DESIGNING FOR SECURE TRAFFIC

Building Reliable MPLS Networks
Using a Path Protection Mechanism

Changcheng Huang, Carleton University
Vishal Sharma, Metanoia, Inc.

Ken Owens, Erlang Technology, Inc.
Srinivas Makam, Tellabs Operations, Inc.

ABSTRACT

It is expected that MPLS-based recovery
could become a viable option for obtaining
faster restoration than layer 3 rerouting. To
deliver reliable service, however, MPLS requires
a set of procedures to provide protection for the
traffic carried on the label switched paths. In this
article we propose a path protection mechanism
that is simple, scalable, fast, and efficient. We
describe in detail our design considerations, the
communication of fault information to appropri-
ate switching elements, and the fault detection
protocol. In particular, we propose a reverse
notification tree structure for efficient and fast
distribution of fault notification messages.

INTRODUCTION

The migration of real-time and high-priority
traffic to IP networks means that modern IP net-
works increasingly carry mission-critical business
data, and must therefore provide reliable trans-
mission. Current routing algorithms, despite
being robust and survivable, can take a substan-
tial amount of time to recover from a failure,
which can be on the order of several seconds to
minutes and can cause serious disruption of ser-
vice in the interim. This is unacceptable for
many applications that require highly reliable
service, and has motivated network providers to
give serious consideration to the issue of net-
work survivability.

Path-oriented technologies, such as multiproto-
col label switching (MPLS) [1], can be used to
support survivability requirements to enhance the
reliability of IP networks. In conventional IP for-
warding, a router forwards an IP packet based on
the longest match for the packet’s destination IP
address. As the packet traverses the network, each
hop in turn forwards the packet by reexamining its
destination IP address. In contrast to legacy IP
networks, when a packet enters an MPLS network
it is assigned a label. At subsequent hops the label

is used as an index into a table that specifies the
packet’s next hop and a new label. The old label
is swapped with the new label, and the packet is
forwarded to its next hop. The path the packet
traverses is therefore called a label switched path
(LSP). Multiple LSPs can be merged at a specific
node if packets from these LSPs are forwarded in
the same manner (e.g., over the same down-
stream path, with the same forwarding treat-
ment). This is called label merging.

In conventional forwarding, if it is desirable
to force a packet to follow a particular route
that is chosen explicitly rather than by the nor-
mal dynamic routing algorithm, the packet has
to carry the encoding of its route (a list of IP
addresses) along with it (source routing). This
introduces significant overhead. In MPLS a label
can be used to represent the route, so the identi-
ty of the explicit route need not be carried with
the packet. This potentially allows MPLS net-
works to pre-establish protection LSPs for work-
ing LSPs and achieve better protection switching
times than those in legacy IP networks.

A key feature of MPLS is that once the labels
required for an LSP have been assigned through
LSP setup or label distribution protocols, interme-
diate LSRs transited by the LSP do not need to
examine the content of the data packets flowing on
the LSP. Multiple labels can be placed on a packet
to form a label stack that allows multiple LSPs to
be tunneled, one within the other. The outermost
LSP therefore becomes a tunnel that makes inner
LSPs transparent to the intermediate LSRs, and
therefore simplifies the forwarding tables at these
LSRs. This feature is critical for the local repair
approach described in the next section.

In this article we propose a path protection
mechanism that is fast, scalable, efficient, and
easy to implement. The rest of the article is
organized as follows. We survey various recovery
approaches. We highlight the main features of
the proposed path protection mechanism. We
examine each feature in detail, and conclude the
article.

0163-6804/02/$17.00 © 2002 IEEE

IEEE Communications Magazine * February 2002



RECOVERY MODELS

Recovery models can be classified according to
the following two criteria: rerouting vs. protec-
tion switching, local repair vs. path protection.

