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Abstract—Retransmission mechanism helps SIP maintain its 
reliability, but it can also make an overload worse. Recent server 
collapses due to emergency-induced call volume in carrier 
networks indicate that the built-in overload control mechanism 
cannot handle overload conditions effectively. Since the 
retransmissions caused by the overload are redundant, we 
suggest mitigating the overload by controlling redundant message 
ratio to an acceptable level. Using control-theoretic approach, we 
model the interaction of an overloaded downstream server with 
its upstream server as a feedback control system. Then we 
develop an adaptive PI control algorithm to mitigate the overload 
at the downstream server by controlling the retransmission 
message rate of its upstream servers. By performing OPNET 
simulations on two typical overload scenarios, we demonstrate 
that: (1) without overload control algorithm applied, the overload 
at the downstream server may propagate to its upstream servers; 
(2) our control-theoretic solution not only mitigate the overload 
effectively, but also achieve a satisfactory target redundant 
message ratio. 

Index Terms—SIP, Overload Control, Retransmission Rate Control, 
Redundant Message Ratio, Control System Stability, Phase Margin 

1. INTRODUCTION 

SIP (Session Initiation Protocol) [1] is becoming the dominant 

signaling protocol for Internet-based communication services 

such as Voice-over-IP, instant messaging, and video 

conferencing. 3GPP (3rd Generation Partnership Project) has 

adopted SIP as the basis of its IMS (IP Multimedia Subsystem) 

architecture [2-4]. With the 3G (3rd Generation) wireless 

technology being adopted by more and more carriers, most 

cellular phones and other mobile devices are starting to use or 

are in the process of supporting SIP for multimedia session 

establishment [3]. 
SIP introduces a retransmission mechanism to maintain its 

reliability [1, 5]. In practice, a SIP sender uses timeout to 
detect message losses. One or more retransmissions would be 
triggered if the corresponding reply message is not received in 
predetermined time intervals. When the message arrival rate 
exceeds the message processing capacity at a SIP server, 
overload occurs and the queue increases, which may result in a 
long queuing delay and trigger unnecessary message 
retransmissions from its upstream servers. Such redundant 
retransmissions increase the CPU loads of both the overloaded 
server and its upstream servers. This may propagate the 
overload and bring potential network collapse [4, 6-18]. 

SIP RFC 3261 [1] suggests that the SIP retransmission 
mechanism should be disabled for hop-by-hop transaction 
when running SIP over TCP to avoid redundant 
retransmissions at both SIP and TCP layer [1]. However, 
nearly all vendors choose to run SIP over UDP instead of TCP 

for the following reasons [4, 6-21]: (1) The reliability function 
provided by TCP does not consider real time application 
which is a critical requirement for SIP protocol; (2) SIP works 
at application layer while TCP works at transport layer. Even 
TCP can provide reliability at transport layer, SIP messages 
can still be dropped or corrupted while being processed at 
application layer; (3) Designed for preventing congestion 
caused by bandwidth exhaustion, the complex TCP congestion 
control mechanism provides little help for SIP overload which 
is caused by CPU constraint. 

RFC 5390 [19] identified the various reasons that may 
cause server overload in a SIP network. These include poor 
capacity planning, component failures, flash crowds, denial of 
service attacks, etc. Recent collapses of SIP servers due to 
“American Idol” flash crowd in real carrier networks have 
motivated several overload control solutions. For example, 
both centralized and distributed overload control mechanisms 
for SIP were developed in [9]. Three window-based feedback 
algorithms were proposed to adjust the message sending rate 
of the upstream SIP servers based on the queue length [10]. 
Retry-after control, processor occupancy control, queue delay 
control and window based control were proposed to improve 
goodput and prevent overload collapse in [6]. However, these 
overload control proposals suggested that the overloaded 
receiving server advertises to its upstream sending servers to 
reduce their sending rates. Such pushback control solution 
would produce overload propagation and block a large amount 
of calls unnecessarily, thus reducing the revenue of the service 
providers. Since retransmissions caused by the overload bring 
extra overhead instead of reliability to the network and 
exacerbate the overload [16], we suggest mitigating the 
overload by reducing the retransmission rate only. 

