
Distributed Parallel VN Embedding Based on
Genetic Algorithm

Qiao Lu, ChangCheng Huang
Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada

Email: qiaolu@cmail.carleton.ca, huang@sce.carleton.ca

Abstract—Network virtualization has emerged to replace tra-
ditional network architecture since it allows multiple virtual
networks to share a common substrate network. However, one
of the main challenges for network virtualization is the resource
allocation for each virtual network (VN), called Virtual Network
Embedding Problem. The computation complexity of existing
resource allocation approaches is too high to achieve an optimum
within an acceptable time. Further, the provided optimum is
not optimal in an online non-reconfigurable VN embedding
setting because of the highly dynamic nature of user demands.
Nowadays, due to lower hardware costs, distributed parallel
computing can be used to deal with complex computing tasks
with high efficiency. In this paper, we propose a distributed
parallel Genetic Algorithm (GA) for solving VN Embedding
problems. Through theoretical analysis, we compare the time
saving of our distributed parallel algorithm with traditional
sequential running. Results show that our algorithm achieves
better performances on execution time and acceptance ratio.

I. INTRODUCTION

Allocating physical resources in network virtualization to
achieve higher profit and efficiency is a well-known problem.
Such a problem is called Virtual Network (VN) Embedding.
To solve the problem, algorithms need to decide the physical
resources for VNs, which becomes an optimization problem
with a particular objective (e.g., lower cost). In general, a
virtual network is composed of several virtual nodes and
their associated virtual links. A common approach is to adopt
two phases to allocate a virtual network: 1) node mapping:
mapping virtual nodes into substrate nodes and 2) link map-
ping: mapping virtual links into substrate paths with multiple
connected substrate links.

In an online VN Embedding problem, VN requests arrive
dynamically and stay in the network for random durations.
In most real-life scenarios, the VN Embedding is an online
problem, which requires a speedy and efficient solution. Both
offline and online VN Embedding can be formalized into
an exact optimization problem, such as Integer Linear Pro-
gramming (ILP) model [1]. However, exact solutions are time
consuming and hard to achieve real global optimization under
dynamic demands. Specifically, to avoid causing disruptions to
the existing services, these solutions do not try to reallocate
mapped requests in the past. Nor do they try to predict future
requests. When a VN request arrives, they allocate the request
based on current residual resources. Obviously, this kind of
local optimal results may not lead to global optimization of
resources usage. This observation provides space for heuristic
algorithms to play.

Existing literature proposes several heuristic algorithms in
VN Embedding to increase placement efficiency as well as im-
prove global optimality. Generally, heuristic algorithms[1][2]
tend to find one solution that is likely to be good. However,
the performance of the solution is not guaranteed.

Few researchers propose meta-heuristic algorithms for VN
Embedding problems. To our best knowledge, the previous
papers[3][4] on Genetic Algorithm in VN embedding are only
focused on node mapping. However, the more complicated VN
link mapping is not well investigated yet.

In some research papers[1][5], it was assumed that a virtual
node/link can be split into different substrate nodes/links,
which is called splittable mapping. The embedding of a virtual
network for both splittable and unsplittable cases is a very im-
portant research topic for software defined network (SDN) and
network function virtualization (NFV). Indeed, the splittable
embedding attains better resource utilization in theoretical
analysis. Actually, the splittable embedding is easier than an
unsplittable embedding[6]. The splittable embedding problem
can be formulated as a linear program which can be solvable
in polynomial time. However, the splittable embedding is hard
to implement into a real online embedding problem.

Firstly, the splittable embedding creates the overhead of
maintaining the state consistency, which requires more con-
sideration for future work[6]. Secondly, mapping a virtual link
to multiple paths in the substrate network may cause out-of-
order packet delivery[2]. Out-of-order delivery is a primary
concern for packets in the same flow. Some strategies such
as Equal-cost Multi-path (ECMP) routing should be brought
into implementation to deal with packet reordering as well as
balancing multiple flows over multiple paths. Additionally, for
the online embedding problem, we consider the time consum-
ing as a very important factor. Polynomial time complexity is
still far longer than we expect in an online embedding system.