Recovery by rerouting is defined as establish-
ing new paths or path segments on demand for
restoring traffic after the occurrence of a fault.
The new paths may be based on fault informa-
tion, network routing policies, predefined configu-
rations, and network topology information. Thus,
on detecting a fault, paths or path segments to
bypass the fault are established using signaling.
Reroute mechanisms are inherently slower than
protection switching mechanisms, since more
must be done following the detection of a fault.
However, reroute mechanisms are simpler and
more frugal since no resources are committed
until after the fault occurs and the location of the
fault is known [2]. Once the network routing algo-
rithms have converged after a fault, it may be
preferable, in some cases, to reoptimize the net-
work by performing a reroute based on the cur-
rent state of the network and network policies.

Protection switching recovery mechanisms
pre-establish a recovery path or path segment,
based on network routing policies, the restora-
tion requirements of the traffic on the working
path, and administrative considerations. The
recovery path may or may not be link and node
disjoint with the working path. However, if the
recovery path shares sources of failure with the
working path, the overall reliability of the con-
struct is degraded. When a fault is detected, the
protected traffic is switched over to the recovery
path(s) and restored.

The two common protection switching recov-
ery mechanisms are local repair (or link/node
protection) and end-to-end! repair (or path pro-
tection). This section introduces these two mech-
anisms, and discusses their advantages and
disadvantages.

LocAL REPAIR

The intent of local repair is to protect against a
link or neighbor node fault, and to minimize the
amount of time required for failure propagation.
In local repair (also known as local recovery), the
node immediately upstream of the fault is the one
to initiate recovery (either rerouting or protection
switching). Take, for example, Fig. 1. If link 152
fails, all the working paths that travel through link
1—2 and require protection can be switched to
and stacked over a pre-established tunnel
1—6—2. While this bypass approach is simple for
recovering from a link failure, it becomes much
more complex to recover from a node failure. For
example, if node 3 fails, two tunnels must be
established to protect traffic streams that enter
node 3 from node 2. Tunnel 2—7—5 can protect
those working paths that travel through 2—3—-5,
while tunnel 2—8—4 can protect those working
paths that travel through 2—3—4. If a node has
N bidirectional links, there can be N — 1 different
ways of forwarding for each ingress link. A total
of N*(N - 1) different aggregate flows may exist
within the node for the N ingress links. Because
each flow requires a protection tunnel as shown
in Fig. 1, it is easy to see that a minimum of N*(N
— 1) tunnels must be set up to recover from its

8 4
— 1 2 3
6 7 5

m Figure 1. An example of local repair.

Protection
path

Bidirectional
link

| st |

Working path
and RNT

m Figure 2. An example of path protection.

failure. If all the nodes within a network are
equally likely to fail, this is clearly not a scalable
solution. Therefore, although local repair is
potentially the fastest to recover from a failure, it
is only effective in situations where certain path
components are much more unreliable than oth-
ers, so only those components can be protected.
Routing and bandwidth allocation algorithms for
local repair can be found in [3] as an example.

PATH PROTECTION

The intent of path protection is to protect
against any link or node fault on a path or a seg-
ment of a path, which we call the working path.
An LSR that is the transmitter of both the work-
ing path traffic and its corresponding recovery
path traffic is called a path switch LSR (PSL).
The PSL is the origin of the recovery traffic, but
may or may not be the origin of the working
traffic (i.e., the working traffic may be transiting
the PSL). For example, path 152—3—4—6—7
in Fig. 2 is a path that requires end-to-end pro-
tection; therefore, node 1 will be the PSL. For
path 859—-3—4—6—-7, only segment 9-3—
4—6—7 requires protection, so node 9 is the
PSL. In path protection, the recovery path can
be made completely link and node disjoint with
its corresponding working path.

This has the advantage of protecting against

1 In an MPLS domain,
this may be more accurate-
ly characterized as edge-to-
edge repair, because the
portion of an LSP within
the domain may be pro-
tected, even though the
entire LSP may not be
path protected.

