
Generating Just-in-Time Shared Keys (JIT-SK) for 
TLS 1.3 Zero RoundTrip Time (0-RTT) 

Eslam G. AbdAllah, Yu Rang Kuang, and Changcheng Huang 
 

Abstract—The main goal of Transport Layer Security (TLS) 
protocol is to provide a secure communication channel between 
communicating pairs. A new version of the protocol, TLS 1.3, is 
introduced to improve security and performance for customers. 
One of the major advantages of TLS 1.3 over earlier versions is 
that it introduces Zero RoundTrip Time (0-RTT) feature, that 
saves a round trip at connection setup stage. 0-RTT data security 
properties are weaker than other kinds of TLS data because the 
data is not forward secret and it is vulnerable to replay attacks. 
Existing solutions such as single-use tickets, client hello 
recording, and freshness checks provide inefficient solutions for 
0-RTT problems. 

In this paper, we propose an efficient technique to utilize 0- 
RTT feature with forward secrecy and prevent replay attacks. 
Our technique uses a synchronized pseudorandom number gen- 
erator (PRNG) that depends on initial shared secret between 
communicating pairs. The initial secret can be shared using TLS 
1.3 three basic key exchange modes.  In our technique, the PRNG 
also uses session shared information such as session ID to 
dynamically provide Just-in-Time Shared Keys (JIT-SK) for 0-
RTT. Client and server sides change the keys in each session and 
hence securely and efficiently use the 0-RTT. We implement a 
proof of concept for our technique using our private PRNG, 
named Quantum Entropy Expansion and Propagation (QEEP), 
and WolfSSL implementation for TLS 1.3 and show   the 
differences using our solution. 

Index Terms—Transport Layer Security (TLS v1.3), Zero 
RoundTrip Time (0-RTT), pseudorandom number generator 
(PRNG), Quantum Entropy Expansion and Propagation (QEEP) 

 
I. INTRODUCTION 

The Transport Layer Security (TLS) protocol consists of two 
primary protocols: a handshake protocol and a record protocol. 
The handshake protocol main goals are to authenticate the 
communicating pairs, negotiate cryptographic parameters, and 
establish shared keys. A record protocol protects the traffic 
between the communicating pairs using the handshake param- 
eters. The Internet Engineering Task Force (IETF) introduced 
a new version of Transport Layer Security (TLS) protocol, 
TLS 1.3, in August 2018 [1]. TLS 1.3 includes a lot of security 
and performance improvements that can be summarized in the 
following points:  

 
Manuscript received December 24, 2019. This work was supported in part by 

Mitacs Canada under Application Ref. IT13078.  
Eslam. G. AbdAllah was at the Department of Systems and Computer 

Engineering, Carleton University, Ottawa, ON, Canada. He is now with the 
Master of Information Systems Security Management (MISSM), Faculty of 
Management, Concordia University of Edmonton, AB, Canada (e-mail: 
eslam.abdallah@concordia.ab.ca). 

Yu Rang Kuang is with Quantropi Inc., Ottawa, ON, Canada (e-mail: 
randy.kuang@quantropi.com).  

Changcheng Huang is with the Department of Systems and Computer 
Engineering, Carleton University, Ottawa, ON, Canada (e-mail: 
huang@sce.carleton.ca). 

 
(1) TLS 1.3 introduces Zero RoundTrip Time (0-RTT) feature, 
(2) current symmetric encryption algorithms in TLS 1.3 are 
Authenticated Encryption with Associated Data (AEAD) 
algorithms, (3) all public-key based key exchange mechanisms 
support forward secrecy, and (4) other updates including adding 
or removing cryptographic algorithms and modifying some 
functions in the protocol [1] - [6]. 

One of the biggest advantages of TLS 1.3 is the 0-RTT. 
Based on Cloudflare [2], the connections can be classified to 
two different groups. Around 60% of the connections are from 
people who are visiting a website for the first time or revisiting 
after an extended period of time. For this group, TLS 1.3 
improves the speed of these connections significantly. Around 
40% of the connections are from people who are resuming      a 
previous connection. For this group, TLS 1.3 uses 0-RTT. 0-
RTT speeds up resumed connections, and hence leads to a 
faster response for web sites that people visit regularly. 