The unsplittable VN embedding problem is a fundamental
mathematical problem for provisioning resources for network
slices[6]. Unfortunately the complexity problem becomes one
major bottleneck of the unsplittable embedding. In previous
work, unsplittable link mapping algorithms that are formulated
as Integer Programming, are inclined to simplify the NP-hard
problem to shortest path problems. However, the shortest path
method may not lead to optimal results.

Nowadays, cloud computing is becoming prevalent. With
the decrease of computing cost, cloud computing can be used
to compute parallel algorithms with high efficiency. In tradi-

tional exact methods, the NP-hard programming is difficult to
be decoupled into parallel independent subtasks. We found the
Genetic Algorithm can be decoupled with some modifications.
Therefore, in this paper, we propose a distributed parallel
Genetic Algorithm that solves unsplittable link mapping of
the VN embedding problem with high performance and low
complexity.

We summarize the contributions of our proposed parallel
GA algorithm as follows. 1) To the best of our knowledge,
our work is the first to propose a GA algorithm for an online
VN link mapping problem. Inspired by [7], our proposed
algorithm deals with a more complex problem by solving
GA formulated in matrix form. 2) Instead of generating
one solution as previous research, we try to find the best
solution among multiple feasible solutions by using genetic
iterations. Extensive simulation results demonstrate that our
approach provides better performances both on execution time
and acceptance ratio than existing ones. 3) To solve the
VN embedding problems efficiently, we propose a distributed
parallel GA algorithm by applying variants in the GA. And the
theoretical analysis shows the execution time can be reduced to
logarithmic time. 4) Our proposed algorithm can be terminated
with an intermediate solution at any time. If there is a time
limitation for dynamic VN requests, parallel working machines
can be added to increase execution speed to get an optimum
for the GA algorithm. 5) Few papers discuss VN embedding
with nonlinear objective functions in both exact methods and
heuristic solutions. In this paper, we compare the performance
between a linear objective function and a nonlinear one.
Results show that the nonlinear objective function is more
effective than the linear one.

The rest of this paper is organized as follows. Section II
describes the network model and problem formulations. Sec-
tion III introduces our proposed parallel GA algorithms. Sec-
tion IV presents simulation results that compare the proposed
algorithm with previous work. Finally, Section V concludes
the paper.

II. NETWORK MODEL

A. Substrate Network and VN Request

We consider a substrate network infrastructure Gs =
(Ns, Es) composed of a set of substrate nodes Ns and
a set of substrate bidirectional links denoted as Es. Each
substrate node ns ∈ Ns is associated with CPU capacity value
C(ns) and its geographic location loc(ns). Each substrate link
es ∈ Es has bandwidth capacity weight value B(es). Every
substrate node has a unique ID number that is used in genetic
encoding as Fig. 1.

A VN request is modeled as a weighted graph, denoted by
Gv(ta, td, D) = (Nv, Ev, ta, td, D). Nv is a set of virtual
nodes. Ev is a set of virtual links. ta is arrival time of the
VN request. td is the duration of the VN request and D
represents the maximum distance between a virtual node and
its associated substrate node. Each virtual node nv ∈ Nv in a
VN request has CPU capacity requirement value C(nv) and a
location loc(nv). The distance between a substrate node and

the virtual node is denoted by dis(loc(nv), loc(ns)). Each link
ev ∈ Ev has bandwidth requirement value B(ev). We also
denote N as the number of virtual links.

Fig. 1: An example of a virtual network with its associated substrate network.

B. VN Assignment

When a VN request arrives, the substrate network is sup-
posed to decide if the request should be accepted on basis of
current remaining resources. The assignment is released until
the request departures.

1) Node Mapping: To allocate a VN request, we should
map virtual nodes first. Each virtual node in a VN request
should be allocated to a different substrate node. There are
two constraints in node mapping:

C(nv) 6 Rn(M(nv)) (1)

dis(loc(nv), loc(M(nv))) 6 D (2)

where, M(nv) ∈ Ns, Rn(M(nv)) 6 C(M(nv))

M(nv) is the substrate node mapping from a virtual node
nv . Rn(M(nv)) is the remaining CPU capacity of the sub-
strate node, which is updated after allocating/releasing each
VN request.