IEEE Communications Magazine * March 2002




___________________ ] |
Bidirectional _ ____ Protection _ Working path
link path and RNT

[ Jest [ ] edgersn

m Figure 3. An example of cross-domain protection.

all link and node fault(s) on the working path.
Assume an MPLS network has M edge nodes.
The total number of recovery paths that have to
be set up is proportional to M*(M - 1). There-
fore, if M is small, the path protection approach is
more efficient than local repair. However, it is in
some cases slower than local repair since it takes
longer for the fault notification message to get to
the protection switching point to trigger the
recovery action. Simulation results have shown
that the path protection approach can be signifi-
cantly more efficient than local repair for wave-
length-division multiplexing (WDM) [4] and
asynchronous transfer mode (ATM) networks [5].

The resources (bandwidth, buffers, process-
ing) on the recovery path may be used to carry
either a copy of the working path traffic or extra
traffic that is displaced when a protection switch
occurs. This leads to two subtypes of path pro-
tection switching.

1+1 PATH PROTECTION

In 1+1 path protection, the resources on the
recovery path are fully reserved, and carry the
same traffic as the working path. Selection
between the traffic on the working and recovery
paths is made at the path merge LSR (PML)
where the working and recovery paths converge.
Therefore, it is PML-oriented. 1+1 protection
can be very fast and simple because fault detec-
tion and protection switching happen at the same
node. While it is easy to track the quality of the
working path at the egress node (i.e., PML) in
synchronous optical networks (SONET), this may
not be the case for MPLS networks. Due to statis-
tical multiplexing and traffic burstiness it may
take a significantly long time for a PML to detect
a fault. Furthermore, in some cases (e.g., multi-
homing), the working and protection path may
not converge at all; therefore, a PML may not
exist in certain MPLS networks (Fig. 3).

1:1 PATH PROTECTION

In 1:1 path protection (extendible to m:n protec-
tion), the resources allocated on the recovery
path are fully available to preemptible low-prior-
ity traffic and can also be shared by other recov-
ery paths, if their corresponding working paths

are disjoint from the working path correspond-
ing to the recovery path in question. In other
words, in 1:1 protection the protected traffic
normally travels only on the working path, and is
switched to the recovery path when the working
path has a fault. The protection switching is typi-
cally initiated by a PSL; therefore, this type of
path protection is PSL-oriented. This method
provides a way to make efficient use of the
recovery path resources. The PML (if it exists)
can simply merge the working and protection
paths with MPLS label merging capability [1].
Under certain conditions different protection
paths can share network resources. Reference
[6] has shown that good coverage (in recovering
from failures) can be achieved with minor degra-
dation of network utilization. The routing and
engineering of the primary and protection paths
can be found, for example, in [7, §].

Generally network operators aim to provide
the fastest and best protection mechanism that
can be provided at a reasonable cost. The higher
the level of protection, the more resources are
consumed. Therefore, it is expected that network
operators will offer a spectrum of service levels.
MPLS-based recovery should give the flexibility
to select the recovery mechanism, choose the
granularity at which traffic is protected, and also
choose the specific types of traffic that are pro-
tected in order to give operators more control
over that trade-off. With MPLS-based recovery,
it can be possible to provide different levels of
protection for different classes of service, based
on their service requirements. For example, a
virtual leased line (VLL) service or real-time
applications like voice over IP (VoIP) may be
supported using link/node protection together
with pre-established prereserved path protection.
Best effort traffic, on the other hand, may use
established-on-demand path protection or simply
rely on IP reroute or higher-layer recovery mech-
anisms. As another example of their range of
application, MPLS-based recovery strategies may
be used to protect traffic not originally flowing
on LSPs, such as IP traffic, normally routed hop-
by-hop, as well as traffic forwarded on LSPs.

In the following sections we discuss the pro-
posed path protection approach designed specifi-
cally for MPLS networks. It can also easily be
generalized to support MPLS-based optical net-
works. We will focus on the mechanisms that are
essential for the operation of a path protection
mechanism rather than routing and bandwidth
allocation algorithms.

Key FEATURES

A path protection mechanism typically consists
of protection configuration, fault detection, fault
notification, and protection switching. One of the
major considerations in a path protection mecha-
nism is to control the delay that must be incurred
by the notification message traveling from the
fault detection node to the protection switching
node (i.e., PSL). This delay may cause packet
loss and misordering. Our primary design goal,
therefore, is to minimize this delay.