0-RTT feature was added in TLS 1.3 to save a round trip at 
connection setup for some application data, however it comes 
with some security vulnerabilities. 0-RTT data is not forward 
secret, because the data is encrypted under keys derived using 
the offered Preshared keys (PSK). By using 0-RTT, there are 
no guarantees of non-replay between connections. In ordinary 
TLS 1.3 1-RTT data, the date is protected using servers’s 
random value, whereas 0-RTT data does not depend on the 
ServerHello random value and hence has weaker guarantee. 
Additionally, more attacks can be performed based on replay 
attacks such as reordering of 0-RTT messages and cache 
timing attacks. As 0-RTT is a new feature in TLS 1.3, it is 
noncompatible with earlier TLS versions, which also can 
cause security risks. To overcome 0-RTT security vulnera- 
bilities, TLS 1.3 uses different mitigation techniques such as 
single-use tickets, client hello recording, and freshness checks, 
however these techniques provide inefficient solutions for 0- 
RTT problems. 

In this paper, we propose to use a synchronized pseudo- 
random number generator (PRNG) that can provide Just-in- 
Time Shared Keys (JIT-SK) for 0-RTT. Client and server sides 
dynamically change the keys each session. The PRNG depends 
on initial shared secret key that can be provided using TLS 1.3 
key exchange modes in addition to session shared information 
such as session ID. Then the PRNG generates random keys for 
each session to secure 0-RTT messages. Using fresh random 
key with each session provides forward secrecy for 0-RTT data 
and also prevents replay attacks as the key cannot be reused for 
multiple sessions. We implement our technique using a private 
PRNG, named Quantum Entropy Expansion and Propagation 
(QEEP) [4] and WolfSSL libraries for TLS 1.3.  We show the 



differences between WolfSSL basic implementation that 
depends on static keys and our approach that provides JIT-SK 
for 0-RTT. 

 
Client Server 

  
+ extensions sent in the previously noted message, * optional or situation-dependent 
message/extensions, () message protected from client_early_traffic_secret, {} 
message protected from [sender]_handshake_traffic_secret, [] message protected 
from [sender]_application_traffic_secret_N 

 

Fig. 1: 0-RTT handshake [1] 
 

II. PROBLEM STATEMENT AND EXISTING 
COUNTERMEASURES 

In TLS 1.3, clients and servers share a PSK, which can be 
obtained externally or using a previous handshake. TLS 1.3 
allows clients to send 0-RTT data on the first flight (early data), 
as shown in Figure 1. The client uses the PSK to authenticate 
the server and to encrypt the early data. 0-RTT messages have 
the same types as other messages in handshake and application 
date, but 0-RTT messages are encrypted using 0-RTT keys. 

The security attributes for 0-RTT data are weaker than other 
kinds of TLS data [1] - [3]. The main reasons for this weakness 
can be summarized in the following points.  0-RTT data is not 
forward secret. Forward security can be defined as the security 
of past communications even when a certain message is 
compromised at a later stage. 0-RTT is encrypted using keys 
derived using the offered PSK, and hence it is not forward 
secret. 

Replay attacks can be easily performed by network attackers 
by duplicating a flight of 0-RTT data. Additionally, network 
attackers can use client retry behavior to send multiple copies 
of an application message. 0-RTT increases this attack espe- 
cially for any system that does not maintain consistent server 
state. For example, if a server has multiple zones, in which 
tickets from zone 1 will not be accepted in zone 2, then the 
attacker can duplicate 0-RTT for multiple zones. This enforces 
the server to reject lots of 0-RTT messages and clients need to 
complete full handshake, which makes 0-RTT feature useless. 
Performing replay attacks can also cause more potential 
attacks. The duplication of actions causes side effects (e.g., 
buying an item or sending money) to be duplicated, thus 
harming the communicating pairs. Attackers can also reorder 
0-RTT messages. Attackers can perform cache timing attacks 
in order to discover the content of 0-RTT messages. This can 
be performed by redirecting a 0-RTT message to malicious 
cache nodes and figure out the requested resource. 

Another issue in 0-RTT data is coming from the non-
compatibility with older servers. This can cause a downgrade 
attack especially in multi-server environments, where some 

servers implement TLS 1.3 and others implement TLS 1.2 or 
earlier versions. A countermeasure for this issue in the mutli-
server environments is to ensure a deployment of TLS 1.3 
without 0-RTT prior to enabling 0-RTT. 

