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Abstract— The objective was to assess the effectiveness of the 
weight-elimination cost function in improving classification 
performance of artificial neural networks (ANNs), and to 
observe how changing the a priori distribution of the training set 
affects network performance. Back-propagation feed-forward 
ANNs with and without weight-elimination estimated mortality 
for coronary artery surgery patients. The ANNs were trained 
and tested on cases with 32 input variables describing the 
patient’s medical history; the output variable was in-hospital 
mortality (mortality rates: training 3.7%, test 3.8%). Artificial 
training sets with mortality rates of 20, 50 and 80% were 
created to observe the impact of training with a higher-than-
normal prevalence. When the results were averaged, weight-
elimination networks achieved higher sensitivity rates than 
those without weight-elimination. Networks trained on higher-
than-normal prevalence achieved higher sensitivity rates at the 
cost of lower specificity and correct classification. The weight-
elimination cost function can improve the classification 
performance when the network is trained with a higher-than-
normal prevalence. A network trained with a moderately high 
artificial mortality rate (artificial mortality rate of 20%) can 
improve the sensitivity of the model without significantly 
affecting other aspects of the model’s performance. The ANN 
mortality model achieved comparable performance as additive 
and statistical models for coronary surgery mortality estimation 
in the literature. 

 
Index Terms— Coronary artery bypass graft surgery, 

decision-making, neural networks, pattern classification.  
 

I. INTRODUCTION 

Risk models are developed to help identify the factors that 
increase the likelihood of a particular outcome. The 

search for an effective method of mortality risk stratification 
for coronary artery surgery patients began in 1986 after the 
Health Care Financing Administration in the United States 

began releasing raw statistics on the mortality rate of 
Medicare coronary artery bypass grafting (CABG) patients in 
American hospitals. The stated objective was to inform 
patients about the quality of care at various hospitals and to 
help them make knowledgeable decisions to attain the best 
service and treatment possible [1]. This data, from the point 
of view of the hospitals and surgeons, did not consider the 
patient’s severity of illness before undergoing surgery.  

Categorizing the patients into different levels of risk 
provides a more accurate view of the quality of surgical care, 
and can potentially be used as a decision-aid to assess a 
patient’s risk of mortality before surgery. The models are used 
to observe changes in the characteristics of the patient 
population over a period of years, effects of changes in 
surgical, pre- and postoperative procedures, and statistical 
variations from institution to institution. The heart surgery 
patient population is a particularly difficult group to classify 
as there are few defining characteristics that easily identify 
whether a patient will survive the surgery or not [2]. 

Cardiac surgery mortality models can easily make accurate 
estimations about low-risk patients, while the higher-risk 
patients are poorly stratified. Because the models are not yet 
sufficiently accurate, a patient should not be withheld 
treatment even if the mortality risk model suggests a high-
risk outcome. These models are decision-aid tools, and the 
final decision should always be based on a clinician’s 
expertise. 

 

II. BACKGROUND 
There are several challenges associated with CABG patient 

databases. Since surgeons are generally successful at 
identifying patients who are unsuitable for surgery, CABG 
databases have low mortality rates (usually less than 5%). 
This means that little information exists about the patients 
who do not survive CABG surgery, making it difficult to 
develop a model that discriminates well between survivors 
and nonsurvivors. Current models have difficulty classifying 
high-risk patients, therefore this work was focused 
particularly on increasing the sensitivity of the model, that is, 
the correct classification of the nonsurvivors (those who died 
in-hospital following surgery).  
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summarizes the effect of changing the a priori distribution of 
the training set on the performance of the artificial neural 
network (ANN), and presents findings on the classification 
performance of weight-elimination ANNs compared to their 
no weight-elimination counterparts. Artificially changing the 
a priori statistics of the datasets is an attempt to combat the 
problems that arise with the low representation of the 
nonsurvivors of CABG surgery when estimating in-hospital 
mortality using ANNs. Changing the distribution of the 
training dataset by entering the cases of the under-represented 
class multiple times into the artificial dataset can result in 
higher sensitivities for ANNs trained on datasets with higher 
a priori statistics. This indicates that “doping” a training set 
may aid in the classification of the nonsurvivors in the test set 
meaning that the model’s sensitivity with the test set will be 
higher [7].  