Some of the key features of our protection
mechanism are:

A special tree structure to efficiently dis-

IEEE Communications Magazine ¢ March 2002



tribute fault and/or recovery information: Exist-
ing published proposals for MPLS recovery have
not addressed the issue of fault notification in
detail. Specifically, none of these proposals has
discussed how to perform fault notification for
the label merging case. In this article we propose

a new fault notification structure called the

reverse notification tree (RNT) that makes fault

notification efficient and scalable.

A hello protocol to detect faults: Our assump-
tion is that faults fall into different classes, and
that different faults may be detected and cor-
rected by different layers.

* Faults that are detected and corrected by
lower-layer mechanisms (e.g., loss of signal
or transmitter faults detected by SONET)

* Faults that are detected (but not corrected)
by lower layers (e.g., failure of the reverse
link) and may be communicated to the
MPLS layer

* Faults that are not detected by lower layers
(e.g., node failures or faults on the reverse
link) and must be detected and corrected at
the MPLS layer
Therefore, we adopt a hello protocol as a

complementary fault detection mechanism.

A lightweight notification transport protocol to
achieve scalability: Reliable transport mechanisms,
such as TCP, are typically state-oriented and there-
fore difficult to scale. It is also very difficult to sup-
port point-to-multipoint communications based on
reliable transport mechanisms. In our scheme,
therefore, we propose a lightweight notification
transport protocol to achieve scalability.

In this article we confine our discussion of
protection to a single MPLS domain, and do not
consider protection/recovery across multiple
MPLS domains or multiple administrative
boundaries. We note, however, that protection
mechanisms in different domains may be con-
catenated, and (at least initially) these mecha-
nisms may work autonomously, across the
(possibly) multiple points of attachment between
two adjacent domains. However, coordination of
protection mechanisms across multiple domains
or across multiple transport technologies is
beyond the scope of this article. For example, in
Fig. 3 working path 5—52—3—4 may extend
beyond edge LSR 4, and its corresponding pro-
tection path 5—7—8—9 may also extend beyond
edge LSR 9. While node 5 is the PSL, there is
no PML in the domain. Similarly, working path
1—-2—3—4 may extend beyond both edge LSRs
1 and 4, and its corresponding working path
6—7—8—9 may also extend beyond edge LSRs
6 and 9. There is no PSL or PML in the domain
in this case.

In the following sections we will assume that
the working and protection paths will not fail at
the same time. This is because the probability
that both paths will fail at the same time is very
low. For those cases where this scenario is not
negligible, it is not difficult to generalize our
proposed mechanism by introducing extra pro-
tection path(s) to protect the first protection
path where failures will be detected as the work-
ing path.

Bidirectional _ __ _ Protection _
link path
| | PSL | | PML

_ Working path
and RNT

m Figure 4. An example of virtually merged LSPs.

REVERSE NOTIFICATION TREE

REVERSE NOTIFICATION TREE CONCEPT

Since LSPs are unidirectional entities and recov-
ery requires the notification of faults to the
LSR(s) responsible for switchover to the recov-
ery path (the PSL), a mechanism must be pro-
vided for the propagation of fault and repair
indications from the point of occurrence of the
fault back to the PSL(s). These are called fault
indication signal (FIS) and fault repair signal
(FRS), respectively. The situation is complicated
in the following two cases:

Physically merged LSPs: With label merging,
multiple working paths may converge to form a
multipoint-to-point tree, with the PSLs as the
leaves. In this case, therefore, the fault indica-
tion and repair notification should be able to
travel along a reverse path of the working path
to all the PSLs affected by the fault. For exam-
ple, in Fig. 2 for a fault along link 3—4 the
affected PSLs are 1 and 9, whereas for a fault
along link 2—3, the only affected PSL is 1.

