
Bottom-Up Trie Structure for P2P Live Streaming
Boyuan Zhang, Changcheng Huang, James Yan
Department of Systems and Computer Engineering

Carleton University, Ottawa, Canada
boyuan@sce.carleton.ca, huang@sce.carleton.ca, jim.yan@sympatico.ca

Abstract— By simultaneously providing live video and audio
contents to millions of users around the world, peer-to-peer live
video streaming (P2P LVS) has become one of the most popular
Internet applications in recent years. However, current P2P LVS
software has problems such as non-smooth playback and long
start-up delay for end users. To address these issues, we design a
P2P-based multi-bit Trie structure, called Bottom-Up Trie (BU-
Trie), for distributing P2P live contents. Different from other
approaches, BU-Trie is a Trie formed and built inversely from
leaf nodes (or child nodes) back to the root node (or parent
node).This architecture consists of two phases: a diffusion phase
and a swarming phase. The main design goal of the diffusion
phase is to group the local peers together by discovering physical
locations of peers, and design the paths for fast distributing live
streams from the source node to end users. The objective of the
swarming phase is to find an optimal way for exchanging the
video stream chunks within a local group. We propose an
algorithm called Most Popular Chunk First (MPCF) and apply it
for the swarming phase for efficient chunk exchange.
Performance evaluation of the proposed BU-Trie shows that,
when compared to other approaches, the sequential throughput
of video chunks is increased. The inter-domain traffic, the traffic
between different Internet service providers (ISPs), is reduced as
well. Such a reduction would benefit carriers economically.

Keywords-component; P2P; live streaming; Bottom-up; Trie;
tree-based; Swarming; Diffusion

I. INTRODUCTION
Peer-to-Peer live video streaming (P2P LVS) has become

more and more popular in modern Internet and computer
communications. Due to the high demand for live contents,
many video-on-demand application providers, such as PPlive
[1], have added live broadcast features to their software in
recent years. However, due to the dynamics of peers and the
inefficient structure of the network, many users have
experienced problems such as non-smooth playback and long
startup delay. Other issues, including playback continuity and
packet loss, have also been discussed in previous research [2].

Some approaches have been designed to improve the
quality of P2P live video streaming in recent years. In general,
those approaches can be divided into two categories: tree-based
overlay structure [3-6] and mesh-based overlay structure [7-12].
A tree-based overlay is where a tree-like video streaming is
created, with the content source node being the root node and
viewers being the child nodes in the tree structure. The video
stream is distributed by pushing packets from parent nodes to
their children nodes. One major issue for tree-based overlay
network is that the system is vulnerable to unpredictable peers’

behaviors [7]. For example, all the child nodes will be
disconnected from the network if their parent node suddenly
becomes unavailable. However, some approaches have been
designed to improve the performance, such as multiple parent
nodes for each child node.

 For a mesh-based overlay network [9-13], peers form a
randomly connected overlay. The video streaming is divided
into small chunks. Depending on the algorithm applied, the
missing video chunks are pulled by one peer from its neighbor
peers who have already had the desired data. The mesh-based
structure is robust to the unpredictable peers’ behaviors since
each peer always maintains a list of its neighbor peers and has
multiple neighbor peers to download video chunks from.
However, mesh-based overlay has poor performance for live
contents due to the limited availability of future contents and
the poor sequentiality of the received video chunks, which may
result in non-smooth playback and long waiting time [9].

By carefully analyzing the advantages/disadvantages of
previous research and the behavior of users during a P2P live
streaming session, we design the Bottom-Up Trie (BU-Trie), a
multi-bit Trie structure for P2P live streaming. The rest of this
paper is organized as follows. The detail design of BU-Trie and
its features are given in Section II. The swarming phase and our
MPCF algorithm are described in Section III. Section IV shows
the evaluation of this design by simulation and comparisons.
Finally, Section V concludes this paper and identifies
directions for further work.

II. DESIGN OF BU-TRIE AND DIFFUSION PHASE
In this section, we show the detailed design of Bottom-Up

Trie and how to build it inversely from leaf node to root node.

The main idea of BU-Trie is to let each node in the network
download video from its closest neighbor nodes. We use the
term “closest neighbor nodes” to refer to the nodes that are
geographically close to each other. In order to determine
whether the locations of two nodes are geographically close to
each other, we compare the IP addresses of the two nodes.
According to [14], most of the IP address allocations are
related to nodes’ physical locations, and the physical locations
of IP prefix rarely changes. In this case, if the IP prefixes of
two nodes are the same, for example, the higher 24 bits in IP
addresses are the same, then we consider these two nodes are
geographically close to each other. Or otherwise, even though
the physical locations of two nodes with the same IP prefix are
not close to each other, they are usually in the same network
domain or under the same ISP, where closeness means the cost
is cheaper because they are in the same ISP.