2) Link Mapping: After node mapping, the VN embedding
problem becomes multiple path embedding problems in the
substrate layer. Each virtual link(unsplittable) is mapped to a
substrate path(unsplittable) with one or more substrate links.
We define a mapping M(nv,mv) from a virtual link to a
substrate path. Similar to Rn(M(nv)), Re(es) is the remaining
bandwidth of substrate link es. We define the set of all
substrate paths from source node M(nv) to destination node
M(mv) as P(M(nv),M(mv)). Every substrate link in M(ev)
should have enough bandwidth resource to allocate the virtual
link:

B(ev) 6 Re(nv,mv) (3)

where,
ev = (nv,mv), M(ev) ∈ Ps(M(nv),M(mv))

Re(es) 6 B(es), Re(nv,mv) = min
es∈M(ev)

Re(es)

When a VN request mapping satisfies the constraints above
for all nodes and links, it means the substrate network has
enough resource to support the request by the mapping
method. And the mapping is defined as a feasible solution.

C. Objectives

In our proposed link mapping algorithm, we try to balance
the load for link mapping. The objective function used in link
mapping is also called fitness function. The fitness function in
this paper takes all links’ usage as a whole, as opposed to other
heuristic link mapping problems[1][2], which map virtual links

sequentially. In addition, we try to measure the bandwidth cost
of mapping the VN request as well as balance the load. The
more remaining bandwidth left means more VN requests could
be allocated in the future. Therefore, we encourage higher
remaining bandwidth with smaller cost in the fitness function.

Existing solutions use linear objective functions to simplify
optimization process. For example, the linear objective func-
tion in [1] is based on the remaining bandwidth of previous
VN allocations as shown in (4). σ is a small positive constant
to avoid the denominator becoming zero. f iuv describes the
total amount of flow from u to v for the ith virtual link under
the specific mapping scenario.

FLP =
∑
es(u,v)∈ES

αuv
Re(u,v)+σ

∑
i f

i
uv (4)

In our proposed algorithm, the linear or nonlinear function
has almost similar computing complexity. We also formu-
late the fitness function as a nonlinear function as shown
in (5), where the bandwidth usage of the current virtual link
allocations becomes part of the denominator. A nonlinear
fitness function like (5) improves the bandwidth efficiency
since a small residual bandwidth in each substrate link can
cause bandwidth fragmentation and is hard to be utilized
for future VN requests in unsplittable link mapping. In the
simulation, we keep both fitness functions and compare their
performances.

FNLP =
∑
es(u,v)∈ES

αuv
Re(u,v)−

∑
i f
i
uv+σ

(5)

III. PROPOSED VN EMBEDDING ALGORITHM

With the development of computing capability, the cost of
computing devices is decreasing. Therefore, people concern
more on execution time rather than computing cost. Parallel
method becomes prevalent to utilize more computing resources
for the sake of time saving. Nevertheless, how to design the
parallel structure for VN embedding link mapping is still
a tough problem. Previous traditional algorithms focus on
how to generate one feasible solution with good performance.
However, parallelism in the process of seeking one good
feasible solution is hard to realize. A feasible solution contains
multiple virtual links that share the substrate link resources.
Hence, virtual link mappings are highly dependent on each
other, which makes parallelism complicated.

In contrast, there is no dependency among different fea-
sible solutions because they are mutually exclusive. Genetic
Algorithm is such an algorithm that applies naturally to
parallel computing. In general, GA seeks the best solution by
evaluating and improving multiple feasible solutions through
an evolution process. We propose a parallel GA method that
can be run over many machines in a distributed way. Each
chromosome denotes a feasible solution. Each parallel work-
ing machine can run independently and generate descendant
chromosomes. After all required iterations have been executed
by each machine independently, the best feasible solution will
be selected among all parallel machines.

The proposed parallel structure is shown in Fig. 2. Proce-
dures such as node mapping and synchronization work are still
working sequentially. We call the procedures running sequen-

tially as master working procedures. And the slave working
procedures indicate the procedures running independently in
slave nodes.

