A Universal Protocol Mechanism for Network Function Virtualization and Application-Centric Traffic Steering

CSCN'15 Presentation Changcheng Huang¹, Jiafeng Zhu² I – Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada 2 – R&D Center, Huawei Technologies Inc., Santa Clara, US E-mail: huang@sce.carleton.ca¹, jiafeng.zhu@huawei.com²

- Motivation
- SDN and Issues
- Existing Solutions
- Proposed Solution
- Use Cases
- Conclusions

Motivation

- SDN and Issues
- Existing Solutions
- Proposed Solution
- Use Cases
- Conclusions

Motivation

- New services and applications are the driver for future Internet
- Network Virtualization
 - A service by network provider
 - Multiple virtual networks share a substrate network
 - Need a way to identify different virtual networks
- Network Function Virtualization (NFV)
 - Generalization of Service Chaining
 - Built upon virtual networks
 - A recursive service relationship
 - Need a way to identify service chains
- Application-centric Traffic Steering
 - Group-based application (server replication, mobility, etc.)
 - Service providers want to treat user traffic flows differently
 - Switches need a tag to act on
- Recursive service
 - A common service structure in all industries
 - Need identifiers for services at all embedded layers

Motivation (cont's)

• An example of recursive virtual network

- Motivation
- SDN and Issues
- Existing Solutions
- Proposed Solution
- Use Cases
- Conclusions

SDN

- SDN earmarked for future Internet
- More flexibility by separating control and data plane
- OpenFlow adopted for communication between control and data
- Allow forwarding based on arbitrary header fields

SDN: OpenFlow

Switching

	Switch Port	MAC src			VLAN ID	IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Action
	*	*	00:1f:	*	*	*	*	*	*	*	port6
R	outing										

Switch Port	MAC src		MAC dst			IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Action
*	*	*		*	*	*	5.6.7.8	*	*	*	port6

Firewall

Switch Port	MA(src	C MAC dst	Eth type	VLAN ID	IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Action
*	*	*	*	*	*	*	*	*	22	drop

OpenFlow/SDN tutorial, Srini Seetharaman, Deutsche Telekom, Silicon Valley Innovation Center

SDN Issues

- SDN limitation
 - Based on existing header fields
 - No field to identify a group-based application
 - Replication servers in data center
 - User mobility and multiple devices
 - No field to identify a service chain
 - No field to identify a virtual network
 - No way to identify services in recursive service structure

SDN Challenges

- Why not VLAN id
 - Limited to a local area network
 - Hard to support recursive services
- Why not IP address
 - Multiple services may share one interface
 - Multiple services may have overlapped address spaces
- Why not port number
 - Traffic with multiple port numbers may share one service
- Combination of L2-4 headers
 - Fragmented flows and bloated flow table
 - Tunneled traffic difficult to identify

- Motivation
- SDN and Issues
- Existing Solutions
- Proposed Solution
- Use Cases
- Conclusions

Existing Solutions

- New header fields need to be defined
- But where?
- VXLAN
 - Tunneling VLAN over IP
 - Limited to extending VLAN service
- OpenADN
 - Use two new labels: one at Layer 3.5 and one at layer 4.5
 - No end-to-end identifier
 - Complex to implement
 - Do not support recursive service structure
- Serval
 - Add a service access layer between Layer 3 and Layer 4
 - Designed for dynamic binding
 - Hard to traverse a middle box
 - Complex to implement
 - Do not support recursive service structure

- Motivation
- SDN and Issues
- Existing Solutions
- Proposed Solution
- Use Cases
- Conclusions

Service Forwarding Label (SFL)

- Used to identify a service relationship between a client and a provider at Layer 5
 - Client can be a single user or a group
- ALL SFLs form a service namespace
- SFLs can be stacked to support recursive services
- Administered by network providers
- Unique within the domain of a network provider
- Renewable expiration time
- Added into forwarding entry in Flow Table as a new matching field

2015/10/29

Design Consideration

- Why Layer 5
 - Virtual Network service is similar to session layer service
 - Establish, manage and terminate Virtual Network between service provider and network provider
 - Easy access from application
 - Allows non-SDN network traversal
 - Allows middle box traversal
- Why fixed length
 - Easy table match (e.g. a 32 bit label can be 0x5434B8E0)
- Why dynamic
 - Services typically have limited time
 - Allows efficient usage of label space

An example for SFL usage

- Motivation
- SDN and Issues
- Existing Solutions
- Proposed Solution
- Use Cases
- Conclusions

Virtual Networks

- SFL allows wildcard treatment of traffic from a client network and simplifies forwarding
- Support client mobility and group-based applications
- Support overlapped private address spaces

NFV and Service Chaining

2015/10/29

Application-centric Traffic Steering

• SFL used to differentiate client traffic with or w/o protection requirement

Migration

2015/10/29

Conclusion

- SFL is a universal service identifier
- Used independently or combined with other header fields
- Can identify a group-based application
- Can traverse middle box
- Easy to implement
 - No change to existing socket interface
 - Fit in OpenFlow naturally

Refernces

- https://www.opennetworking.org/
- M.M.M.K. Chowdhury and R. Boutaba, "Network virtualization: state of the art and research challenges," IEEE Communications Magazine 47 (7),20-26.
- D. Jacobs, "How SDN and NFV simplify network service chain provisioning," http://searchsdn.techtarget.com/tip/How-SDN-and-NFV-simplify-network-servicechain-provisioning.
- S. Paul, R. Jain, J. Pan, J. Iyer, D. Oran, "OpenADN: A Case for Open Application Deliver Network," Proceedings of ICCCN 2013, July 2013, Nassau, Bahamas.
- M. Mahalingam, et al., "VXLAN: A Framework for Overlaying Virtulized Layer 2 Networks over Layer 3 Networks," IETF draft, http://datatracker.ietf.org/doc/draftmahalingam-dutt-dcops-vxlan/.
- E. Nordstrom, et al., "Serval: an end-host stack for service-centric networking," Proceeding of 9th USENIX Symposium on Networked Systems Design and Implementation, April 25-27, 2012, San Jose, US.
- R. Sherwood, et al., "FlowVisor: A Network Virtualization Layer," OPENFLOW-TR-2009-1, OpenFlow Consortium, October 2009
- S. Jain, et al., "B4: Experience with a Globally-Deployed Software Defined WAN," ACM SIGCOMM 2013, August 12-16, 2013, Hong Kong

