
Meta-Level Coordination for Solving Negotiation Chains in
Semi-Cooperative Multi-Agent Systems

Xiaoqin Zhang
Computer and Information Science Department

University of Massachusetts at Dartmouth
x2zhang@umassd.edu

Victor Lesser
Computer Science Department

University of Massachusetts at Amherst
lesser@cs.umass.edu

ABSTRACT
A negotiation chain is formed when multiple related negotiations
are spread over multiple agents. In order to appropriately order
and structure the negotiations occurring in the chain so as to op-
timize the expected utility, we present an extension to a single-
agent concurrent negotiation framework. This work is aimed at
semi-cooperative multi-agent systems, where each agent has its
own goals and works to maximize its local utility; however, the per-
formance of each individual agent is tightly related to other agent’s
cooperation and the system’s overall performance. We introduce
a pre-negotiation phase that allows agents to transfer meta-level
information. Using this information, the agent can build a more
accurate model of the negotiation in terms of modeling the rela-
tionship of flexibility and success probability. This more accurate
model helps the agent in choosing a better negotiation solution in
the global negotiation chain context. The agent can also use this in-
formation to allocate appropriate time for each negotiation, hence
to find a good ordering of all related negotiations. The experimen-
tal data shows that these mechanisms improve the agents’ and the
system’s overall performance significantly.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms
Algorithms, Performance, Experimentation

Keywords
Negotiation Chain, Flexibility, Multi-Linked Negotiation

1. INTRODUCTION
Sophisticated negotiation for task and resource allocation is cru-

cial for the next generation of multi-agent systems (MAS) applica-
tions. Groups of agents need to efficiently negotiate over multiple
related issues concurrently in a complex, distributed setting where
there are deadlines by which the negotiations must be completed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’07 May 14–18 2007, Honolulu, Hawai’i, USA.
Copyright 2007 IFAAMAS .

This is an important research area where there has been very little
work done.

This work is aimed at semi-cooperative multi-agent systems,
where each agent has its own goals and works to maximize its lo-
cal utility; however, the performance of each individual agent is
tightly related to other agent’s cooperation and the system’s overall
performance. There is no single global goal in such systems, ei-
ther because each agent represents a different organization/user, or
because it is difficult/impossible to design one single global goal.
This issue arises due to multiple concurrent tasks, resource con-
strains and uncertainties, and thus no agent has sufficient knowl-
edge or computational resources to determine what is best for the
whole system [11]. An example of such a system would be a virtual
organization [12] (i.e. a supply chain) dynamically formed in an
electronic marketplace such as the one developed by the CONOISE
project [5]. To accomplish tasks continuously arriving in the virtual
organization, cooperation and sub-task relocation are needed and
preferred. There is no single global goal since each agent may be
involved in multiple virtual organizations. Meanwhile, the perfor-
mance of each individual agent is tightly related to other agents’ co-
operation and the virtual organization’s overall performance. The
negotiation in such systems is not a zero-sum game, a deal that
increases both agents’ utilities can be found through efficient nego-
tiation. Additionally, there are multiple encounters among agents
since new tasks are arriving all the time. In such negotiations, price
may or may not be important, since it can be fixed resulting from a
long-term contract. Other factors like quality and delivery time are
important too. Reputation mechanisms in the system makes cheat-
ing not attractive from a long term viewpoint due to multiple en-
counters among agents. In such systems, agents are self-interested
because they primarily focus on their own goals; but they are also
semi-cooperative, meaning they are willing to be truthful and col-
laborate with other agents to find solutions that are beneficial to all
participants, including itself; though it won’t voluntarily scarify its
own utility in exchange of others’ benefits.

Another major difference between this work and other work on
negotiation is that negotiation, here, is not viewed as a stand-alone
process. Rather it is one part of the agent’s activity which is tightly
interleaved with the planning, scheduling and executing of the agent’s
activities, which also may relate to other negotiations. Based on
this recognition, this work on negotiation is concerned more about
the meta-level decision-making process in negotiation rather than
the basic protocols or languages. The goal of this research is to de-
velop a set of macro-strategies that allow the agents to effectively
manage multiple related negotiations, including, but not limited to
the following issues: how much time should be spent on each ne-
gotiation, how much flexibility (see formal definition in Formula 3)
should be allocated for each negotiation, and in what order should

50

978-81-904262-7-5 (RPS) c©2007 IFAAMAS

the negotiations be performed. These macro-strategies are different
from those micro-strategies that direct the individual negotiation
thread, such as whether the agent should concede and how much
the agent should concede, etc[3].