Fig. 2: Parallel execution flow chart
A. Node Mapping Algorithm

Node mapping algorithm in this paper is a greedy method
instead of an exact formulation since an exact method is
always computationally expensive but also may not lead to
a better solution. To achieve efficiency and expense reduction,
we take a similar heuristic algorithm as [2].
Y (ns) shown in (6) calculates the remaining substrate node

resources. Specifically, Y (ns) is not only dependent on the
remaining CPU capacity Rn(ns). Moreover, Y (ns) considers
remaining link resources of all adjacent substrate links. E(ns)
is the set of adjacent substrate links of node ns. σ1 and
σ2 denote weights to control the significance of Rn(ns) and
Re(es), which should be non-negative.

Y (ns) = σ1 ×Rn(ns) + σ2 ×
∑
es∈E(ns)R

e(es) (6)
B. Genetic Representation

After node mapping, a VN request problem becomes multi-
ple link mapping problems. A chromosome ci denoted by (7)
represents a feasible solution for mapping a VN to a substrate
network. The subscript i indicates the ith element in GA
population. A gene gij is a substrate path corresponding to
a virtual link and has two subscripts. The first subscript i
indicates its chromosome, and the second subscript j denotes
the jth virtual link in the chromosome. Similarly, A node
denoted by nijk represents a substrate node ID with three
subscripts. The first two subscripts indicate its gene, and the
third one denotes its position in the gene. A gene can be
denoted by (8) with a variable length dij . Each gene gij can
be divided into two partial paths as (9): head Hijk and tail
Tijk, where k indicates the index of node in the gene.

ci = {gi1, gi2, ..., gij , ..., giN} (7)

gij = {nij1, ..., nijk, ..., nijdij} (8)

gij =
[
Hijk,Tijk

]
, ∀k ∈ (0, dij) (9)

where, Hijk =
[
nij1, nij2, . . . , nijk

]
Tijk =

[
nij(k+1), nij(k+2), . . . , nijdij

]
C. Link Mapping Algirithm

1) Getting Original Path Pool: Before we conduct our
link mapping process, we need to find some good potential
paths in the substrate network for mapping virtual links. To
this end, shortest paths based on hop count are certainly
more favorable because they tend to consume fewer resources.
For each source-destination pair in the substrate network, we
identify K shortest paths as our path pool. Existing K shortest
path algorithm can be readily deployed to build the path pool.
This process can be done before any online VN requests arrive.
Therefore, we do not count the time for this process as part
of the time for our online embedding process. Each virtual
link has K substrate static paths, hence the original path pool
should have K ×N paths.

2) Slave Working Procedure: In this procedure, each slave
node performs the GA and gets an independent solution.

a) Initialization: The purpose of the initialization is
to generate a population of M chromosomes, where each
chromosome is a feasible solution for embedding a VN. To
select a chromosome, we need to select genes that form a
feasible solution. This is done in two steps. The first step is to
choose a candidate gene by uniformly selecting a path from
the K shortest paths associated with the mapping of a specific
virtual link in the path pool. We use uniform selection instead
of another specific order since our proposed algorithm focuses
on parallel running.

After all candidate genes in a chromosome have been
selected, the feasibility of the chromosome should be checked
as described in Section II-B. Then the feasible chromosome
will be added to the initial population denoted by P . If the can-
didate chromosome does not pass the feasibility test, we will
go back to step 1 to select another candidate and test again.
This process continues until a feasible chromosome is selected.
P can be described as a matrix shown in Equation (10).
Generally, after initialization, the population P should have
M chromosomes and each chromosome has N virtual links.
Therefore, the size of P is M ×N .

P =



c1
c2
...
ci
...

cM


=



g11 . . . g1j . . . g1N
g21 . . . g2j . . . g2N

...
.

...
gi1 . . . gij . . . gi

...
.

...
gM1 . . . gMj . . . gMN


(10)

b) Selection: Selection operation is to select parent chro-
mosomes from the initial population for the crossover opera-
tion. In general, one or several pairs of parent chromosomes
can be chosen from this step. In this paper, we aim to
improve the degree of parallelism, we only choose one-pair
parents. We perform the selection scheme based on random
selection with replacement. In the natural world, crossover
in close relatives should be avoided. In general, the parents’
chromosomes should be removed from the population after

crossover operation. However, in this paper, crossover between
a good parent and a good child may produce a better result
with high probability.

c) Crossover: In crossover and mutation, the operations
are based on genes. We denote two parent chromosomes as cs
and cr. s and r indicate the chromosome’s index in current
population. We denote the two new children chromosomes
from crossover operation as c(M+1) and c(M+2). The genes
inside parent chromosomes can be denoted as gsj and grj .
Each gene in the chromosome should perform crossover with
the counterpart of the other parent chromosome. For each pair
of genes, we first identify a common node. If there is a node
nsju in gsj equal to a node nrjv in grj , where u and v are
not the indexes of source or destination node, we denote the
node as a common node.