The contributions of this paper are: (1) Using a 
control-theoretic approach to model an overloaded 
downstream server and its upstream server as a feedback 
control system (as shown in Fig. 4 later on); (2) Proposing a 
novel PI control algorithm to mitigate the overload and 
achieve a satisfactory target redundant message ratio by 
controlling retransmission rate; (3) Performing OPNET 
simulations under two typical overload scenarios to validate 
our overload control algorithm. Experimental results will 
demonstrate that our control-theoretic solution can help the 
overloaded downstream server to mitigate the overload and 
prevent the overload from propagating to its upstream servers. 

2. SIP RETRANSMISSION MECHANISM OVERVIEW 

Fig. 1 describes a basic SIP operation among originating UA 
(User Agent), SIP P-server (Proxy-server) and terminating UA. 
To set up a call, an originating UA sends an “Invite” request to 



 
 

a terminating UA via two P-servers. The P-server returns a 
provisional “100(Trying)” response to confirm the receipt of 
the “Invite” request. The terminating UA returns a 
“180(Ringing)” response after confirming that the parameters 
are appropriate. It also evicts a “200(OK)” message to answer 
the call. The originating UA sends an “ACK” response to the 
terminating UA after receiving the “200(OK)” message and 
the call session is established. The “Bye” request is generated 
to close the session thus terminating the communication. 
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Fig. 1. A typical procedure of session establishment. 

The hop-by-hop Invite-100(Trying) transaction is the 
major workload contributor in case of overload [9]. Therefore, 
given the proportionate nature and the general similarity of the 
retransmission mechanisms between the “Invite” and 
“non-Invite” messages in a typical session [1], we will focus 
on the hop-by-hop Invite-100(Trying) transaction in this paper. 
For each hop, the sender starts the first retransmission of the 
original message at T1 seconds, and the time interval doubles 
after every retransmission (exponential back-off), if the 
corresponding reply message is not received. There is a 
maximum of 6 retransmissions [1]. 
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Fig. 2. SIP network topology with an overloaded downstream receiving Server 
2 (which is marked in red color) and its upstream sending Server 1. 

3. CONTROL-THEORETIC APPROACH TO MITIGATE SIP 
OVERLOAD 

The topology of a real SIP network can be quite complex. Fig. 
2 depicts a typical SIP network topology [9]. To focus our 
study on the interactions between overloaded receiving Server 
2 and its upstream sending Server 1, we assume the upstream 
servers of Server 1 and the downstream servers of Server 2 
have sufficient capacity to process all requests, 
retransmissions, and response messages immediately without 
any delay. Practical buffer sizes vary with the actual service 
rates and system configuration plans. With the memory 

becoming cheaper and cheaper, typical buffer sizes are likely 
to become larger and larger. We assume that the buffer sizes 
for all servers are large enough to avoid message loss. Instead, 
we focus on the delay caused by the overloaded server, which 
may trigger premature retransmissions. 

3.1 Queuing Dynamics of Overloaded Server 

Fig. 3 depicts the queuing dynamics of Server 1 and Server 2. 
There are two queues at each server: one to store the messages 
and the other to store the retransmission timers [9, 12]. We can 
obtain the queuing dynamics for the message queue of Server 
2 as 

)()()()()( 22222 tttrttq   ,                   (1) 

where q2(t) denotes the queue size and q2(t)0; 2(t) denotes 
original message rate; r2(t) denotes retransmission message 

rate; 2(t) denotes response message rate; 2(t) denotes the 
message service rate. 
 
 
 
 
 
 
 
 
 

Fig. 3. Queuing dynamics of an overloaded server and its upstream server. 

Like Eq. (1), we can obtain queuing dynamics for the 
message queue of Server 1 as 

)()()()()()( 11
'
2111 tttrtrttq   ,               (2) 

where q1(t) denotes the queue size and q1(t)0; 1(t) denotes 
original message rate; r1(t) denotes retransmission message 

rate corresponding to 1(t); )(2 tr  denotes retransmission 

message rate generated by Server 1 for 2(t); 1(t) denotes 

response message rate corresponding to 1(t), and the response 
messages will remove the corresponding retransmission timers 

from timer queue qr1; 1(t) denotes the message service rate. 
When Server 2 performs its routine maintenance and 

reduces its service capacity for signaling messages, the 

original message rate 2(t) is larger than the service rate 2(t), 
the queue size q2(t) tends to increase according to Eq. (1) (i.e., 