IEEE ICC 2012 - Communication Software Services and Multimedia Applications Symposium

978-1-4577-2053-6/12/$31.00 ©2012 IEEE 1991

By using the philosophy described above, we can break
down all peers and organize them into a hierarchy of small
groups, where all peers in the same group are close to each
other. We assume there is a registration system for a P2P
application. The registration system can be either centralized or
distributed.

To start, each peer contacts the registration server with its
IP address. The server will compare all peers’ IP addresses and
divide the peers into different groups according to the higher N
bits in their IP addresses. Note that the peers in the same group
will have the same higher N bits in their IP addresses. In other
words, only the last 32-N bits in their IP addresses are different
for the peers in the same group. As shown in Figure 1, each
circle represents a group. At level 1, all peers in the same circle
(or group) have the same higher N bits of their IP addresses
where N is set to be 28 as an example. Therefore, there are
maximum 16 different peers within the same Level 1 group
after the first division. It is easy to see that, based on our
definition of closeness, the peers within the same group are
close to each other.

After Step one, each peer will be informed of its neighbor
information by the registration system. The peers in the same
group will form a mesh network which applies the DHT
building process with fingers if necessary. Each peer will also
be assigned an identifier based on its last 32-N bits of IP
address.

In Step 3, one peer in each group is selected as the parent
peer for a P2P application. We assign a key value to each live
streaming source. The key value is then hashed to a node
identifier. In each Level 1 group, we select the node with
closest node identifier in the last 32-N bits as the parent for the
specific application. For example, if the last 4 bits of the hash
value of a video session is 0101, then the nodes with the same
last 4 bits of IP addresses in each group will be chosen as the
parent node in this group for this specific video session. If no
node has the same last 4 bits of IP address equal to 0101, then
the next closest node in terms of IP address will be chosen. The
host node will serve as a parent in the Level 1 group. It should
be noted that different applications will select different parent
nodes. This will allow loads to be distributed relatively evenly
among different peer nodes.

In Step 4, the registration system selects a value M as the
number of bits to compare for Level 2 in the hierarchy, where
M<N. The Level 1 groups with the same first M bits in their IP
addresses will be in the same Level 2 group. There will be
maximum 2N-M Level 1 groups in a Level 2 group. The parent

node in each Level 1 group for each application will serve as
the representative for the Level 1 group in Level 2.

In Step 5, the registration system will inform each parent of
Level 1 its neighbors in Level 2. These parent nodes then form
a Level 2 DHT ring with fingers if necessary. A node identifier
based on the bits M to N will be assigned to each Level 1 parent
as their Level 2 identifier. For each application, the node with
closest Level 2 identifier for the bits N to M of the hash of the
specific application key value will be selected as the parent of
Level 2 nodes.

 For example, Level 1 parent nodes with the same higher 24
bits of IP addresses can be organized to form the Level 2 group.
Then for the hashed key value of the same live streaming
source, the most matching node in each Level 2 group, for
example the node has the same bits 25 to 28 or the node with
closest bits 25 to 28, will be chosen as Level 2 parent in the
level two group. Up to this point, the second bottom level of
the BU-Trie is finished.

We use the same strategy to recursively build the third level,
the fourth level, etc., until the source of the application is
selected as the last level. Here we assume that the key of the
live content is hashed to the IP address of the source. Figure 1
shows the overall architecture, where P<…<L<M<N<32. It is
easy to see that the overall structure forms a multi-bit Trie. As
described above, our unique construction process starts from
the bottom level and moves level by level to the root node.
Therefore it is called a BU-Trie (Bottom Up Trie) structure.

The diffusion phase starts right after building the BU-Trie.
During the diffusion phase, the root node continuously push
video stream to each of the next level parent nodes. Then these
parent nodes will further push the stream to their child nodes.
This process will continue until level-1 parent nodes are
reached. Since the uploading bandwidth is limited, a level-1
parent node will randomly push video chunks to different peers
in the same group. As a result, each peer as a leaf node may
receive random number of video chunks. The advantage of this
diffusion phase is that video stream can be fast distributed from
the root node to a wide area covered by the Trie. Even though
there may be many missing chunks at this moment, the speed
of distribution is high, since the video stream is diffused along
the Trie that is built based on closeness.