Existing solutions to overcome 0-RTT security challenges 
can be summarized in the following three techniques. These 
techniques provide partial solutions and limit the capabilities 
of 0-RTT feature [1]. 
Single-use tickets. This technique proposes anti-replay de- 
fense mechanism that allows each session ticket to be used 
once. The server can have a database of all valid tickets and 
deletes each ticket once it is used. When unregistered ticket    
is provided, the server forces the connection to use the full 
handshake. This technique requires the session database to be 
shared between server nodes in environments with multiple 
distributed servers, and hence it is hard to achieve high rates of 
successful PSK 0-RTT connections. 
Client hello recording. In this technique, the anti-replay 
mechanism is to record a unique value derived from the 
ClientHello message and reject duplicates. It is infeasible to 
record all ClientHellos, but a server can record ClientHellos 
within a given time window by using “obfuscated ticket age” 
attribute to make sure that tickets cannot be reused outside that 
window. This technique is suitable to be implemented in 
distributed systems with high rates of resumption and 0-RTT, 
because client hello recording mechanism does not require 
storing all outstanding tickets. In these distributed systems, it 
is impractical to have large scale reliable and consistent 
storage of all the received ClientHellos. In this case, the best 
anti-replay strategy for this mechanism is by using a single 
storage zone to be responsible for granting or refusing 0-RTT 
for a ticket in any zone. This simply prevents replay attacks 
because there is only one zone that will accept or reject 0-RTT 
data. Another design approach is to implement a storage for 
each zone, and hence limits the number of replays to once per 
zone. 
Freshness checks.  ClientHello message includes the time at 
which the client sent the message. The freshness check 
technique can use this time to efficiently determine whether    
a ClientHello was sent reasonably recently or not. This 
technique only accepts 0-RTT for such a recent ClientHello 
message, otherwise return back to a 1-RTT handshake. For the 
implementation of this mechanism, a server has to store the 
time of the generated session ticket and an estimation of the 
roundtrip time between client and server. This freshness 
checking is not sufficient to prevent replay attacks because   
of the following reasons: (1) it does not detect replay attacks 
during the error window, and (2) it is only performed at the 
time the ClientHello is received not when continuous early 
data records are received. 

Generally, TLS 1.3 servers are responsible to protect them- 
selves against 0-RTT data replication attacks. The existing 
countermeasures try to prevent replay at the TLS layer, how- 
ever they do not provide complete protection against receiving 
multiple copies of client data. Application protocols need a 
profile that defines 0-RTT usage. In this profile, the application 
protocols identify the allowed messages to be used with 0-RTT 

ClientHello 
+ early_data 
+ key_share* 
+ psk_key_exchange_modes 
+ pre_shared_key 
(Application Data*) 

 
 
 
(EndOfEarlyData) 
{Finished} 
[Application Data] 

ServerHello 
+ pre_shared_key 
+ key_share* 
{EncryptedExtensions} 
+ early_data* 
{Finished} 
[Application Data*] 

 
 
[Application Data*] 



and what should happen when the server rejects 0-RTT. 
 
III. PROPOSED SOLUTION (JIT-SK FOR 0-RTT) 
In order to access a web page using HTTPS for the first 

time, there are four basic steps. 
DNS lookup. DNS is operated by Internet Service Provider 
(ISP), who caches the IP address for popular domains. The 
latency in this step is negligible. 
TCP handshake. This step takes one roundtrip. In this step, 
the data is sent from a client to server and back using SYN and 
ACK packets, respectively. 
TLS handshake. This step requires two roundtrips. The client 
and server agree on the cryptographic key and establish an 
encrypted connection. 
HTTP. This step requires one roundtrip. After establishing the 
secure connection in TLS handshake step, the browser sends 
GET request as encrypted HTTP request and the server replies 
with HTTP response. 

In general, there are four roundtrips before the client can 
access the website. In case the client revisits the site again 
(resumed connections), the total required roundtrips become 
three because one of TLS handshakes can be removed using 
TLS session resumption. A big advantage for TLS 1.3 is that it 
requires only one roundtrip in TLS handshake for new or 
revisited website so the total number in each case is just three 
roundtrips. With TLS 0-RTT another roundtrip can be 
eliminated for resumed connections. Table I summarizes the 
required roundtrips in TLS 1.2, TLS 1.3, and TLS1.3 0-RTT. 