0)(2 tq ). After a short period, the queuing delay of Server 2 

is long enough to trigger the retransmissions r'2(t) which enter 
the queue of Server 1. If the total new message arrival rate of 

1(t), 1(t) and r'2(t) is larger than the service rate 1(t), the 

queue size q1 would increase (i.e., 0)(1 tq , as indicated by 

Eq. (2)) and may trigger the retransmissions r1(t) to introduce 
overload to Server 1. After queuing and processing delay at 
Server 1, the retransmitted messages r'2(t) enter Server 2 as r2(t) 
to increase the queue size q2(t) more quickly (as described by 
Eq. (1)), thus making the overload at Server 2 worse. 

3.2 Overload Controller Design Using a Control-Theoretic 
Approach 

As the retransmitted messages r'2(t) may increase queue sizes 
at both Server 1 and Server 2 and bring the overload to both 
servers, our goal for mitigating the overload is to control the 
retransmission rate r'2(t) using a control-theoretic approach, 
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thus preventing the queue sizes at both Server 1 and Server 2 
from increasing continuously. 

Only a retransmitted message for message loss recovery is 
a non-redundant request message as well as an original 
message, while a retransmission caused by the overload delay 
is redundant. Thus a response message corresponding to a 
redundant retransmitted message is redundant. When overload 
happens, most of retransmitted messages r'2(t) are redundant [9] 

and acknowledged as the response messages 1r(t) after a 

round trip delay , i.e., 1r(t)r'2(t). We define the redundant 

message ratio  as the ratio between the redundant response 

message rate 1r and the total response message rate 1, i.e., 

(t)=1r(t)/1(t) r'2(t)/1(t).                       (3) 

In the real-time implementation, we count the number N1r 
of the arrival redundant response messages and the number 

N1 of the total arrival response messages during a sampling 

time interval Ts, then we can obtain 1r and 1 as 1r=N1r/Ts 

and 1=N1/Ts. Considering average 8% packet loss in the 
Internet [22], it is necessary to maintain a target redundant 

message ratio 0 for message loss recovery. Our numerous 

experiments suggest that 0=0.1 is a good choice. 
Now we assume that the system is locally stable and 

therefore  and 1(t) are constant. The transfer function 

between the instantaneous redundant message ratio (t) and the 
retransmission rate r'2(t) is given by 

P(s)=(s)/r'2(s)=[r'2(s)e-s/1]/r'2(s)=e-s/1.              (4) 
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Fig. 4. Feedback SIP overload control system. 

Fig. 4 depicts a feedback SIP overload control system, 
where the overload control plant P(s) represents the interaction 
between an overloaded downstream receiving server and its 
upstream sending server, and adaptive PI controller C(s) is 
designed for mitigating the overload and achieving a desirable 

target redundant message ratio 0, when the overload is 
anticipated at the downstream server. 

Based on the instantaneous redundant message ratio (t), 
the retransmission rate r'2(t) can be obtained by the following 
PI control algorithm expressed via 









t
IP

t
IP

KtK

eKteKr

0 00

0
'
2

))d(())((

)d()((t)




.                (5) 

where KP and KI denote the proportional gain and integral gain 
of the PI controller at the upstream server. In the real-time 
implementation, a retransmission probability is equal to the 
ratio between the retransmission rate r'2(t) and the measured 
timer expiration rate. It can be easy to obtain the transfer 
function between the retransmission rate r'2(t) and the 
redundant message ratio deviation e(t) as 
C(s)=KP+KI/s.                                    (6) 

Since the control plant described by Eq. (4) is valid only 
during the overload period, we only activate the PI control 
algorithm when overload happens. The open-loop transfer 
function of overload control system becomes 

G(s)=C(s)P(s)=(KP+KI/s)e-s/1.                      (7) 

It is well known that a positive phase margin (m>0) can 
guarantee the stability of the control system in accordance 
with the Nyquist Stability Theorem [23]. A common control 
engineering practice suggests an interval of phase margin as 

300m600 for a good response [23]. From the definition on 

the phase margin m of G(s) [23], we can obtain 
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where g is the gain crossover frequency of the overload 
control system. To simplify our controller design, we set 

Kpg=KI. Thus we can rewrite Eqs. (8) and (9) as 
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Using the relationship KP=KI/g, we can obtain KP and KI 
from Eq. (10) as 
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When each retransmission timer fires or expires
if   <1 

Overload Control Algorithm 

else

Retransmit the message 

Fixed parameter:

Varying parameter:
:  Round trip delay 

Retransmit the message with a retransmission 

probability corresponding to a  retransmission 

rate r'2 calculated by a PI controller

r'2   :  Message retransmission rate 

T1     : First-time retransmission timer

Adaptive PI control algorithm:

(1) Specify target redundant message ratio  

and phase margin m; Set the initial values for , 

 and ; Obtain PI controller gains using Eq. 