III. SWARMING PHASE AND MPCF ALGORITHM
The swarming phase of BU-Trie design is the second phase

that starts in parallel with the diffusion phase. If we consider
the entire diffusion phase as a push-driven process that allows
some end users to receive some number of video chunks. Then
the swarming phase is a pull process that allows end users to
exchange and download the video chunks that are missing. By
considering the characteristic of P2P live streaming, we
propose an algorithm called Most Popular Chunk First (MPCF)
for the swarming phase.

In MPCF algorithm, each peer maintains bitmaps of all
other peers in the same local group indicating which chunks are
available. However, contrary to Rarest-First algorithm, MPCF
lets peer download the most popular chunk first, i.e., always
download the chunk that is shared by the most number of peers.
If the most popular chunk is unavailable, for example due to

Figure 1. Bottom-Up Trie Architecture

1992

peer churn or limited node capacity, then the next popular
chunk will be selected and downloaded. MPCF is ideal for real-
time multimedia applications such as P2P live streaming due to
the following reasons:

1. In real-time multimedia applications, the older chunks, the
chunks that are generated earlier, are always shared by more
peers and therefore are more popular. Based on the definition
of MPCF, peers tend to download older chunks ahead of newer
chunks. So MPCF can achieve very high sequentiality
compared to Rarest-First algorithm which tends to download
newer chunks ahead of older chunks. Here, the sequentiality
means the percentage of chunks that are downloaded
sequentially. Since the buffer size is limited, older chunks may
be obsolete. By downloading oldest chunks first, we avoid the
situation that some old chunks are starved in the sense that they
have been deleted before fully downloaded. Therefore, with
high sequentiality, MPCF is better than Rarest-First algorithm
for live video streaming applications. Also, in Rarest-First
algorithm, the rarest-shared chunk always has limited
availability due to limited uploading bandwidth. If many peers
want to download this rarest-shared chunk simultaneously,
there might be longer delay or waiting time due to the limited
availability. However, for MPCF, the most popular chunk is
shared by the most number of peers, so it has high availability.
Even though many peers want to download this chunk
simultaneously, the waiting time is short.

2. By comparing with Naive Sequential algorithm, both of
them tend to download older chunks ahead of newer chunks.
However, MPCF is better in the sense that it does not enforce
sequential requirement. This allows more flexibility in
selecting peers. In some cases, peers running sequential
algorithm may need to wait because some chunks may not be
available due to limited bandwidth, while peers running MPCF
can move on to next most popular chunks that have bandwidth
to download. This will maximize bandwidth utilization.

Based on the discussion above, it is reasonable to conclude
that MPCF algorithm can achieve higher sequentiality than
Rarest-First algorithm and higher throughput than Naive
Sequential algorithm, which is ideal for real-time multimedia
applications such as P2P live streaming. At the beginning of
the swarming phase, peers in the same local group will
download the bitmap from the local DHT table, which
indicates the chunks each peer has downloaded. By checking
the bitmap, peers will select the chunks that are owned by the
most number of peers in the local group. When the total
uploading bandwidth for the most popular chunk is exhausted,
the next popular chunk will be selected for downloading. The
bitmap in the local DHT table will be updated if any peer has a
new chunk or deletes an old chunk. Every time a peer has the
capacity to download a new chunk, it will check the local DHT
table to see whether the bitmap has changed. If the bitmap is
changed, it will update its own bitmap and proceed to the
selection of the next most popular chunk.

By applying the diffusion phase of the BU-Trie, each new
peer can easily determine its position in the Trie for certain live
streaming. At the same time, by applying the swarming phase,
peers can easily determine which video chunks need to be
downloaded and where to download the desired video chunks.

If a leaf node happens to leave, only the DHT table in the
lowest level group the leaf node belongs to needs to be updated.
On the other hand, if a parent node at Level x leaves a session,
another node within the same group in Level x will be selected
immediately as the parent. Related DHT labels in the level x+1
to the lowest level will be updated. These DHT tables are the
closest ones to the leaving node and therefore can be updated
very fast. In general, the BU-Trie and the MPCF algorithm
achieve our goal to localize traffic as much as possible and
henceforth minimize delay. Each application session has its
own BU-Trie. This will allow peers to share load across
different live sessions and avoid bottleneck problem.

IV. PERFORMANCE EVALUATION
To evaluate the performance of the BU-Trie, some

simulations are designed and implemented. We use Opnet [15]
as our simulation tool.