TABLE I: Required roundtrips for different TLS versions 
 

TLS version New Connection Resumed Connection 
TLS 1.2 (and earlier) 4 3 

TLS 1.3 3 3 
TLS 1.3 with 0-RTT 3 2 

 
TLS 1.3 supports three basic key exchange modes: Diffie- 

Hellman over either finite fields or elliptic curves abbreviated 
as (EC)DHE, PSK-only, and PSK with (EC)DHE. Our solution 
does not require any modification to the standard TLS 1.3. 
Instead of using the preshared key for 0-RTT, we use the 
preshared key as initial secret key (seed) for a synchronized 
PRNG, that can generate a large number of random keys. A 
random key can be generated for each session to provide JIT- 
SK. The client can use the random key to encrypt the first 
flight (early data). Instead of using PSK just once for 0-RTT 
as defined in TLS 1.3, we use random keys for each session to 
extend 0-RTT usage multiple times. Using PRNG, a client and 
server need to have preshared secret for authentication    to 
avoid man-in-the-middle attack. This secret is needed only 
once in our approach. The preshared key from TLS 1.3 can be 
used as our seed. The client encrypts the early data using the 
generated random number (session key) and securely transmits 
the encrypted data. The receiver uses a synchronized algorithm 
to generate the same random number (session key) to decrypt 
the received message. 

In this paper as a PRNG, we use QEEP, which is a software- 

based technique that depends on unitary permutation matrices. 
QEEP uses a large key space, which enables QEEP to generate 
random outputs that is indistinguishable from true randomness. 
In QEEP, each row in the matrix consists of a permutation of 
all numbers between 0 to 255. There are total 256! unique 
states for an 8-bit system and Shannon’s entropy is 1684 bits. 
Figure 2 shows the steps of our technique. We use PSK and 
session ID to randomly select the permutation matrix and then 
use PSK to generate the session key (SK) that can be used     to 
encrypt/decrypt the early data. Generally, any good high 
entropy PRNG such as QEEP, or SHA-256 [7], or a certified 
private PRNG can be used. The PRNG should have entropy of 
256 bits or more to prevent advanced cryptographic attacks 
coming from classical or quantum computers [8]-[9]. The 
quality of the generated randomness is tested using various 
tools such as National Institute of Standards and Technology 
Statistical Test Suite (NIST STS), specifically SP 800-22 [10], 
Dieharder [11], and entropy and randomness online tester [12]. 
QEEP passes all NIST STS SP 800-22 and Dieharder tests and 
generates random output that follows a Gaussian normal 
distribution. 

For the server to accept TLS 1.3 0-RTT early data, the 
server first has to accept a PSK cipher suite and select the first 
available key in the “pre shared key” extension. Second, the 
server has to verify that TLS version number, selected cipher 
suite, and selected Application-Layer Protocol Negotiation 
(ALPN) protocol are the same as the selected PSK. In case of 
PSK exchanged using NewSessionTicket message, the server 
verifies the values that are negotiated in the connection when 
the ticket was established. In case of externally established 
PSKs, the server verifies the values that are provisioned with 
the key. When a client uses a PSK and early data is allowed for 
that PSK, this enables the client to send application data   in 
the first flight of messages. In this case, the client provides 
“pre shared key” and “early data” extensions. The client uses 
“EarlyDataIndication” value for “extension data” field of this 
extension. Our proposed solution does not change TLS 1.3 
standard specifications because the PSK and a session shared 
information (session ID) will be used as inputs to the PRNG 
and then the server decrypts using the generated random. If the 
generated randoms between the server and the client, the server 
forces the communication to return to 1-RTT handshake. 

Using synchronized PRNG can achieve the following goals: 
Forward security. When a communication is compromised at 
any stage, forward security property guarantees the security of 
past communications. Imagine that a communication is 
exposed, using our technique that depends on dynamic random 
keys, the attacker still cannot infer any information from 
previous sessions. 
Prevention of replay attacks. In our proposed solution, the 
early and application data for 0-RTT are encrypted with JIT- 
SK for each session. An attacker cannot replay any message 
as the key is used only once. This simplifies the detection      
of replay attacks for communicating pairs. The prevention of 
replay attacks removes the side effects of these attacks such   
as duplication of actions, reordering of 0-RTT messages, and 
cache timing attacks. 