(11).

(2) Calculate ,  and  upon response 

message arrivals.   

  :  Response message rate 
  :  Redundant message ratio 
KP:  Proportional gain of PI controller
KI:  Integral gain of PI controller

:  Monitoring parameter

   : Target redundant message ratio 

(3) If  >1.5 or  <0.5, self-tune PI 

controller gains using Eq. (11) and update =; 

Otherwise, PI controller remains unchanged.   
(4) Calculate the retransmission rate r'2 using 

Eq. (5); Go to Step (2).   

m  : Phase margin
 

Fig. 5. Overload control algorithm using control-theoretic approach. 

So far we have assumed 1 and  be constant. In reality, this 
is not necessarily true. If the PI controller parameters KP and 



 
 

KI are kept constant, the varying queuing dynamics of the 
overloaded server may cause the change in two SIP network 

parameters (1 and ), thus may drive the phase margin to 
negative and the overload control system into instability. 
Lemmas 1 and 2 show the impact of the two SIP network 
parameters on the phase margin or the system stability. The 
proofs of the two lemmas are omitted due to space limitation. 

Lemma 1: If current response message rate '1 is lower than 

previous response message rate 1 (that is, '1<1) and the PI 

controller is designed based on 1, then the overload control 

system with '1 will have less phase margin than that with 1 

(that is, 'm<m). 

Lemma 2: If the current round trip delay ' is longer than the 

previous round trip delay  (i.e., '>) and the PI controller is 

designed based on , then the overload control system with ' 
will have less phase margin than that with  (that is, 'm<m). 

To maintain the stability of the system, we self-tune PI 

controller when dramatic change of network parameters (1 

and ) drifts the heuristic parameter =/1 out of its interval. 

We use the round trip delay  to detect the overload, thus 

determining whether to activate PI control algorithm. If <T1, 
retransmit all the messages whose retransmission timers fire or 

expire; If T1, overload is anticipated at the downstream 
server, thus the upstream servers retransmit the messages with 
the retransmission rate calculated by PI controller. Summary 
of our overload control algorithm is shown in Fig. 5. 

4. PERFORMANCE EVALUATION AND SIMULATION 

To verify our PI controller, we conducted OPNET simulations 
to observe the transient behaviour of the overloaded server and 
its upstream servers based on the network topology in Fig. 2. 
Four originating servers generated original request messages 
with equal rate. Both message generation rate and service rate 

are Poisson distributed
1
. Since processing a response message 

takes much less time than processing a request message, the 
time ratio is set to be α=0.5. The mean service capacity of a 
Proxy server is 1000 messages/sec measured based on the 
processing time of request message, i.e. C1=C2=1000 request 
messages/s. That is, the mean processing times for a request 
message and a response message are 1ms and 0.5ms 
respectively. The mean service capacity of an originating 
server or a termination server is equal to 500 request 

messages/sec. The total message service rate  is bounded by 

the service capacity C at each server, i.e., ≤C. The target 

redundant message ratio 0 is set as 0.1. The phase margin is 
set as 450. Average message loss probability is 10%. 

Two typical overload scenarios were simulated: (1) 
Overload at Server 1 due to a demand burst; (2) Overload at 
Server 2 due to a server slowdown. The simulation time is 90s, 
and the 1st-time retransmission timer is T1=500ms [1]. In each 
scenario, we performed our simulations with overload control 
algorithm and without overload control algorithm separately. 
In all the simulation plots in this paper, we use 
“OLC”/“NOLC” to indicate that overload control algorithm 
“was”/“was not” applied to all servers in the SIP network. 

                                                            
1 Currently there is no measurement result for the workload in the real SIP 

networks. Poisson distributed message arrival rate and service rate are widely 

adopted by most existing research work (e.g., [10]). 