When the common node is selected in two genes, the
common node is utilized as an intermediate node. With the
intermediate node as the demarcation point, we swap the
second parts of the two genes to generate two children genes.
It is easy to see, children generated in such a way are still
valid paths. The children genes are defined as (11) and (12).

g(M+1)j =

{[
Hsju,Trjv

]
for p ∈ (0, 0.5][

Hrjv,Tsju

]
for p ∈ (0.5, 1]

(11a)

(11b)

g(M+2)j =

{[
Hrjv,Tsju

]
for p ∈ (0, 0.5][

Hsju,Trjv

]
for p ∈ (0.5, 1]

(12a)

(12b)
Each pair of parent genes can produce two children genes,

hence there exist 2N gene combinations for a child chromo-
some. However, we only pick two chromosomes based on uni-
form possibility defined as p in (11) and (12) regardless of their
fitness values. There are two reasons for the random selection.
The new chromosome with good fitness value generated in
crossover may become inferior after mutation. Therefore, a
specific selection criteria in the crossover procedure may not
work well. The other reason is based on the particularity of a
path chromosome. In our GA, when the children chromosomes
generate their next generation, they may create the chromo-
somes same as their parents or ancestors. If we always choose
the fittest children, the Genetic Algorithm may be trapped in
loops, and also produce high repetitive rate especially for a
parallel Genetic Algorithm. After two children chromosomes
have been generated, the population now can be represented
by (13) that adds two children chromosomes.

P =



c1
...
cs
...
cr
...

cM
cM+1

cM+2


=



g11 . . . g1j . . . g1N
...

.
...

gs1 . . . gsj . . . gsN
...

.
...

gr1 . . . grj . . . grN
...

.
...

gM1 . . . gMj . . . gMN

g(M+1)1 . . . g(M+1)j . . . g(M+1)N

g(M+2)1 . . . g(M+2)j . . . g(M+2)N


(13)

In this crossover scheme, if there are two or more than
two common nodes existing, the cross point will be chosen
randomly with uniform possibility. If there is no common node
found, the outputs from crossover are supposed to keep the
parent genes to ensure the whole procedure running normally.

d) Mutation: After crossover, every gene of a child
chromosome undergoes mutation operation with a fixed proba-
bility(mutation rate). If a gene is selected to perform mutation
operation, it replaces the partial route between two nodes with
the shortest path chosen from the path pool to connect the
two mutation nodes. The mutation nodes which are selected
randomly with uniform possibility inside the gene. As shown
in (14), if there is no mutation operation, the gene should
be kept for the next step. If mutation occurs, the alternative
path Pwz between mutation node nij(w+1) and nijz will
update current gene. We use g′ij denoting the child gene after
mutation.

g′
ij =

{
gij if no mutation[
Hijw,Pwz,Tijz

]
if mutation

(14a)

(14b)

e) Sorting Population and Termination Conditions: Af-
ter the new chromosomes have been generated from the
crossover/mutation operation, they have to go through the
feasibility check. Occasionally, there may exist loops inside
genes[7]. Therefore, refinement check is necessary to detect
and remove loops inside genes. The chromosome that fails
the feasibility check will be removed from the population.
If both two new chromosomes fail the feasibility check, we
will go back to crossover operation to generate two different
chromosomes until a feasible solution found. This procedure
will be stopped when the maximum count is reached or there
are no different children chromosomes available.

The population is supposed to be re-sorted by the fitness
value after the feasibility and refinement check. Only the
best M (population size) chromosomes are saved to the next
generation. Generally, the GA algorithm will be terminated
when the best chromosome of the population has not been
changed t times in succession. t is a tuning parameter called
terminating parameter. The GA algorithm also can stop when
a fixed number of generations reached.