Virtually merged LSPs: When several LSPs
originating at different LSRs share a common
segment beyond some node and a common iden-
tifier (e.g., the SESSION ID in RSVP-TE), we
call such LSPs virtually merged. In this case also,
savings in notification can be realized by sending
a single notification toward the affected PSLs
along segments shared by the LSPs emanating
from these PSLs, and allowing the notification to
branch out at the merge node(s). For example,
in Fig. 4 for a failure along link 6—7 a single
notification could be sent for working paths
1-52—-3—-4—6—7 and 859—-3—>4—6—7 along
their common segment 7—6—4—3, although the
two working paths may not be physically merged.
The notification would branch out at node 3,
which is the node where the LSP from node 1 to
node 7 and the LSP from node 8 to node 7 vir-
tually merge.

In both cases above, an appropriate notifica-
tion path can be provided by the reverse notifi-
cation tree (RNT), which is a point-to-multipoint

IEEE Communications Magazine * March 2002




Our mechanism
requires that the
node upstream
of the fault must
be able to
detect/learn
about the fault.
This motivates
the need for a
hello protocol,
which allows a
node upstream
of the fault to
detect the fault,
either directly
or implicitly.

Ingress label  Ingress interface  Egress label Egress interface Egress label Egress interface
of RNT of RNT of RNT of RNT of RNT of RNT
N43 134 N32 132 N39 139

m Table 1. An example inverse label-swapping table for LSR 3 in Figure 2.

tree that is an exact mirror image of the con-

verged working paths, along which the FIS and

the FRS travel (Fig. 2). There are several advan-
tages to using an RNT:

* The RNT can be established in association
with the working path(s) simply by making
each LSR along a working path remember
its upstream neighbor (or the collection of
upstream neighbors whose working paths
converge at the LSR and exit as one). Thus,
no multicast routing is required.

* Only one RNT is required for all the work-
ing paths that merge (either physically or
virtually) to form the multipoint-to-point
forwarding path. The RNT is rooted at an
appropriately chosen LSR along the com-
mon segment of the merged working LSPs
and is terminated at the PSLs. All interme-
diate LSRs on the converged working paths
share the same RNT. Therefore, the RNT
enables a reduction in the signaling over-
head associated with recovery. Unlike
schemes that treat each LSP independently,
and require signaling between a PSL and
the PML individually for each LSP, the
RNT allows for only one (or a small num-
ber of) signaling messages on the shared
segments of the LSPs.

* The RNT can be implemented at layer 3,
layer 2, or even layer 1 (e.g., through
SONET K1/K2 bytes). In general, the lower
the layer, the faster FIS will travel.

RNT IMPLEMENTATION

The RNT is used for propagating the FIS and
FRS, and can be created by a simple extension
to the LSP setup process. During the establish-
ment of the working path, the signaling message
carries with it the identity (address) of the
upstream node that sent it (e.g., via the
RECORD-ROUTE object in RSVP [9]). Each
LSR along the path simply remembers the iden-
tity of its immediately prior upstream neighbor
on each incoming link.

The node then creates an “inverse” crosscon-
nect table for each protected outgoing LSP (or
session, for virtually merged LSPs) and main-
tains a list of the incoming LSPs that merge into
that outgoing LSP, together with the identity of
the upstream node and the incoming interface
through which each incoming LSP comes.

If the RNT is implemented by a point-to-
multipoint LSP, the working path can be bound
to the ingress label and interface of the RNT
LSP at a LSR. By mapping the inverse crosscon-
nect table to a label-swapping table, the RNT
point-to-multipoint LSP can be set up using the
information available in the inverse crossconnect
table. The RNT ingress label and interface can
then be used as an index into the label-swapping
table to find the egress labels and interfaces of
the RNT LSP, as shown in Table 1. Upon receiv-

ing an FIS, an LSR extracts the labels and checks
its label-swapping table to determine the outgo-
ing labels and interfaces, performs a label swap,
and forwards the FIS to the appropriate
upstream node(s). If the node is also a PSL, a
copy of the FIS will be delivered to the upper
layers of the node that are responsible for initi-
ating the protection switching actions.