 

III. METHODOLOGY 
Previous approaches to mortality risk stratification for 

CABG patients include additive models (such as Parsonnet 
[8] and the Cleveland Clinic [9]), statistical models (Bayesian 
models [10] and logistic regression [11]) and artificial neural 
networks (probabilistic neural networks based on Bayesian 
theory [2] and multilayer perceptrons [12]). Pliam et al. [13] 
completed a comparative analysis with the San Francisco 
Heart Institute database (also used for the current 
experiments) using the Parsonnet, Cleveland Clinic, Bayesian 
and logistic regression models. These will be used as a 
standard for comparison of our ANN’s performance.  

A. Network Architecture 
The ANN used in the experiments carried out for this 

paper had the following characteristics: Back-propagation 
training algorithm, fully-connected feed-forward weight 
connections, hyperbolic tangent transfer function, three-layer 
architecture (input-hidden-output layers), and the weight-
elimination cost function.  

1) Weight-elimination cost function: One approach to solve 
the problem of overfitting is to add a complexity term to the 
cost function. Two cost functions have proven to reduce 
memorization: weight-decay and weight-elimination [14], 
[15]. Weight-decay limits the size of the connection weights, 
thereby penalizing large weights. The effect is a more stable 
network, because the output has less variance. Weight-decay 
is actually contained within the weight-elimination formula. 
Contrary to weight-decay, weight-elimination tries to reduce 
the small weights to zero (in other words, possibly 
eliminating the variables associated with these weights from 
consideration). This approach is well-suited for network 
pruning by eliminating variables that offer little or no 
assistance in estimating the correct outcome [3], [4], [14], 
[16]. The small weights only add unwanted “white noise” to 

the model. These cost functions work best when using a large 
initial network structure, relatively small initial weights, and 
a relatively small learning rate [14]. We followed these 
guidelines in our experiments.  

By reducing the number of connection weights and hence 
the model’s complexity using the weight-elimination penalty 
term, we expect to improve the network’s classification 
performance. The weight-elimination cost function is shown 
in (1). The penalty term in weight-elimination (the second 
term) “counts the number of parameters, and minimizes the 
sum of performance error and the number of weights by 
backpropagation” [17].  
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E(W) is the combined cost function that includes the initial 

cost function, E0(W) (here, the sum of squared errors), and the 
weight-elimination term (the second term). Here, W 
represents the weight vector, 8 is the weight-decay constant, 
and wij indicates the individual weight of the ANN.  

The role of the weight-decay constant, 8, is to determine 
the relative importance of the weight-elimination term. 
Larger values of 8 mean that a weight must be closer to zero 
to be considered a part of the “noise” distribution and 
increase the “pressure” on small weights to further reduce 
their size. Choosing a value of 8 that is too small will not 
affect the network. When 8 is too large, all weights are forced 
to zero [17]. The value of 8 is generally chosen ad hoc. 
Several trials need to be run to observe how the network is 
responding. The value is increased if the weights are not 
diminishing or decreased if all the weights are forced to zero.  

The scale parameter, w0, defines the sizes of “large” and 
“small” weights. This scale parameter must be chosen by the 
user. When w0 is small, the small weights will be forced to 
zero resulting in fewer large weights (i.e., weight-
elimination). A large w0 causes many small weights to 
remain, and limits the size of large weights (i.e., weight-
decay) [17].  

B. The Coronary Surgery Database 
The San Francisco Heart Institute cardiac database has 

7050 patients who underwent all types of open-heart surgery 
between January 1, 1985 and June 30, 1994 [13]. All of the 
variables available for this research are categorical except the 
patient’s age and the date of surgery, which are continuous. 
The only surgical cases included in this analysis were those 
patients who underwent CABG surgery, CABG plus valve 
surgery, or CABG plus repair surgery [13]. The total number 
of cases in this reduced dataset was 6325. Out of those 6325 
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cases, there were 248 deaths giving an overall mortality rate 
of 3.9%.  

