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Abstract 
 

In simulation runs which involve rare events, 
Importance Sampling (IS) is often used to speed 
up the simulation process to get the simulation 
result faster. This paper proposes a new 
application for the Importance Sampling theory: 
to predict the change in the network behavior 
when the network input changes.  This paper will 
show, by modifying the way the Importance 
Sampling theory applied in rare event simulation, 
it is possible to calculate precisely the amount of 
adjustment required in the network input for the 
network performance to meet a predefined target.  

1. Introduction 
Traffic engineering is critical for data networks 

such as today’s Internet, or future MPLS networks. It 
has been widely studied by the research community 
[1] . Due to the complexity of Internet traffic and 
network topology, analytical approaches quickly 
become intractable. Simulation has been considered 
as one of the major vehicles for traffic engineering. 
Unfortunately simulation may introduce significant 
costs and require unduly long time to obtain 
meaningful results. This paper investigates an 
Importance Sampling based traffic engineering 
approach which is general enough to address most of 
the traffic engineering issues and fast enough to 
obtain useful results in a reasonable time. 

1.1. Motivation 
The goal of traffic engineering is to optimize a 

network’s performance to meet predefined 
requirements. Thus, the capability of accurately 
predicting the changes in a network’s behavior, when 
the input of that network is changed, is essential in 
any traffic engineering system.   There are some 
analytical based approaches, such as queueing theory 
[2], effective bandwidth[3] , which can be used to 
determine the network’s performance given the 
network’s input. However, those approaches are 
either too conservative, incapable of end-to-end 
network performance analysis, or do not work well in 
large complex networks (especially under self-similar 
traffic model[4][5]). In most cases, heuristic 
simulation based approaches, such as trial & error[6], 
golden section search[7], steepest descent[8], which 
can also be used to optimize the performance of a 

network to meet predefined requirement(s), are 
adopted. These heuristic approaches accomplish this 
by making a series of adjustments based on the feed-
back from network measurements. Even though the 
heuristic approaches are simple, accurate, and 
applicable to most networks, it may take a very long 
time for these heuristic approaches to optimize the 
network performance to meet the preset 
requirement(s), which are typically measured in rare 
events. 

1.2. Contribution 
This paper introduces a brand new performance 

optimization technique based on Importance 
Sampling theory. This new optimization approach is 
applicable to all networks as long as: 1) the network 
behavior, such as the probability of buffer overflow, 
the probability of packet loss, etc, can be described 
by stochastic events. 2) The network input, such as 
the network’s input traffic flow, can be modeled as a 
stochastic process. 3) There is the capability to 
change the network input in terms of changing the 
attributes, such as the mean and the variance, of the 
input process. It is well known that most 
communication networks can meet these three 
conditions. 

This Importance Sampling based approach is 
faster, simpler, and more universally applicable than 
the existing traffic engineering approaches. It can 
also carry out end-to-end network performance 
analysis under self-similar traffic model where many 
of the existing analytical approaches become 
intractable. 

2. Importance Sampling Classical 
Application 

 
We will first start with classical application of 

Importance Sampling theory. 
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Figure 1 Network Behavior Under Different Input 
Processes 

In Figure 1, X and Y are two random 
processes modeling two different input traffic flows 
to the same network. Assume X and Y have the same 
class of distribution (in this paper, we assume the 
distribution is self-similar Fractal Gaussian Noise 
[5][4]). The only thing different between the two 
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process are their mean values: the mean of X is v, and 
the mean of Y is vo. Twisted amount (m*) is the 
difference between v and vo. IA() is an event 
occurrence indicator function. In a specific time slot 
or a specific simulation replication run, when IA =1, it 
implies the event occurred and IA =0 implies event 
did not occur. In this paper, the event of interest is the 
buffer overflow event. 
 Assume there are only a few overflow 
occurrences (rare events) in the network under X.  As 
a result, a long period of time or many simulation 
replication runs are needed to accurately measure the 
probability of overflow.  Assume vo > v, then, there 
will be more overflow in the network if traffic 
process Y is applied. Thus, the amount of time 
required to measure overflow probability becomes 
smaller. 

The Importance Sampling theorem states 
[9]: 
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where NY is the number of simulation replication runs 
executed; )( yfY  is the pdf of the input process Y; 

)(xf X  is the pdf of the input process X; AI  is the 
indicator of event occurrences when Y is applied to 
the network. With the captured trace of event A 
(which will take a shorter time to collect) and the 
likelihood ratio L (a ratio of the two 

distributions:
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X ), the expected probability of 

event A occurrences in the network, with X as the 
network input, can be found even when we have 
applied Y as the network input.  
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is used to approximate (1). Thus, by applying 
Importance Sampling, we have reduced the amount 
of simulation time required to get the simulation 
result. 
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Figure 2 Importance Sampling in Rare Event 
Simulation Summary 
 

Figure 2 shows a summary of  the application of 
Importance Sampling in speeding up rare event 
simulation. We start with a known “original” input 
process X with a fixed mean value of v. We try to 
find an input process Y (twisted process) with mean 
of vo that will make overflow events occur more 
often. Importance Sampling based optimization is a 
“reverse” of this concept. 