          
    

   
key[i] = b; 

 

  
   
        

key[i] = fgetc(fp);} 

       b   
    
b   

key[i] = b; 
 

  
   
        

key[i] = fgetc(fp);} 

\ \ \ 

static WC_INLINE unsigned int my_psk_server_tLS13_cb(WOLFSSL* ssl, 
const char* identity, unsigned char* key, unsigned int key_max_len, 
const char** ciphersuite) 

{ 
int i; 
int b = 0X01; 

 
(void)ssl; 
(void)key_max_len; 

 
/* see internal.h MAX_PSK_ID_LEN for PSK identity limit */ 
if (strncmp(identity, kIdentityStr, strlen(kIdentityStr)) != 0) 

return 0; 
 
 
 
 
 

*ciphersuite = "TLS13-AES128-GCM-SHA256"; 

return 32;  /* length of key in octets or 0 for error */ 
} 

Fig. 3: Server side JIT-SK using WolfSSL implementation 

 
static WC_INLINE unsigned int MY_PSK_CLIENT_TLS13_cb(WOLFSSL* ssl, 

const char* hint, char* identity, unsigned int id_max_len, 
unsigned char* key, unsigned int key_max_len, const char** ciphersuite) 

 
 
 
 

Fig. 2: JIT-SK steps for 0-RTT 
 

Reusing 0-RTT feature. Using our technique allows TLS 1.3 
to continuously use 0-RTT for multiple sessions. Each session 
has a fresh shared random number. 

IV. IMPLEMENTATION 

TLS 1.3 has been supported and implemented across mul- 
tiple browsers such as Google Chrome v67+, Mozilla Firefox 
v61+, and Apple Mac OS v10.3 and iOS v11 [2]. A number of 
service providers such as Cloudflare, Akamai, and Face- book 
support TLS 1.3 connections. Also, TLS 1.3 has been 
implemented using software libraries such as OpenSSL and 
WolfSSL. 

As a proof of concept, we use WolfSSL open source 
libraries for TLS 1.3. WolfSSL provides static shared key 
between a server and a client as shown in Figure 3 and Figure 
4. The two tests in Figure 5 show that the client and server 
share and use the same key every time. In order to use PSK in 
WolfSSL, the following defines should be added to the header 
file in IDE WIN user settings.h 
#define WOLFSSL_TLS13 
#define HAVE_TLS_EXTENSIONS 
#define HAVE_SUPPORTED_CURVES 
#define HAVE_SESSION_TICKET 
#define HAVE_HKDF 
#define HAVE_FFDHE_2048 
#define WC_RSA_PSS 
We build  with  a  –enable-psk  configure  option  to  remove 
#define NO  PSK from options.h as in the following command. 
$./configure --enable-tls13 
--enable-aesccm --enable-keygen 
--enable-psk && make 
Examples to run WolfSSL server and client are shown in the 
following commands (option -s is used for preshared keys) 

{ 
int i; 
int b = 0X01; 

 
(void)ssl; 
(void)hint; 
(void)key_max_len; 

 
/* see internal.h MAX_PSK_ID_LEN for PSK identity limit */ 
strncpy(identity, kIdentityStr, id_max_len); 

 
 
 
 
 

*ciphersuite = "TLS13-AES128-GCM-SHA256"; 

return 32;  /* length of key in octets or 0 for error */ 
} 

 

Fig. 4: Client side JIT-SK using WolfSSL implementation 
 

$./examples/server/server -s -v 4 -l 
TLS13-AES128-GCM-SHA256 
$./examples/client/client -s -v 4 -l 
TLS13-AES128-GCM-SHA256 

In TLS 1.3 the cipher suite parameter can be one of the 
following five group of algorithms 
TLS_AES_256_GCM_SHA384 
TLS_CHACHA20_POLY1305_SHA256 
TLS_AES_128_GCM_SHA256 
TLS_AES_128_CCM_8_SHA256 
TLS_AES_128_CCM_SHA256 
 

Replay attacks and side effects are applicable in current TLS 
1.3 implementation and there is no forward secrecy. As shown 
in our update in Figure 3 and Figure 4, we dynamically replace 
these static keys with JIT-SK for 0-RTT by using QEEP. We 
read the dynamic key from a file each session. This file can be 
generated offline and be ready for use next session. The client 
and server can do that using preshared key and session share 
information such as session ID. Then QEEP will generate 
random session keys for securing early data in 0-RTT manner 
as shown in Figure 6 and Figure 7. These figures show that 
for each message the client and server use the same JIT-SK. 
Algorithm 1 shows the steps for generating JIT-SK. Line 1 
selects the permutation matrix using PSK and session ID. The 
session ID can be replaced with any session shared 
information. Line 2 generates the session key using PSK. Lines 
3 and 4 show the encryption and decryption processes for the 