A. Simulation Design and Assumptions
 Due to the complexity and the limitation of the software,
we cannot simulate a real life P2P LVS network. Instead, we
created 128 nodes in total for our simulation. As shown in
Figure 2, the 128 nodes are divided into 4 domains. The nodes
in the same domain have same or similar IP address prefix, for
example, we assume that each domain represents an ISP. We
also assume that the 32 nodes in each domain are physically
close to each other and have less delay. We run the simulation
with heterogeneous nodes. For example, nodes have different
uploading bandwidths from 5Mbps to 20Mbps. Our simulation
focuses on one live streaming session. Therefore one node is
selected as the source node as shown in Figure 2. The source
node keeps generating live video chunks, where each chunk
has unique size of 512KB. In this simulation, we build a 3-
level BU-Trie, where we set N=28, M=16. Figure 3 shows the
BU-Trie structure. Each level 1 ring has 8 peers, where the 8
peers have the same higher 28 bits in their IP addresses. One
of the 8 peers in each ring is then selected as the parent peer
node. These 16 parent nodes form the level 2 rings based on
the higher 16 bits in their IP addresses. After that, 4 level 2
parent nodes are selected from the 4 level 2 rings, and form
the level 3 ring. Therefore the level 3 ring has 4 parent nodes,
and one of them is the source node.

Figure 2. Network Topology for Simulation

1993

Figure 3. BU-Trie Structure for Simulation

Three tests are made with this simulation. Test 1 is the
Sequential Throughput test. Sequential Throughput is defined
as the number of sequential chunks downloaded per second. In
other words, we measure the average downloading speed of the
in-order video chunks. For P2P LVS applications, higher
sequential throughput means better playback continuity. Test 2
is the end-to-end (ETE) delay test. The ETE delay is measured
by the waiting time from the time of sending one chunk by the
source node to the time of receiving this chunk by a leaf node.
Shorter ETE delay means less initial buffering time. Test 3
measures the average number of inter-domain packets, i.e., the
average number of packets that are transmitted between
different domains. We compare the results with three other
algorithms: Rarest-First (RF), Naive Sequential (NS), and
Hybrid (half RR half NS).

B. Simulation Results
Test 1 is the Sequential Throughput test. We record the

total number of chunks received by the node and the total
number of chunks in sequence during the simulation. Without
loss of generality, we randomly pick a node (node_6) to show
our analysis as an example.

Figure 4 shows the simulation results obtained from the
random picked node (node_6). The left figure shows the total
number of packets received by node_6 versus time. The right
figure shows the total number of packets received sequentially
versus time. Based on our definition, the slopes of the two lines
represent the average throughput and the average sequential
throughput. The two slopes shown on Figure 4 are 7.5459
(packers/sec) and 7.0651(packers/sec).

Figure 4. Throughput Test Results of a Random Picked Node

We repeat this analysis for the remaining 31 nodes in
domain 1, and calculate the average value for all the four
algorithms. Figure 5 shows the average total throughput and
average sequential throughput test results. As stated above, the
slops of the lines represent the TR and the STR. The numerical
results are shown in Table 1.

Figure 5. Sequential Throughput Test Results

Table 1 shows the average throughput and average

sequential throughput by using the slope of the Figure 5
multiplied with 512k (the size of each chunk). We can see that
even though the Rarest-First algorithm has the highest total
throughput, the chunks downloaded are not in order. As a
result, the playback continuity is poor due to the low
sequential throughput. For Naive Sequential algorithm, all
downloaded chunks are in order, but the throughput is
relatively low since most of the peers download the newest
chunk at the same time. BU-Trie has higher total throughput
than the Naive Sequential and much higher sequentiality than
the Rarest-First. As a result, BU-Trie achieves the highest
sequential throughput as predicted.

Table 1. Sequential Throughput Test Results

Test Average
Throughput

(Mbps)

Sequential
Throughput

(Mbps)

Sequentiality

BU 3.857 3.618 0.938

RF 10.098 1.917 0.19

NS 2.303 2.303 1

HY 6.917 3.416 0.494

1994

Figure 6 End-to-End Delay Test

Test 2 is the end-to-end (ETE) delay test. Figure 6 shows
the ETE delay of each chunk received by the randomly picked
node_6. For BU-Trie, the ETE delay is relatively low and
stable. The delay is stable, because it has similar downloading
order as the NS algorithm. However, the delay of BU-Trie is
much lower, this is due to: 1. MPCF algorithm makes sure the
next downloaded chunk always has the largest uploading
bandwidth, and it allows peers to move on to the next popular
chunk if there is a bandwidth bottleneck. 2. The BU-Trie allow
peers to exchange data with the peers that are close to each
other, for example, within the same ISP or physically close to
each other. As a result, the propagation delay is much lower.