To reduce the impact of changing patient profiles and 
clinical practice guidelines over time, only patients who 
underwent surgery between 1986 and 1991 were included in 
this analysis. There were only nine patient cases collected in 
1985, so these cases were deleted because they were not 
representative of the CABG surgeries in 1985. As well, due to 
the technical advances introduced at the hospital in 1990-91, 
patients in 1992 and afterwards were also excluded (2790 
cases). After removing cases with missing values, a more 
homogeneous database spanning the years of 1986-1991 with 
3427 patient cases remained (mortality rate of 3.7%, or 127 
deaths). The network had 32 input variables with information 
about the patient’s medical history, and the output variable 
was in-hospital mortality [6], [7]. The input variables were 
chosen based on univariate analysis, and other variables that 
are commonly used in coronary surgery mortality risk models 
[13]. Table I presents the prevalence of each of the categorical 
or binary variables in the database. If the patient had the 
particular condition, the variable was scored as 1, if not it was 
scored as -1.  

The application of the ANN algorithm with weight-
elimination to a medical database has given successful results 
in a previous study [3]. For CABG surgery outcomes, the 
patients who do not survive the operation generally represent 
less than 5% of the database. This poses serious difficulties 
for the intended ANN to be investigated, as shown by 
preliminary results [3], [4]. A region of inconsistent network 
performance (i.e., sometimes the network would learn 
patterns and at other times it would classify everything as 
belonging to the group with the highest a priori probability) 
was discovered when the under-represented class made up 
between 8 and 15% of the cases [4]. At representations of less 
than 8%, the ANN failed to learn anything. Instead, it 
classified all patients as belonging to the larger outcome 
class. The technique of changing the a priori statistics of the 
training set provides a solution to some of the challenges 
faced when dealing with a drastically under-represented 
outcome in a two-class problem [4], [18].  

C. Creation of the Artificial Datasets 
There are two methods of artificially altering the patient 

database: randomly remove the survivor cases until the 
representation of the nonsurvivor cases is sufficiently high 
[18]-[20], or randomly copy the nonsurvivor cases until their 
representation in the database is sufficiently high. We chose 
the latter technique because there was no loss of potentially 
valuable information about the survivors that may enhance 
their correct classification, and we had not found articles 
detailing experiments using this approach. Given the limited 
number of cases in this database, in particular cases of 
nonsurvivors, it was preferable to increase the number of 
nonsurvivors rather than decrease the number of survivors in 

the database so that we m
possible.  

VARIAB

Variable Definition 

date of surgery 
patient’s age 
female gender 
mitral value disease operation 

aortic value disease operation 
emergent/urgent priority for surge
failed percutaneous transluminal 
angioplasty prior to surgery 
reoperation 
renal disease 
ventricular aneurysm 
left main disease 
ejection fraction: 
   normal 
   moderate 
   severe 
mitral valve regurgitation 
aortic value stenosis 
tricuspid valve disease 
hypertension 
pre-operative intraaortic balloon p
previous myocardial infarction 
evolving myocardial infarction 
history of congestive heart failure
unstable angina 
cerebrovascular disease 
peripheral vascular disease 
triple vessel disease 
obesity 
small stature 
chronic obstructive pulmonary di
diabetes 
cardiogenic shock 
hypercholesterolemia 
previous cerebrovascular acciden
anemia 

a These are continuous variables
 Date of surgery: range Jan 1
 Patient’s age: range 22 to 91
 

The objective was to ar
nonsurvivors (and hence th
set. To achieve this goa
according to their outcome:
was necessary due to the sm
to ensure that the desired d
First, the database was rand
test sets (two-thirds and o
these sets were further subd
surgery and those who d
formulated from these “cate

To artificially increase t
the datasets, a simple p
sampling with replacement
can affect the performance
cases in the training and t
the number of cases, a
nonsurvivors for the parti
TABLE I 
LE DESCRIPTIONS 