 
 



Test 1 (server and client sides) 
 

 
 

 
 

Test 2 (server and client sides) 
 

 
 

Fig. 5: Static keys at server and client sides 
Test 1 (server side) 

 
Test 2 (server side) 

 

 
Test 3 (server side) 

 
 

Fig. 6: JIT-SK for 0-RTT data (server side) 

early data at the transmitter and receiver sides. Lines 1-4 are 
repeated for each session. 
Algorithm 1 JIT-SK generation for 0-RTT for each session  
Input: PSK, Session ID 
Output: Encrypted/decrypted early data 

1: Select permutation matrix (PSK, Session ID) 
2: Session key = QEEP (PSK) 
3:  CT = Enc (Session  key, early  data)    ► for transmitter 
4: ► for receiver: early  data = Dec (Session  key, CT) 
 

V. CONCLUSION 

Transport Layer Security (TLS) provides a secure channel 
between two communicating peers that provides the 
following properties: authentication, confidentiality, and 
integrity. The Internet Engineering Task Force (IETF) 
introduced TLS 1.3, which is a big step forward for Internet 
performance and security. In this paper, we focus on one of 
the new concepts in TLS 1.3, which is Zero RoundTrip Time 
(0-RTT) feature. By using TLS 1.3 with 0-RTT, the 
performance gains are more dramatic. 0-RTT data has 
security challenges and the existing solutions cannot 
efficiently mitigate these challenges. In this paper, we use a 
novel approach that depends on a synchronized 
pseudorandom number generator (PRNG) to efficiently and 
securely use 0-RTT feature. We implement our approach 
using a private PRNG, named Quantum Entropy Expansion 
and Propagation (QEEP) and WolfSSL libraries for TLS 1.3. 
The implementation shows that using our approach enables 0-
RTT with forward secrecy and without replay attacks. 

Test 1 (client side) 
 

 
Test 2 (client side) 

 

 
Test 3 (client side) 

 

 
Fig. 7: JIT-SK for 0-RTT data (client side) 

CONFLICT OF INTEREST 
The authors declare that E.G. AbdAllah was partly compensated 
by Quantropi Inc. as intern and Post-Doctoral Research Fellow; 
Y.R. Kuang is Chief Science Officer and Co-founder of 
Quantropi Inc. and J. Nguyen is Co-founder and CEO of 
Quantropi Inc; C. Huang is a professor and the academic 
supervisor at Carleton University. 

AUTHOR CONTRIBUTIONS 
E.G. AbdAllah conducted research, performed experiments, 
wrote code, and drafted portions of this submitted work; Y.R. 
Kuang conducted research, reviewed drafts of the work, and 
drafted amendments of this submitted work. C. Huang reviewed 
the work and provided suggested amendments to this submitted 
work; all authors approved the final version of this submitted 
work. 

ACKNOWLEDGMENTS 

The research presented in the submitted work was partially 
funded by Mitacs Canada and is also partially funded by 
Quantropi Inc. The content of the research contained within 
this submitted work is subject to provisional patent 
application 62/837,370 “Method and System for Data 
Protection” filed on April 29, 2019 and is protected by the 
applicable rights and protections. 

REFERENCES 

[1] E. Rescorla, “The transport layer security (TLS) Protocol Version 1.3”, 
Internet Engineering Task Force, August 2018, Online at https://www. 
rfc-editor.org/rfc/pdfrfc/rfc8446.txt.pdf, last visited on Jan. 20, 2020. 

[2] P. Nohe, “TLS 1.3: Everything you need to know”, 2019, Online at https: 
//www.thesslstore.com/blog/tls-1-3-everything-possibly-needed-know/, 
last visited on Jan. 20, 2020. 

[3] N. Naziridis, “TLS 1.3 is here to stay”, SSL, October 2018, Online at 
https://www.ssl.com/article/tls-1-3-is-here-to-stay/, last visited on Jan. 
20, 2020. 

[4] “Lightweight low-latency quantum secure”, Quantropi Inc., Online at 
https://quantropi.com/#/home, last visited on Jan. 20, 2020. 