For example, consider Fig. 2, and assume that
a layer 2 point-to-multipoint RNT, rooted at
LSR 7 and extending to LSRs 1 and 9, is associ-
ated with the multipoint-to-point forward paths
starting at LSRs 1 and 8 and terminating at LSR
7. Now in case of a fault on link 4—6, LSR 3
receives an FIS on the RNT in a labeled packet
with label N43. It uses this label as an index into
its label-swapping table, and learns that there
are two previous nodes (namely those reachable
via interfaces 132 and 139, respectively) to which
the FIS needs to be forwarded. It encapsulates
the received FIS into a labeled packet with
labels N32 and N39, and dispatches them along
interfaces 132 and 139, respectively.

If the RNT is implemented by a hop-by-hop
layer 3 mechanism, using, for example, UDP
packets (with a specific port number to identify
the notification message type), the egress label
and interface of the working path can be used as
an index into the inverse crossconnect table to
obtain the IP addresses of the previous hop(s)
and the associated outgoing interface(s), as illus-
trated in Table 1. On each hop, the FIS carried in
the UDP packet carries the label and interface of
the working path for that hop. Thus, if the receiv-
ing node is not a PSL, the label and interface in
the FIS can be extracted and used to access the
inverse crossconnect table. The label and inter-
face used by the working LSP on the hop(s) to
the upstream node(s) are then inserted into FIS
packet(s), and the FIS packet(s) transmitted to
the appropriate upstream node(s) along the inter-
face specified in the inverse crossconnect table.

As in the example above, in case of a fault on
link 4—6, LSR 3 receives an FIS from LSR 4
that contains the outgoing label L34 (carried in
the payload of FIS) and the outgoing interface
134 of the LSP affected by the fault. LSR3 uses
these to index its inverse crossconnect table
(Table 2), and learns, as before, that there are
two previous nodes (those reachable via inter-
faces 132 and 139, respectively) that must receive
an FIS. It then creates two FIS packets as fol-
lows. The first, for transmission along interface
132, contains the label L23 used by LSR 2 to
transmit data to LSR 3 along the working LSP.
The second, for transmission along interface 139,
contains the label L93 used by LSR 9 to transmit
data to LSR 3 along the working LSP. The two
FIS packets are then sent as IP packets to their
corresponding next hops.

IEEE Communications Magazine ¢ March 2002



Egress label Egress interface Next-hop IP Egress interface Ingress label
of working path of working path address of RNT of RNT of working path
L34 134 19 139 L93

12 132 L23

m Table 2. An example inverse crossconnect table for LSR 3 in Figure 2 using a hop-by-hop (layer 3) RNT.

HELLO PROTOCOL FOR
FAULT DETECTION

Each LSR must be able to detect certain types of
faults, such as path failure (PF), path degraded
(PD), link failure (LF), and link degraded (LD),
and propagate an FIS message toward the PSL.
Here we consider unidirectional link faults, bidirec-
tional (or complete) link faults, and node faults.

Our mechanism requires that the node
upstream of the fault must be able to
detect/learn about the fault. This motivates the
need for a hello protocol, which allows a node
upstream of the fault to detect the fault, either
directly or implicitly. Our hello protocol is simi-
lar to those used in Open Shortest Path First
(OSPF) [10]. The reason we need a separate
hello protocol is that the timers in routing proto-
cols are typically set to relatively large values
compared to what is needed for a recovery
mechanism. Also, the fault detection mechanism
must provide the trigger for generating the FIS.
Our hello protocol provides a complementary
mechanism to all existing fault detection mecha-
nisms such as physical layer fault detections
through liveness messages exchanged between
neighboring LSRs. Each LSR sends liveness
messages periodically to its neighbors. A liveness
message will carry the ID of the LSR and all the
IDs of its neighbors discovered through the live-
ness messages sent by its neighbors. An LSR can
learn a bidirectional link is working properly if it
sees its own ID in the liveness message sent by
the LSR on the other end of the link.

LIGHTWEIGHT
TRANSPORT PROTOCOL

The notification is based on the transmission of
packets that are sent periodically until the nodes
responsible for switchover learn of the fault.
Since no acknowledgments or handshaking
between adjacent nodes are needed, the mecha-
nism works only with timers and does not require
the maintenance of state.