Prevalence (%) 
a 

a 

24.7 
2.1 
3.1 

ry 22.9 
coronary 4.7 

10.0 
6.2 
0.3 
19.5 
 
66.0 
25.0 
9.0 
4.1 
2.5 
0.1 
62.1 

ump 4.2 
53.2 
1.3 

 10.2 
62.9 
11.9 
12.1 
74.0 
10.7 
1.8 

sease 13.2 
22.8 
0.7 
53.1 

t 3.9 
16.5 

.  
/86 to Dec 31/91, mean Apr 22/89 
 years, mean 63.8 years 
aintained as large a database as 

tificially increase the number of 
e mortality rate) in the training 
l, the datasets were separated 
 death or survival. This approach 
all number of nonsurvivors, and 

istribution could be achieved [21]. 
omly separated into training and 
ne-third, respectively), and then 
ivided into those who survived the 
id not. The artificial sets were 
gorized” datasets.  
he percentage of nonsurvivors in 
rogram that performed random 
 was used. Since the sample size 
 of a model, the total number of 
est sets was kept constant. Given 
nd the desired percentage of 
cular dataset, it was possible to 
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determine how many patients who did not survive the surgery 
would be included in that particular set. Artificial training 
sets with mortality rates of 20, 50 and 80% were created. The 
nonsurvivor and survivor cases were chosen separately, but 
the patient records were chosen randomly with replacement. 
In addition to these artificial datasets, another 30 different 
artificial test sets with the true distribution were created. 
These additional test sets were used for the bootstrap 
approach to provide a number of datasets upon which to test 
the ANN. The results were averaged over the 31 test sets that 
were unknown to the network.  

D.  Adjustable Network Parameters and Measures of 
Performance 
The ANN parameters that were optimized to the best of the 

ability of this network were the learning rate, momentum, 
weight-elimination scale factor, weight-decay constant, error 
ratio, number of hidden nodes, and output error weighting 
factor. Sensitivity was chosen as the key measure of 
performance for these experiments, because nonsurvivors 
(high-risk patients) are more difficult to classify than 
survivors (low-risk patients). The important criteria for 
identifying the best-performing ANN were: highest 
sensitivity, highest specificity, and highest correct 
classification rate. Although a constant predictor (a simple 
statistical tool that classifies all cases as belonging to the class 
with the highest a priori probability) would have a higher 
correct classification rate (accuracy), it was not considered as 
clinically useful as a model with a higher sensitivity. The area 
under the Receiver Operating Characteristic (ROC) curves 
was also recorded for the training and test sets.  

Table II shows a confusion matrix to help visualize and 
interpret the results. The correct classification rate identifies 
the rate at which the model correctly classifies the data into 
their proper categories. This is calculated by summing the 
number of cases that were correctly classified into their 
respective classes (the number of true positives, TP, plus the 
number of true negatives, TN, and dividing by the total 
number of cases in the dataset (TP+TN)/total cases). The 
sensitivity of the model identifies the percentage of subjects 
who die following surgery and are correctly classified as 
dying. The formula  for sensitivity is TP/(FN + TP) where FN 
represents the number of false negatives. Specificity is the 
percentage of patients who survive and are correctly classified 
as surviving, and can be calculated using the following 
formula: TN/(TN + FP) where FP is the number of false 
positives. Both the sensitivity and specificity are affected by 
the prevalence of the situation under investigation [22].  

The area under the ROC curve assesses the ability of the 
model to discriminate between outcomes. Since this measure 
does not require a predefined decision threshold, it may also 
be used to discover the optimal cutpoint for the test [23]. It is 
a plot of the model’s sensitivity versus one minus its 
specificity. The generated ROC curve is a visual description 

of the operating points and 
and false positive rates. Thi
threshold value of the outpu
[24]. Despite being a well-a
the area under the ROC 
prevalence of the outcome o

CONF

       
  NO

NOT PRESENT trueModel 
Output PRESENT fals

 

ROC curve analysis on
problems since the genera
perfect model would be repr
step function. This would i
positive rate are equal to o
The ROC curve of a red
positive diagonal line, wher
false positive rate, and offe
guessing. Thus, the closer 
function, the better the mo
coronary artery surgery mod
[26]. 
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error ratio, output error w
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test sets for each experime
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A.  Different Training Se
This analysis involves

performance on the true di
with the true distribution (i
test sets) or artificial train
mortality rates. The questio
higher-than-normal prev
performance on the test sets

The results reported in T
higher-than-normal preval
outcome noticeably improv
ANN using the test data at
TABLE II 
USION MATRIX 