3. Importance Sampling in Network 
Performance Optimization  

Previously, v is known and fixed. vo is changed. 
Now, vo is known and fixed, v is changed. We treat 
the current input to the network as the twisted 
process. We try to find the original input process X 
such that when X is applied into the network, the 
probability of overflow in the network meets a 
predefined requirement.  
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Figure 3 Importance Sampling based Traffic 
Engineering Process 

Figure 3 is a graphical view of the IS 
approach. In order to calculate the likelihood ratio, 
the IS based approach starts with the capturing of a 
trace of the current network input traffic flow and a 
trace of buffer overflow occurrences currently in the 
network. The number of replication runs used in the 
simulation run (NY) is also recorded. Equation (2) 
indicates that  
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The “twisted”/”shifted” input process now 

models the traffic flow currently being applied to the 
network. Therefore, iAI  is the overflow occurrence 

trace that was captured. As a result, the term iAI  in 
equation (2) is fixed. The NY term in (2) is also 
captured and therefore it is fixed.  The only term 
remaining in (2) that is not fixed is the likelihood 
ratio iL . Since the likelihood ratio is a ratio of the 
two input process’ distributions, and the two 
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distributions are only different in their mean values 
(by the twisted amount m*): 

The probability of buffer overflow, when the 
“original” input traffic process is applied to the 
network, can be made into anything desired by 
setting the twisted amount m* to the appropriate 
value. No more simulation is required since 
everything needed to solve equation (2) have been 
collected or has been set.  

Since vo=v+m*, when using different values of 
twisted amount (m*), the mean rate (v) of the 
“original” traffic process will take on different 

values. As a result,
~

'XP  in equation (2) represents the 
probability of buffer overflow when the network is 
under different “original” network traffic processes 
(X), each with different mean values (v). By reducing 
the current input traffic (Y)’s mean rate to match the 
mean rate of any one of those “original” input 
processes, the current input process becomes that 
specific “original” input process since the two 
processes only differ by their mean values. Therefore, 
(2) can predict the network behavior, in terms of the 
probability of buffer overflow, when the mean rate of 
the network input traffic changes. This capability 
makes the performance optimization extremely easy: 
By collecting the overflow occurrences and input 
traffic trace, we can calculate how the probability of 
overflow will change as we change the mean rate of 
the incoming traffic.  

4. Simulation Results 
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Figure 4 Input Traffic Process Shift/Twist 

The random input process generated by an 
existing FGN traffic generator has zero mean and 
unity variance. Since we want to predict how the 
network will behave if the mean value of the current 
network input is reduced, as a result, the mean values 
of the FGN processes, after the adjustments are 
made, are not positive, as shown in Figure 4. Because 
the Lindley equation +

− −+= )( 1 µkkk XQQ [4] 
is used to model the queue behavior, the queue size 
depends on the difference between the instantaneous 
incoming traffic rate (Xk) and the service rate ( µ ); 
therefore, a negative mean valued input process is 
valid.  

Tandem Queue topologies are used in the 
simulation. Both buffers has the size of 50 units. 
Service rate for Buffer 1 is 0.8 units/sec and service 
rate for buffer 2 is 0.62 units/sec. The traffic source 
has a Hurst Parameter [5] of 0.8. 

4.1.1. Probability of Overflow 
The new IS approach is used to predict the end-

to-end probability of overflow in the network. Monte 
Carlo [10] Simulation is used to verify the prediction. 
As it can be seen in Figure 5, the prediction is fairly 
accurate.  Most existing analytical approaches can 
not handle this kind of end to end performance 
analysis, especially under self-similar traffic model. 
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Figure 5  End-to-end Probability of Overflow  

We also predict the probability of overflow 
in Q1 and Q2, individually. As it can be seen Figure 
6, even though Q1 is congested (with overflow), the 
prediction on the second queue is still very accurate, 
as it can be seen in Figure 6. 
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Tandem Queue, Q2, H1=0.8 B1=50 B2=50 C1=0.8 C2=0.62
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Figure 6 Tandem Queue, individual Probability of 
Overflow 

4.1.2.  Time Consumption 
As the network event of interest becomes more 

and more rare during optimization, it will take more 
and more time for heuristic based optimization 
approaches to measure it. The beauty of using 
Importance Sampling is that when we first collecting 
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the samples, the network event could still be very 
frequent. After the necessary traces are collected, the 
rest are pure off-line calculation.  The time required 
is extremely short. Assume other optimization 
processes are able to achieve their target in one try 
(in one Monte Carlo run), and we compare this time  
with the time used by the IS approach. 
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Figure 7 Simulation Time Comparison 

Figure 7 shows the simulation times 
required for traditional optimization approach (Monte 
Carlo) versus the IS approach. The simulation time is 
recorded in units of minutes. Because of the huge 
difference in the simulation time, the simulation 
times are plotted in the logarithm scale.  

5. Conclusions 
Using Importance Sampling theory in traffic 

engineering is a simple and effective way of 
predicting how the behavior of the network will 
change if network inputs are changed. The simulation 
results in this paper verified that this new approach is 
accurate in predicting the probability of overflow in a 
network with self-similar input traffic under different 
input traffic mean rates.  

For complex networks, the Importance Sampling 
based performance optimization technique is more 
applicable because it does not require the knowledge 
of the internal details or internal actives (whether if 
there are overflow in upstream nodes) of a network. 
The Importance Sampling based approach can also 
perform end-to-end performance predictions in which 
some of the analytical approach can not perform 
under self-similar traffic model.  
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