The rapid notification of a fault is effected by
the propagation of the FIS message along the
RNT. Due to the timers built into the FIS/FRS
propagation mechanism, the transportation of
FIS/FRS messages does not require a reliable
mechanism like TCP.

Any LSR may generate an FIS. The node
that initiates the FIS will continue to send FIS
messages at an interval of ¢/ (set by a timer)
until another timer 2 expires. After 2 expires it
is assumed that either upper-layer protection will
have been triggered (therefore, MPLS layer pro-
tection is not necessary anymore) or a large
enough number of FIS messages will have been

sent to reach the desired reliability in conveying
fault information to the PSL(s).

The purpose of timer ¢7 is to control the trade-
off between notification delay of the FIS and the
resources consumed when sending the FIS. If ¢1 is
too large, it may take a relatively long time for
the node that initiated the FIS transmission to
send the second FIS if the first FIS message is
lost, thereby increasing notification delay. On the
other hand, if ¢ is small, the repetitive sending of
FIS messages may waste bandwidth and process-
ing power because the first message may already
have reached the PSL(s).

CONCLUSION

In this article we proposed a PSL-oriented path
protection mechanism that consists of three com-
ponents: a reverse notification tree, a hello proto-
col, and a lightweight notification transport
protocol. One of the key issues in any path protec-
tion mechanism is the delay experienced by an FIS
message. Our mechanism minimizes this delay by:
* Building a fast and efficient notification tree
structure
* Using a lightweight transportation mechanism
for that notification message, which reduces
the overhead associated with handshaking
and other synchronization requirements
The RNT can be implemented in layer 2 or even
layer 1 to further reduce the delay. The imple-
mentation of the RNT is simple and straightfor-
ward, since it does not require any extra routing
and requires only very simple calculations.

ACKNOWLEDGMENTS

We would like to thank members of the MPLS
WG list, in particular Dave Allan, Bora Akyol,
Neil Harrisson, Ping Pan, and J. Noel Chiappa,
for suggestions and feedback.

REFERENCES

[1] Rosen, E., Viswanathan, A., and Callon, R., “Multiproto-
col Label Switching Architecture,” IETF RFC 3031, 2001.

[2] G. Ahn and W. Chun, “MPLS Restoration Using Least-
Cost Based Dynamic Backup Path,” P. Lorenz (Ed.): ICN
2001, LNCS 2094, Springer, 2001, pp. 319-28.

[3] M. Kodialam and T. V. Lakshman, “Dynamic Routing of
Locally Restorable Bandwidth Guaranteed Tunnels
Using Aggregate Link Information,” Proc. IEEE INFO-
COM 01, pp. 376-85.

[4] B. N. Van Caenegem, N. Wauters, and P. Demeester, “ Spare
Capacity Assignment for Different Restoration Strategies in
Mesh Survivable Networks,” Proc. ICC ‘97, pp. 288-92.

[5] T. Frisanco, “Optimal Spare Capacity Design for Various
Switching Methods in ATM Networks,” Proc. ICC ‘97,
pp. 293-98.

[6] S. Han, and K. G. Shin, “Fast Restoration of Real-Time
Communication Service from Component Failures in
Multihop Networks,” Proc. ACM SIGCOMM ‘97.

[7] M. Kodialam, and T. V. Lakshman, “Dynamic Routing of
Bandwidth Guaranteed Tunnels with Restoration,” Proc.
IEEE INFOCOM ‘00, pp. 902-11.

[8] J. Veeraswamy, S. Venkatesan, and J. C. Shah, “Spare

The notification is
based on the
transmission of
packets that are
sent periodically
until the nodes
responsible for
switchover learn
of the fault. Since
no acknowledg-
ments or
handshaking
between adjacent
nodes is needed,
the mechanism
works only with
timers and does
not require
the maintenance

of state.

IEEE Communications Magazine * March 2002



We propose a
PSL-oriented path
protection
mechanism that
consists of three
components:

a reverse
notification tree,
a hello protocol
and a lightweight
notification
transport
protocol.