                  Correct Output 
T PRESENT PRESENT 
 negative (TN) false negative (FN) 
e positive (FP) true positive (TP) 
potential tradeoff between the true 
s curve is obtained by varying the 
t node across its range of values 
ccepted measure of performance, 
curve can be influenced by the 
f interest [25]. 
ly works for two output class 
ted curve is two-dimensional. A 
esented by an ROC curve that is a 
ndicate that all values of the true 
ne (i.e., no classification error). 

undant classifier is a 45-degree 
e the true positive rate equals the 
rs no improvement over random 
the ROC curve resembles a step 
del is. Typical ROC values for 
els range from 0.72 to 0.76 [12], 

RESULTS 
arize the parameter settings and 
etworks. Table III provides the 
ich the best performance was 
initial weights, number of hidden 
s adjustable parameters, weight-
ination scale factor, momentum, 
eighting factor, and the cut off 
a summary of the performance 
st set performance: sensitivity, 
rea under the ROC curve. The 

n) performance of the 31 different 
nt, and the standard deviation of 
sets were the same size with the 

t Distributions 
 a comparison of the ANN 
stribution test sets when training 
.e., a mortality rate similar to the 
ing sets with 20, 50 and 80% 
n here is: Does training with a 

alence improve the ANN 
 with the true mortality rate?  
able IV show that training with a 
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ed the mean sensitivity of the 

 the cost of poorer results for the 
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other performance measures; we also observe that there is 
only a moderate reduction in mean specificity and accuracy 
when the training set has an artificial mortality rate of 
20%[7]. However, when training with a 50% mortality rate, 
the specificity and accuracy drop off dramatically. The results 
from training with an 80% mortality rate are not shown in 
Table IV because in every model developed, there was 100% 
sensitivity and 0% specificity – not a useful classifier because 
there is no distinction between survivors and nonsurvivors.  

B.  Weight-elimination Technique 
The weight-elimination networks with the true mortality 

rate and the 20% mortality rate were compared with their no 
weight-elimination counterparts that used only the sum of 
squared errors cost function, and the results of this analysis 
are presented in Table V. The goal of the weight-elimination 
cost function is to reduce the size of the connection weights to 
eliminate less useful input variables. Theoretically, this 
course of action of reducing the number of weights in the 
network, and hence the network’s complexity, is expected to 
improve the network’s classification performance [3], [5], 
[14]. Of course, the question here is: Does weight-elimination 
improve ANN classification performance with this particular 
database? 

The results of Table V indicate that the use of the weight-
elimination cost function did improve the ANN’s 
classification performance of the nonsurvivors (the 
sensitivity) without a dramatic effect (if any) on the other 
performance parameters. Although the error bounds overlap 
when training and testing with the true mortality rates, the 
mean sensitivity for the weight-elimination ANNs was higher 
than that of the networks not using the weight-elimination 

cost function (with weight-elimination, 10.85 ± 4.38%, 
without weight-elimination 8.94 ± 4.54%). The improved 
sensitivity using the weight-elimination cost function is more 
pronounced when comparing the networks trained using the 
artificial test set with a 20% mortality rate and tested on the 
true mortality rate (with weight-elimination 43.55 ± 7.59%, 
without weight-elimination 24.05 ± 7.89%). Here, the error 
bounds do not overlap.  

TABLE III 
NETWORK SETTINGS 

Experiment Train MR = 3.7% 
Test MR = 3.8% 

Train MR = 20% 
Test MR = 3.8% 

Train MR = 50% 
Test MR = 3.8% 

number of hidden layers 1 1 1 
initial weightsa W1=rands()*1 

B1=rands()*1 
W2=rands()*0.1 
B2=rands()*0.1 

W1=rands()*1 
B1=rands()*1 
W2=rands()*0.1 
B2=rands()*0.1 

W1=rands()*1 
B1=rands()*1 
W2=rands()*0.1 
B2=rands()*0.1 

hidden nodes 9 7 4 
learning rate 0.001 0.001 0.0001 
learning rate increment 1.003 1.003 1.003 
learning rate decrement 1 1 1.001 
weight-decay constantb 0.0003 from the beginning 0.0001 from the beginning 0.0008 initially, after 200 

epochs 0.0009 
weight-elimination scale factor 0.15 0.10 0.20 
momentum 0.75 0.88 0.80 
error ratio 1.02 1.02 1.03 
output error weighting factor 1 1 1.1 
Cutoff value 0 0 0 