4.1 Overload at Server 1 

In this scenario, the mean message generation rate for each 

original server was 200 messages/sec (i.e., 1=800 
messages/sec, emulating a short surge of user demands) from 

time t=0s to t=30s, and 50 messages/sec (i.e., 1=200 
messages/sec, emulating regular user demands) from time 
t=30s to t=90s. The mean service capacities of two proxy 
servers were C1=C2=1000 messages/sec. 
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Fig. 6. (a) Queue size q1 (messages) of Server 1 versus time. (b) Queue size qo 
(messages) of an originating server versus time. 
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Fig. 7. (a) Original message rate 1 and moving average original message rate 

1avg (messages/sec) of Server 1 versus time. (b) Retransmission rate r1 and 
moving average retransmission rate r1avg (messages/sec) for Server 1 versus 
time. 
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Fig. 8. Redundant message ratio  versus time. (a) Overload scenario 1.     
(b) Overload scenario 2. 

Figs. 6 and 7 show the dynamic behaviour of overloaded 

Server 1 and one of its upstream originating servers. 

Without overload control algorithm applied, it is easy to see 

from Fig. 6(a) that Server 1 became CPU overloaded 

immediately and the overload deteriorated as time evolves, 

leading to the eventual crash of Server 1. Since the aggregate 

service capacity of four originating servers was larger than that 

of proxy Server 1, the queue size of each originating server 

decreased slowly (see Fig. 6(b)) after new original message 

generation rates decreased. 

Our overload control algorithm made the queue size of 

Server 1 increase slowly during the period of the demand burst, 

and cancelled the overload at Server 1 within 38s after the new 

user demand rate reduced at time t=30s. PI controller helped 

the redundant message ratio (depicted in black) to clamp its 

target value (depicted in red) during the overload period, as 

shown in Fig. 8(a). 



 
 

4.2 Overload at Server 2 

In this scenario, the mean server capacities of the two proxy 

servers were C1=1000 messages/sec from time t=0s to t=90s, 

C2=100 messages/sec from time t=0s to t=30s, and C2=1000 

messages/sec from time t=30s to t=90s. The mean message 

generation rate for each original server was 50 messages/sec. 
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Fig. 9. (a) Queue size q1 (messages) versus time. (b) Queue size q2 (messages) 

versus time. 
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Fig. 10. (a) Retransmission rate r1 and moving average retransmission rate 

r1avg (messages/sec) for Server 1 versus time. (b) Retransmission rate r2 and 

moving average retransmission rate r2avg (messages/sec) for Server 2 versus 
time. 

Without overload control algorithm applied, Figs. 9 and 10 
demonstrate that Server 2 became overloaded first, which was 
followed by a later overload at Server 1. The queue size at 
Server 1 increased faster due to the extra work load for 
handling retransmissions for both Server 1 and Server 2. After 
Server 2 resumed its normal service at time t=30s, Server 1 
and Server 2 had the same service capacity. Because Server 1 
had to process part of r1 which would not enter Server 2, the 
total arrival rate at Server 2 was less than its service capacity. 
Eventually the overload at Server 2 was cancelled, while the 
overload at Server 1 persisted (see Fig. 9). 

Our overload control algorithm regulated the 

retransmission rate r2 to mitigate the overload effectively and 
clamp the redundant message ratio around its target value (see 
Fig. 8(b)). After Server 2 resumed its normal service, it only 
spent 9s to cancel the overload and the buffer became empty at 

time t39s. 

5. CONCLUSIONS 

Using a control-theoretic approach, we have modelled an 
overloaded downstream receiving server and its upstream 
sending server as a feedback control system. Then we have 
developed an innovative adaptive PI control algorithm to 
mitigate the overload by controlling retransmission rate while 
achieving a desirable target redundant message ratio. 

By analyzing the queuing dynamics and performing 
OPNET simulations, we have demonstrated that without 
overload control algorithm applied, the overload at the 
downstream server may propagate or migrate to its upstream 
servers eventually. Without protocol modification, our 
overload control algorithm can mitigate the overload 

effectively and prevent the overload propagation. We will 
compare the performance of our overload algorithm with other 
existing overload solutions in different networks under 
different workload generators (e.g., [15]) in our future work. 
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