Capacity Assignment in Telecom Networks Using Path
Protection,” Proc. 3rd Int’l. Wksp. Modeling, Analysis,
and Simulation (MASCOTS), 1995.

[9] D. Awduche et al., “"Extensions to RSVP for LSP Tun-
nels,” Internet Draft, work in progress, draft-ietf-mpls-
rsvp-Isp-tunnel-07.txt, Aug. 2000.

[10] Moy, J., "OSPF Version 2,” IETF RFC 2328, Apr. 1998.

ADDITIONAL READING

[1] M. Kodialam and T. V. Lakshman, “Dynamic Routing of
Locally Restorable Bandwidth Guaranteed Tunnels
Using Aggregate Link Information,” Proc. IEEE INFO-
COM '01, pp. 376-85.

BIOGRAPHIES

CHANGCHENG HUANG (huang@sce.carlton.ca) received his
B.Eng. in 1985 and M.Eng. in 1988, both in electronic engi-
neering, from Tsinghua University, Beijing, China. He received
a Ph.D. degree in electrical engineering from Carleton Univer-
sity, Ottawa, Canada in 1997. He worked for Nortel Net-
works, Ottawa, Canada from 1996 to 1998 where he was a
systems engineering specialist. From 1998 to 2000 he was a
systems engineer and network architect in the Optical Net-
working Group of Tellabs, lllinois. Since July 2000 he has
been an assistant professor in the Department of Systems
and Computer Engineering at Carleton University, Ottawa,
Canada. His research interests include self-similar traffic mod-
eling, congestion control algorithms, Internet architecture,
routing, and control algorithms for optical networks.

VISHAL SHARMA is principal consultant at Metanoia Inc., spe-
cializing in technical consulting for telecom vendors and
service providers. He focuses on technology strategies, sys-
tem and network architectures, detailed software/hardware
architecture and design trade-offs, competitive analysis,
product development, and knowledge enhancement for
Metanoia’s clients. He has seven patents filed in the areas
of MPLS recovery, high-speed switch architectures,
switch/router scheduling, and optical routing. He earned a
B.Tech. degree from the Indian Institute of Technology,
Kanpur, and M.S. and Ph.D. degrees from the University of
California, Santa Barbara. He has over ten years of diverse
research and industry experience, which includes work at
UC Santa Barbara, Motorola, the Multidisciplinary Optical
Switching Technology Center at UCSB, Tellabs, ACT Net-
works, Digital Instruments, Jasmine Networks, Mahi Net-
works, and Cariden Technologies, Inc. He is active in the
IETF and OIF, and is an active speaker and participant in
several industry fora.

Srinivas Makam has over 18 years of research and industry
experience in telecommunications which includes work at
Tellabs, DSC Communications, AT&T Bell Labs, and UCLA. His
research interests include optical networking, multi-service
switching platforms, wireless access transport networks for
3G, and GMPLS. He earned a B.S. (E.E.) degree from Banga-
lore University, India, an M.S. (C.S.) degree from Sangamon
State University, lllinois, and a Ph.D. (C.S.) degree from the
University of California in Los Angeles. He has participated in
IETF, ATM Forum, and T1X1 meetings as well as being an
active speaker at various industry conferences.

KENNETH ROBERT OWENS JR. is currently a principal design
engineer at Erlang Technology, Inc. He has made signifi-
cant contributions in the network processor FPGA design
and simulation area. Prior to Erlang, he spent five years as
a senior data network engineer in the Optical Networking
Group of Tellabs. He made significant contributions to the
Network System Engineering group by defining next-gener-
ation architectures of ATM and IP networks and equip-
ment, ATM and IP functional modeling, and the validation
of layered systems. Prior to Tellabs, he spent one and a
half years at MClI Worldcom Advanced Technology Group
researching, developing, and evaluating ATM and IP
devices. He earned an M.S. degree in electrical engineering
from the University of Missouri-Rolla in December 2001.

IEEE Communications Magazine ¢ March 2002