3) Synchronization and Allocating the VN Request: After
slave nodes finish parallel procedures, all population generated
by slave nodes should be resorted by the fitness value in the
master node. The best chromosome becomes the final solution
for link mapping. Then the VN request should be allocated
into the substrate network. After that, the substrate network is
supposed to update its residual resources.

4) Execution time of parallel GA: As shown in Fig. 2,
we define execution time of each procedure as tnm for node
mapping, top for generating original path pool, Xi for the ith
slave working procedure, ts for Synchronization and tm for
allocating the VN request.

Slave procedures can be executed independently in parallel,
hence the total time for slave procedures is depended on the
slowest one as shown in (15). We define n as the parallel
level. The n can be tuned according to the tradeoff between
available computing resource and expected finishing time.
When we evaluate the time saving of our distributed parallel
structure, the time of sequential running for all slave working
procedures is required as a criterion. Equation (16) shows the
time consuming of sequential slave working procedures.

Yn = max{X1, X2, ..., Xn} (15)
Sn = X1 +X2 + ...+Xn (16)

Master procedures have to be performed sequentially. There-
fore, the total execution time to embed a VN request can
be evaluated by (17) for parallel slave running or (18) for
sequential slave running.

Tp = tnm + top + Yn + ts + tm (17)
Ts = tnm + top + Sn + ts + tm (18)

Xi can be considered as a continuous random variable,
which can be formulated with a continuous probability dis-
tribution. Since all parallel nodes work independently and
perform the same GA procedure, all the execution time of
parallel working nodes can be considered as independent-
identically-distributed variables. According to the numerical
results in Section IV, the histogram distribution of Xi can be
acquired in Fig. 3, which obeys Inverse Gaussian distribution.

For sequential slave process running, the mean time of total
slave procedures Sn is supposed to increase linearly over n.
The expectation of Sn is easily evaluated as (19).

E[Sn] = nE[Xi] (19)
To evaluate the upper bound of Yn’s mean value, Cramer-

Chernoff method is applied, which makes use of the Moment
Generating Function of Xi. An Inverse Gaussian random
variable X with parameters µ and λ has Moment Generating
Function shown in (20).

M(t) = E[et·X] = e(
µ
λ (1−

√
1− 2µ2t

λ)) for µ, λ > 0 (20)
By Jensen’s inequality,

etE[Yn] ≤ E[et·Yn] = E[maxi{et·Xi}]

≤
n∑
i=1

E[et·Xi] = nE[et·Xi]

=⇒ E[Yn] ≤
log(nM(t))

t
=
log(n)

t
+

µ
λ (1−

√
1− 2µ2t

λ)

t

(21)

Since t, λ and µ are constant values, we can conclude
that the increasing tendency of parallel running is logarith-
mic. Compared with the linearity of sequential running, our
proposed distributed parallel algorithm saves much more time
when the parallel level is larger.

IV. PERFORMANCE EVALUATION

A. Comparison Method

In this paper, we compare our GA-R and GA-LP algorithms
with three other algorithms. GA-R indicates the random paral-
lel GA using NLP fitness function, while GA-LP represents the
random parallel GA using LP fitness function. We use the same
simulation setting as previous research[1]. Specifically, we
select SP[2] because it is considered the fastest algorithm due
to its simplicity. R-ViNE and D-ViNE[1] are se.lected because
they tend to have the best performance and are typically used
as benchmark for comparison. We choose unsplittable link
mapping in R-ViNE and D-ViNE.

B. Evaluation Results

There are several performance metrics for evaluation pur-
poses in this simulation. We measure the average acceptance

ratio and average remaining bandwidth of the substrate net-
work.

1) Time and parallel level analysis: Time analysis is sim-
ulated only on GA-R since GA-R and GA-LP have a similar
computation complexity. we simulate the GA-R using one
machine that all parallel working node sequentially. For the
simulation of parallel GA, we implement our algorithm in one
machine and the parallel processes are executed sequentially.

We collected numerous execution time of parallel working
processes, and tried to find the time distribution. As shown in
Fig. 3, Xi fits Inverse Gaussian distribution with the sum of
square error 4.19e−5.