MR = mortality rate 
aMatlab code where W1 refers to the weights connecting the input layer to the hidden layer and B1 is the bias weight of this layer. W2 refers to the weights 

connecting the hidden layer to the output layer and B2 is the bias weight. Rands()*1 and rands()*0.1 indicate that the initial weights are assigned random values 
which are multiplied by either 1 or 0.1 to scale the weights appropriately.  

bWeigend et al. [14] recommended increasing the value of the weight-elimination constant after a period of time to improve the pruning of the weights. this 
approach was not always useful, hence the reason that it was not used during experiments with MR = 3.7% and MR = 20%.  
 

C.  Comparison with Other Models in the Literature 
In order to assess the ANN model’s performance with 

respect to other models in the literature, we compared our 
results to those of Pliam et al. [13] whose database we used. 
One difference is that our model used a subset of the database 
to account for changes in clinical practice, whereas Pliam and 
his colleagues used the entire database of patients who 
underwent CABG surgery, CABG plus valve surgery and 
CABG plus repair surgery. There are no models for 
estimating in-hospital mortality following CABG surgery in 
the literature that were developed using neural networks. 
Table VI shows the results of the ANN models presented here 
and the results for the models based on the Parsonnet model, 
the Cleveland Clinic model, Bayesian theory and logistic 
regression as found by Pliam et al. [13].  

The standard deviation of the results for the ANN and the 
statistical models overlap in most cases. This indicates that 
the differences between the models is not significant. 
Although the mean ROC values are lower for the neural 
networks, as mentioned previously, ROC values are still 
affected by the prevalence of the outcomes [25]. It was 
possible to attain slightly higher ROC values for the ANN 
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(near 0.80), however, the 
and the network learning 
pattern, classification p
learning, high sensitivity a
but reported a slightly lowe

 

V. INTERPRET

An important point 
misclassification. For exam
not survive surgery (but 
different associated cost t
actual fact the patient 
misclassification costs, ac
measure of model perform
accuracy was reported 
interpretation. A satisfacto
specificity and accuracy wo

One of the limitations
specificity that occurred
increased, and sometimes 
Certainly, the best model
high specificity, whereas th
a lower specificity at the c
with this dilemma, we ne
evaluating the classificatio
criterion should attempt
maintaining high specific

have high correct classification rates, and presumably larger 
areas under the ROC curves indicating overall good 
performance.  

The ANN trained with a moderately higher prevalence 
(mortality rate of 20%) is of more clinical value than the 
model trained with a 50% mortality rate because more of the 
nonsurvivors are correctly classified without a significant 
impact on the classification of survivors.  

 

EVALUATION OF THE WE

Train M
Test MR

Experiment 

WE 

Sensitivity (%) 10.9 ± 4.4 
Specificity (%) 98.3 ± 0.4 
Accuracy (%) 95.0 ± 0.4 
Area under 
ROC (test) 

0.57 ± 0.03 

Area under 
ROC (training) 

0.63 

MR = mortality rate 
ROC = receiving operating cha
WE = weight-elimination 

 

TABLE VI 
COMPARISON OF ANN PERFORMANCE WITH OTHER MODELS FROM THE 

LITERATURE 
Researchers Risk models Area under ROC 

curve 

Models presented in this 
article 

Train MR = 3.7% 
Test MR = 3.8% 
Train MR = 20% 
Test MR = 3.8% 
Train MR = 50% 
Test MR = 3.8% 

0.57 ± 0.03 
 
0.72 ± 0.04 
 
0.75 ± 0.04 

Pliam et al. [13] Parsonnet  0.80 ± 0.02 
 Cleveland Clinic 0.80 ± 0.02 
 SFHI Bayesian 0.83 ± 0.02 
 SFHI logistic 

regression 
0.80 ± 0.02 

MR = mortality rate 
ROC = receiver operating characteristic curve 

 

EXPERIMENTAL TEST RE

Experiment Train 
MR=3.7%

Test MR=3
Sensitivity (%) 10.9 ± 4.4 
Specificity (%) 98.3 ± 0.4 
Accuracy (%) 95.0 ± 0.4 
Area under 
ROC (test) 