[5] N.  Sullivan, “Introducing zero round trip time resumption (0-RTT)”, 
Cloudflare, 2017, Online at https://blog.cloudflare.com/ introducing-0-
rtt/, 2017, last visited on Jan. 20, 2020. 

[6] B. Dowling, M. Fischlin, F. G  ünther, and D. Stebila, “A cryptographic 
analysis of the TLS 1.3 handshake protocol candidates”, In ACM 
Conference on Computer and Communications Security (ACM CCS), 
ACM, Denver, CO, USA, pp. 1197–1210, October 2015. 

[7] S. Łoza, Ł. Matuszewski, and M. Jessa, “A Random number generator 
using ring oscillators and SHA-256 as post-processing”, Intl Journal of 
Electronics and Telecommunications, vol. 61, no. 2, pp. 199–204, 2015. 

[8] F. Arute et al., “Quantum supremacy using a programmable supercon- 



ducting processor, Nature, vol. 574, pp. 505-510, 2019. 
[9] P.W. Shor, “Polynomial-time algorithms for prime factorization and dis- 

crete logarithms on a quantum computer”, SIAM Journal on 
Computing, vol. 26, no. 5, pp. 1484-1509, 1997. 

[10] M.  Sýs, Z. Ř́ıha, and V.  Matyáš, “Algorithm 970: optimizing  the NIST 
statistical test suite and the berlekamp-massey algorithm”, ACM 
Transactions on Mathematical Software, vol. 43, no. 3, pp. 27-37, 
2017. 

[11] R. G. Brown, “Dieharder: a random number test suite”, Online at https: 
//webhome.phy.duke.edu/∼rgb/General/dieharder.php, last visited on 
Jan. 20, 2020. 

[12] “Entropy and randomness online tester”, Online at https://servertest. 
online/entropy, 2019, last visited on Jan. 20, 2020. 

 
Copyright © 2020 by the authors. This is an open access article distributed 
under the Creative Commons Attribution License which permits 
unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited (CC BY 4.0). 
 

 
Dr. Eslam G. AbdAllah is an assistant professor in 
Concordia University of Edmonton, AB, Canada. In 
2019-2020, he was a postdoctoral fellow in Carleton 
University, ON, Canada. In 2018, Dr. AbdAllah 
worked as an Assistant Professor at the Faculty of 
Computer and Information Sciences in Ain Shams 
University in Egypt. Dr. AbdAllah received his PhD 
from the School of Computing, Queen’s University in 
Kingston, Ontario in 2017. Eslam has contributed to a 

number of journals, technical papers and reports and his research interests 
include cryptography, network security, post-quantum cryptography, 
information centric networking (ICN), Radio Frequency IDentification 
(RFID), and autonomous vehicles. He won the best paper award at IEEE-
DASC 2015 conference in Liverpool, UK. 
 
 

Randy holds a doctorate in quantum physics. His 
research findings have been published in top 
international journals and named “Kuang’s semi-
classical formalism” by NASA in 2012. With a career 
spanning IT, including with Nortel as a senior 
researcher and developer, he co-founded inBay 
Technologies in 2009, serving as CTO of the 
cybersecurity platform. As the first recipient of a 
patent for two-level authentication (2013), Randy is a 

prolific inventor, with 30+ U.S. patents in broad technology fields, such as 
WiMAX, optical networks, multi-factor identity authentication, transaction 
authorization, as well as concepts, technologies and industrial applications 
for quantum cryptography. 
 
 

Dr. Huang received his B. Eng. in 1985 and M. Eng. 
in 1988 both in Electronic Engineering from 
Tsinghua University, Beijing, China. He received a 
Ph.D. degree in Electrical Engineering from Carleton 
University, Ottawa, Canada in 1997. From 1996 to 
1998, he worked for Nortel Networks, Ottawa, 
Canada where he was a systems engineering 
specialist. He was a systems engineer and network 
architect in the Optical Networking Group of Tellabs, 

Illinois, USA during the period of 1998 to 2000. Since July 2000, he has 
been with the Department of Systems and Computer Engineering at 
Carleton University, Ottawa, Canada where he is currently a full professor. 
Dr. Huang won the CFI new opportunity award for building an optical 
network laboratory in 2001. He is an associate editor of Springer Photonic 
Network Communications. Dr. Huang is a senior member of IEEE. 

 

 
 

Author’s formal 
photo 

 
 

Author’s formal 
photo 

 
 

Author’s formal 
photo 