As described in (17), the total execution time Tp can also
be estimated based on sequential running results. We perform
the simulation with different parallel level from 4 to 32. From
Fig. 4a, we can inspect that acceptance ratio increases by the
growth of parallel level and finally acceptance ratio converge
to limit value. Fig. 4b gives the average total execution time
for one VN request by using different algorithms, where our
proposed algorithm has a parallel level equals 16.

Fig. 3: Time distribution of Xi

2) Performance Results: The parallel level of both GA-R
and GA-LP is 16 since the performance of GA-R is getting
converged after n = 16 as shown in Fig. 4a. Figure 4b shows
that our algorithm with parallel level of 16 can complete the
task in nearly the same time as the fastest algorithm SP. The
figures in Fig. 5 show the average values over different arrival
rates from 4 to 8 per 100 time units with 95% CI(confidence
interval). These results are generated by averaging over two
different substrate networks with same parameters (described
in simulation settings).

Our algorithms GA-R and GA-LP have more acceptance
ratio with less bandwidth cost as shown in Fig. 5. The
gain comes from more feasible solutions evaluated in our
proposed algorithms. As described before, compared heuristic

(a) Average acceptance ratio over
arrival rates

(b) CPU execution time
over different algorithms

Fig. 4: Acceptance and execution time performance

(a) Average acceptance ratio (b) Average remaining bandwidth

Fig. 5: Performance comparison over arrival rates

algorithms only try to guess one feasible solution for the
virtual link mapping. Instead of taking time to generate one
greedy solution, our algorithms utilize parallel running with
GA to consider more feasible solutions with relatively small
time consuming. Besides, we can conclude that our proposed
algorithm GA-R using nonlinear fitness function has better
performance than the proposed algorithm GA-LP using linear
fitness. Specifically, GA-R has more acceptance ratio, higher
remaining bandwidth than GA-LP.

V. CONCLUSION

Existing research in VN embedding problems focuses on
either scalability or optimality. In this paper, we take both
scalability and optimality into account. We proposed a dis-
tributed parallel Genetic Algorithm that has never been used
in online VN link Embedding. The simulation shows that
our GA-R algorithm has higher bandwidth efficiency and
better performance than other previous research. Execution
time, as well as performance on different parallel levels, are
also analyzed in this paper. We evaluate the execution time
model and demonstrate that the execution time complexity is
decreased to O(log(n)) comparing with sequential running
O(n). Besides, we also introduce a nonlinear fitness function,
which has been shown to improve the link mapping efficiency.
In future work, we will look into feasible ways to support
splittable link mapping. If splittable link mapping is indeed
feasible in real networks, we will further study GA based
splittable link mapping algorithms as our future task.

REFERENCES

[1] Mosharaf Chowdhury, Muntasir Raihan Rahman, and Raouf Boutaba.
Vineyard: Virtual network embedding algorithms with coordinated node
and link mapping. IEEE/ACM Transactions on Networking (TON),
20(1):206–219, 2012.

[2] Minlan Yu, Yung Yi, Jennifer Rexford, and Mung Chiang. Rethinking
virtual network embedding: substrate support for path splitting and
migration. ACM SIGCOMM Computer Communication Review, 38(2):17–
29, 2008.

[3] Zibo Zhou, Xiaolin Chang, Yang Yang, and Lin Li. Resource-aware
virtual network parallel embedding based on genetic algorithm. In 2016
17th International Conference on Parallel and Distributed Computing,
Applications and Technologies (PDCAT), pages 81–86. IEEE, 2016.

[4] Peiying Zhang, Haipeng Yao, Maozhen Li, and Yunjie Liu. Virtual
network embedding based on modified genetic algorithm. Peer-to-Peer
Networking and Applications, pages 1–12, 2017.

[5] Changcheng Huang and Jiafeng Zhu. modeling service applications for
optimal parallel embedding. IEEE Transactions on Cloud Computing,
2016.

[6] Georgios S Paschos, Mohammed Amin Abdullah, and Spyridon Vassila-
ras. Network slicing with splittable flows is hard. In 2018 IEEE 29th
Annual International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC), pages 1788–1793. IEEE, 2018.

[7] Chang Wook Ahn and Rudrapatna S Ramakrishna. A genetic algorithm
for shortest path routing problem and the sizing of populations. IEEE
transactions on evolutionary computation, 6(6):566–579, 2002.

