server 1 and one of its upstream originating servers.

Without overload control algorithm applied, it is easy to see

from Fig. 6(a) that Server 1 became CPU overloaded

immediately and the overload deteriorated as time evolves,

leading to the eventual crash of Server 1. Since the aggregate

service capacity of four originating servers was larger than that

of proxy Server 1, the queue size of each originating server

decreased slowly (see Fig. 6(b)) after new original message

generation rates decreased.

Our overload control algorithm made the queue size of

Server 1 increase slowly during the period of the demand burst,

and cancelled the overload at Server 1 within 38s after the new

user demand rate reduced at time t=30s. PI controller helped

the redundant message ratio (depicted in black) to clamp its

target value (depicted in red) during the overload period, as

shown in Fig. 8(a).

4.2 Overload at Server 2

In this scenario, the mean server capacities of the two proxy

servers were C1=1000 messages/sec from time t=0s to t=90s,

C2=100 messages/sec from time t=0s to t=30s, and C2=1000

messages/sec from time t=30s to t=90s. The mean message

generation rate for each original server was 50 messages/sec.

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5
x 10

4

N
O

L
C

 Q
u
eu

e
si

ze
 q

1
 (

m
es

sa
g
es

)

Time (sec)

0 10 20 30 40 50 60 70 80 90
0

10

20

O
L

C
 Q

u
eu

e
si

ze
 q

1
 (

m
es

sa
g
es

)

NOLC q
1

OLC q
1

(a)

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Time (sec)

Q
u
eu

e
si

ze
 q

2
 (

m
es

sa
g
es

)

NOLC q
2

OLC q
2

(b)

Fig. 9. (a) Queue size q1 (messages) versus time. (b) Queue size q2 (messages)

versus time.

0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

2500

Time (sec)

R
et

ra
n
sm

is
si

o
n
 r

at
e

(m
sg

s/
se

c)

NOLC r
1

OLC r
1

NOLC r
1avg

OLC r
1avg

(a)

0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

2500

3000

3500

4000

Time (sec)

R
et

ra
n
sm

is
si

o
n
 r

at
e

(m
sg

s/
se

c)

NOLC r
2


OLC r
2


NOLC r
2avg


OLC r
2avg


(b)

Fig. 10. (a) Retransmission rate r1 and moving average retransmission rate

r1avg (messages/sec) for Server 1 versus time. (b) Retransmission rate r2 and

moving average retransmission rate r2avg (messages/sec) for Server 2 versus
time.

Without overload control algorithm applied, Figs. 9 and 10
demonstrate that Server 2 became overloaded first, which was
followed by a later overload at Server 1. The queue size at
Server 1 increased faster due to the extra work load for
handling retransmissions for both Server 1 and Server 2. After
Server 2 resumed its normal service at time t=30s, Server 1
and Server 2 had the same service capacity. Because Server 1
had to process part of r1 which would not enter Server 2, the
total arrival rate at Server 2 was less than its service capacity.
Eventually the overload at Server 2 was cancelled, while the
overload at Server 1 persisted (see Fig. 9).

Our overload control algorithm regulated the

retransmission rate r2 to mitigate the overload effectively and
clamp the redundant message ratio around its target value (see
Fig. 8(b)). After Server 2 resumed its normal service, it only
spent 9s to cancel the overload and the buffer became empty at

time t39s.

5. CONCLUSIONS

Using a control-theoretic approach, we have modelled an
overloaded downstream receiving server and its upstream
sending server as a feedback control system. Then we have
developed an innovative adaptive PI control algorithm to
mitigate the overload by controlling retransmission rate while
achieving a desirable target redundant message ratio.

By analyzing the queuing dynamics and performing
OPNET simulations, we have demonstrated that without
overload control algorithm applied, the overload at the
downstream server may propagate or migrate to its upstream
servers eventually. Without protocol modification, our
overload control algorithm can mitigate the overload

effectively and prevent the overload propagation. We will
compare the performance of our overload algorithm with other
existing overload solutions in different networks under
different workload generators (e.g., [15]) in our future work.

ACKNOWLEDGMENT

We appreciate the financial support from the NSERC grant

#CRDPJ 354729-07 and the OCE grant #CA-ST-150764-8.

REFERENCES

[1] J. Rosenberg et al., “SIP: Session Initiation Protocol,” IETF RFC 3261,
June 2002.