Figure 7. Number of Inter-Domain Packets

Table 2. Average Number of Inter-Domain Chunks
Algorithm� Average�Number�of�Inter�Domain�Chunks�

BU� 15612�

RF� 76270�

NS� 80334�

HY� 76412�

Test 3 is made to count the average number of the inter-
domain packets during 1 hour live streaming session. The
reason we make this test is because P2P applications always
generate huge amount inter-domain traffic between different
ISPs, which is not preferred by ISPs. We repeat the test 10
times for each algorithm, the results are shown in Figure 7 and
Table 2. The results show that the number of inter-domain

packets is reduced significantly by applying the BU-Trie design.
Since most of the traffic in the lower level of the BU-Trie is
within the same domain, the traffic between different ISPs is
much less as predicted.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we designed the BU-Trie for P2P live

streaming application. The BU-Trie can be easily built by
following our simple algorithm. By applying MPCF algorithm,
BU-Trie design can achieve relatively high sequential
throughput and lower end-to-end delay, which reduce the initial
buffer time and improve the playback continuity. Since the
BU-Trie prefers downloading locally, the number of inter-
domain packets can be reduced as well. We will continue to
work on this brand new Trie structure and do more
performance study to demonstrate its full benefits.

ACKNOWLEDGMENT
This work was supported by the NSERC grant #CRDPJ
354729-07.

REFERENCES
[1] PPLive, http://www.pptv.com/en/.
[2] X. Liu, H. Yin, C. Lin, Y. Liu, Z. Chen, X. Xiao, “Performance analysis

and industrial practice of peer-assisted content distribution network for
large-scale live video streaming.” IEEE AINA 2008, pp.568-574,
Okinawa, March 2008.

[3] Z. Lu, Y. Li, J. Wu, S. Zhang, Y. Zhong, “MultiPeerCast: A tree-mesh-
hybrid P2P live streaming scheme design and implementation based on
PeerCast.” IEEE HPCC 2008, pp.714-719, Dalian, September 2008.

[4] C. Xu, G. M. Muntean, E. Fallon, A. Hanley, “A balanced tree-based
strategy for unstrucatured media distribution in P2P networks.” IEEE
ICC 2008, Beijing, May 2008.

[5] H. Liu, I.Wu, F.Jen, "MeTree: A Contribution and Locality-Aware P2P
Livee Streaming Architecture." IEEE AINA 2010, pp.1136-1143, Perth,
March 2010.

[6] X.Tu, H.Jin, X.Liao, J.Cao, "Nearcast: A locality-aware P2P live
streaming approach for distance education." ACM TOIT2008, Vol 8
Issue 2, New York, February 2008.

[7] N. Magharei, R. Rejaie, and Y. Guo, “Mesh or multiple-tree: A
comparative study of live P2P streaming approaches.” IEEE INFOCOM
2007, Anchorage, May 2007.

[8] N. Magharei, R. Rejaie, “PRIME: Peer-toPeer Receiver-Driven Mesh-
Based Streaming”, IEEE/acm transactions on networking, vol. 17, no. 4,
August 2009

[9] K. Sripanidkulchai, “The Feasibility of Supporting Large-scale Live
Streaming Applications with Dynamic Application EndPoints”, ACM
SIGCOMM 2004, Portland, August 2004.

[10] X. Zhang; J. Liu; B. Li; Y.-S.P.; , "CoolStreaming/DONet: a data-driven
overlay network for peer-to-peer live media streaming," IEEE
INFOCOM 2005, Miami, March 2005.

[11] B. Fan, D. Andersen, M. Kaminsky, K. Papagiannaki, “Balanceing
Throughput, Robustness, and In-Order Delivery in P2P VoD,” ACM
CoNEXT 2010, Philadelphia, November 2010.

[12] Y. Zhou, D. Chiu, J. Lui, “A Simple Model for Analyzing P2P
Streaming Protocols,” IEEE ICNP 2007, Beijing, 2007

[13] B. Zhao, J. Lui, D. Chiu, “Exploring the Optimal Chunk Selection
Policy for Data-Driven P2P Streaming Systems,” The 9th Conference on
Peer-to-Peer Computing, 2009

[14] M. J. Freedman, M. Vutukuru, N. Feamster, H. Balakrishnan,
“Geographic locality of IP Prefixes.” ACM IMC 2005, Berkeley, 2005.

[15] Opnet,http://www.opnet.com

1995

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