0.57 ± 0.03

Area under 
ROC (training) 

0.63 

MR = mortality rate 
ROC = receiver operating char
TABLE V 
IGHT-ELIMINATION COST FUNCTION 
R = 3.7% 
 = 3.8% 

Train MR = 20% 
Test MR = 3.8% 

No WE WE No WE 

8.9 ± 4.5 43.6 ± 7.6 24.1 ± 7.9 
99.3 ± 0.2 93.8 ± 0.8 93.2 ± 0.7 
95.9 ± 0.3 91.9 ± 0.8 90.6 ± 0.7 
0.55 ± 
0.03 

0.72 ± 0.04 0.69 ± 
0.04 

0.66 0.90 0.93 

racteristic curve 
TABLE IV 
SULTS WITH WEIGHT-ELIMINATION 

 
 

.8% 

Train  
MR=20% 

Test MR=3.8% 

Train  
MR = 50% 

Test MR=3.8% 
43.6 ± 7.6 71.7 ± 7.3 
93.8 ± 0.8 69.1 ± 1.2 
91.9 ± 0.8 69.2 ± 1.0 

 0.72 ± 0.04 0.75 ± 0.04 

0.90 0.87 

acteristic curve 
classification performance suffered 
was erratic. Based on the learning 
erformance showed progressive 
nd high specificity for the test set, 
r ROC value.  

ATION OF THE RESULTS 
to consider is the cost of 
ple, predicting that a patient will 
the patient actually lives) has a 
han foretelling survival, when in 
dies. When there are different 
curacy is not necessarily the best 
ance [27]. With the CABG data, 

knowing the limitations of its 
ry balance between the sensitivity, 
uld be ideal. 
 of this study is the decreased 
 when the mortality rate was 
when weight-elimination was used. 
 would have high sensitivity and 
e models presented here permitted 
ost of a higher sensitivity. To deal 
ed to develop a new criterion for 
n performance of models. This new 
 to maximize sensitivity while 
ity. The resulting models would 

VI. CONCLUSIONS 
Training a feed-forward back-propagation ANN with 

weight-elimination with a moderately higher-than-normal 
prevalence of the under-represented outcome (artificial 
mortality rate of 20%) can improve the sensitivity of an ANN 
without dramatically affecting other aspects of the network’s 
performance.  When the artificial mortality rate of the 
training set is increased to 50%, the increase in sensitivity of 
the model does not outweigh the increased misclassification 
cost of survivors (i.e. decreased specificity). As well, a 
training set mortality rate which is too high (high mortality 
rate and low survival rate) skews the data towards estimating 
death and makes accurate estimations difficult. This is similar 
to the problem when the data are highly skewed towards 
survival (low mortality rate and high survival rate).  

When the results are averaged, weight-elimination ANNs 
achieved higher sensitivity rates than ANNs using only the 
sum of squared errors cost function. These results show that 
the weight-elimination cost function can improve the correct 
classification of nonsurvivors in this CABG patient database, 
since more nonsurvivors were correctly classified when using 
the weight-elimination cost function.  

Compared to additive and statistical models in the 
literature, our neural network achieved similar classification 
performance results. In the case of all prediction models, the 
prevalence of the outcome influences the classification ability 
of the model. When a database is highly skewed toward one 
outcome, the predictive ability of the model may be weakened 
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[15] A. Krogh and J.A. Hertz, “A simple weight decay can improve 
generalization,” in Lippmann RP, Moody J, Touretzky, eds. Advances in 
Neural Information Processing Systems 4 (NIPS’91), San Matteo: 
Morgan Kaufmann, pp. 950-957, 1992. 

[4]-[7], [28].  

A. Future Work 
Our research group is working toward developing a new 

criterion for assessing network performance. This new 
criterion will attempt to optimize both the sensitivity and the 
specificity of a model to ensure that the best results are 
achieved.  
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decision-support systems for intensive care units using artificial neural 
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Hospitals should begin to include in their CABG database 
patients who are refused surgery [6]. If this data were 
available, it would be possible to compare the patients who 
are refused CABG surgery with those who undergo the 
surgery and die. It may be possible to use this information to 
improve identifying characteristics that put a CABG surgery 
patient at a higher risk of death. 
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