[2] “3rd Generation Partnership Project”. http://www.3gpp.org.
[3] S.M. Faccin, P. Lalwaney, and B. Patil, “IP Multimedia Services:

Analysis of Mobile IP and SIP Interactions in 3G Networks,” IEEE
Communications Magazine, 42(1), January 2004, pp. 113-120.

[4] E. Noel and C.R. Johnson, “Initial simulation results that analyze SIP
based VoIP networks under overload,” Proceedings of 20th
International Teletraffic Congress, 2007, pp. 54-64.

[5] M. Govind, S. Sundaragopalan, K. S. Binu, and S. Saha,
“Retransmission in SIP over UDP - Traffic Engineering Issues,”
Proceedings of International Conference on Communication and
Broadband Networking, Bangalore, India, May 2003.

[6] E. Noel and C.R. Johnson, “Novel Overload Controls for SIP
Networks,” Proceedings of 21st International Teletraffic Congress,
2009.

[7] R.P. Ejzak, C.K. Florkey, and R.W. Hemmeter, “Network Overload and
Congestion: A comparison of ISUP and SIP,” Bell Labs Technical
Journal, 9(3), 2004, pp. 173–182.

[8] M. Ohta, “Overload Control in a SIP Signaling Network,” Proceeding of
World Academy of Science, Engineering and Technology, Vienna,
Austria, March 2006, pp. 205—210.

[9] V. Hilt and I. Widjaja, “Controlling Overload in Networks of SIP
Servers,” Proceedings of IEEE ICNP, Orlando, Florida, October 2008,
pp. 83-93.

[10] C. Shen, H. Schulzrinne, and E. Nahum, “SIP Server Overload Control:
Design and Evaluation,” Proceedings of IPTComm, Heidelberg,
Germany, July 2008.

[11] A. Abdelal and W. Matragi, “Signal-Based Overload Control for SIP
Servers,” Proceedings of IEEE CCNC, Las Vegas, NV, January 2010.

[12] “SIP Express Router” http://www.iptel.org/ser/.
[13] T. Warabino, Y. Kishi and H. Yokota, “Session Control Cooperating

Core and Overlay Networks for “Minimum Core” Architecture,”
Proceedings of IEEE Globecom, Honolulu, Hawaii, December 2009.

[14] Y. Hong, C. Huang, and J. Yan, “Analysis of SIP Retransmission
Probability Using a Markov-Modulated Poisson Process Model,”
Proceedings of IEEE/IFIP Network Operations and Management
Symposium, Osaka, Japan, April 2010, pp. 179–186.

[15] E.M. Nahum, J. Tracey, and C.P. Wright, “Evaluating SIP server
performance,” Proceedings of international conference on Measurement
and modeling of computer systems (ACM SIGMETRICS), San Diego,
CA, US, 2007, pp. 349–350.

[16] J. Sun, R.X. Tian, J.F. Hu, and B. Yang, “Rate-based SIP Flow
Management for SLA Satisfaction,” Proceedings of 11th International
Symposium on Integrated Network Management (IEEE/IFIP IM), New
York, USA, June 2009, pp. 125-128.

[17] Y. Hong, C. Huang, and J. Yan, J., “Modeling and Simulation of SIP
Tandem Server with Finite Buffer,” To appear in ACM Transactions on
Modeling and Computer Simulation, April 2011.

[18] V. Hilt, I. Widjaja, and H. Schulzrinne, “Session Initiation Protocol (SIP)
Overload Control,” IETF Internet-Draft, draft-hilt-sipping-overload-07,
October 2009.

[19] J. Rosenberg, “Requirements for Management of Overload in the
Session Initiation Protocol,” IETF RFC 5390, December 2008.

[20] W. R. Stevens, TCP/IP Illustrated, Volume 1, Addison-Wesley, Boston,
1994.

[21] Y. Hong, O. W. W. Yang, and C. C. Huang, “Self-Tuning PI TCP Flow
Controller for AQM Routers With Interval Gain and Phase Margin
Assignment,” Proceedings of IEEE Globecom, Dallas, TX, U.S.A,
November 2004, pp. 1324-1328.

[22] “Internet Traffic Report”, http://www.internettrafficreport.com/, 2010.
[23] W.K. Ho, Y. Hong, A. Hansson, H. Hjalmarsson, and J.W. Deng, “Relay

Auto-Tuning of PID Controllers Using Iterative Feedback Tuning,”
Automatica, 39(1), 2003, pp. 149-157.

http://www.3gpp.org/