In this paper we extend a multi-linked negotiation model [10]
from a single-agent perspective to a multi-agent perspective, so that
a group of agents involved in chains of interrelated negotiations can
find nearly-optimal macro negotiation strategies for pursuing their
negotiations. The remainder of this paper is structured in the fol-
lowing manner. Section 2 describes the basic negotiation process
and briefly reviews a single agent’s model of multi-linked negotia-
tion. Section 3 introduces a complex supply-chain scenario. Sec-
tion 4 details how to solve those problems arising in the negotiation
chain. Section 5 reports on the experimental work. Section 6 dis-
cusses related work and Section 7 presents conclusions and areas
of future work.

2. BACKGROUND ON MULTI-LINKED NE-
GOTIATION

In this work, the negotiation process between any pair of agents
is based on an extended version of the contract net [6]: the initia-
tor agent announces the proposal including multiple features; the
responding agent evaluates it and responds with either a yes/no an-
swer or a counter proposal with some features modified. This pro-
cess can go back and forth until an agreement is reached or the
agents decide to stop. If an agreement is reached and one agent
cannot fulfill the commitment, it needs to pay the other party a de-
commitment penalty as specified in the commitment. A negotiation
starts with a proposal, which announces that a task (t) needs to be
performed includes the following attributes:

1. earliest start time (est): the earliest start time of task t; task
t cannot be started before time est.

2. deadline (dl): the latest finish time of the task; the task needs
to be finished before the deadline dl.

3. minimum quality requirement (minq): the task needs to be
finished with a quality achievement no less than minq.

4. regular reward (r): if the task is finished as the contract re-
quested, the contractor agent will get reward r.

5. early finish reward rate (e): if the contractor agent can finish
the task earlier than dl, it will get the extra early finish reward
proportional to this rate.

6. decommitment penalty rate (p): if the contractor agent can-
not perform the task as it promised in the contract or if the
contractee agent needs to cancel the contract after it has been
confirmed, it also needs to pay a decommitment penalty (p∗r)
to the other agent.

The above attributes are also called attribute-in-negotiation which
are the features of the subject (issue) to be negotiated, and they are
domain-dependent. Another type of attribute 1 is the attribute-of-
negotiation, which describes the negotiation process itself and is
domain-independent, such as:
1These attributes are similar to those used in project management;
however, the multi-linked negotiation problem cannot be re-
duced to a project management problem or a scheduling prob-
lem. The multi-linked negotiation problem has two dimensions:
the negotiations, and the subjects of negotiations. The negotiations
are interrelated and the subjects are interrelated; the attributes of
negotiations and the attributes of the subjects are interrelated as
well. This two-dimensional complexity of interrelationships distin-
guishes it from the classic project management problem or schedul-
ing problem, where all tasks to be scheduled are local tasks and no
negotiation is needed.

1. negotiation duration (δ(v)): the maximum time allowed for
negotiation v to complete, either reaching an agreed upon
proposal (success) or no agreement (failure).

2. negotiation start time (α(v)): the start time of negotiation v.
α(v) is an attribute that needs to be decided by the agent.

3. negotiation deadline (ε(v)): negotiation v needs to be fin-
ished before this deadline ε(v). The negotiation is no longer
valid after time ε(v), which is the same as a failure outcome
of this negotiation.

4. success probability (ps(v)): the probability that v is suc-
cessful. It depends on a set of attributes, including both
attributes-in-negotiation (i.e. reward, flexibility, etc.) and
attributes-of-negotiation (i.e. negotiation start time, negotia-
tion deadline, etc.).

An agent involved in multiple related negotiation processes needs
to reason on how to manage these negotiations in terms of ordering
them and choosing the appropriate values for features. This is the
multi-linked negotiation problem [10] :

DEFINITION 2.1. A multi-linked negotiation problem is de-
fined as an undirected graph (more specifically, a forest as a set
of rooted trees): M = (V, E), where V = {v} is a finite set
of negotiations, and E = {(u, v)} is a set of binary relations on
V . (u, v) ∈ E denotes that negotiation u and negotiation v are
directly-linked. The relationships among the negotiations are de-
scribed by a forest, a set of rooted trees {Ti}. There is a relation
operator associated with every non-leaf negotiation v (denoted as
ρ(v)), which describes the relationship between negotiation v and
its children. This relation operator has two possible values: AND
and OR. The AND relationship associated with a negotiation v
means the successful accomplishment of the commitment on v re-
quires all its children nodes have successful accomplishments. The
OR relationship associated with a negotiation v means the suc-
cessful accomplishment of the commitment on v requires at least
one child node have successful accomplishment, where the multi-
ple children nodes represent alternatives to accomplish the same
goal.

Multi-linked negotiation problem is a local optimization prob-
lem. To solve a multi-linked negotiation problem is to find a nego-
tiation solution (φ,ϕ) with optimized expected utility EU(φ,ϕ),
which is defined as:

EU(φ, ϕ) =
2

n

X

i=1

P (χi, ϕ) ∗ (R(χi, ϕ) − C(χi, φ, ϕ)) (1)

A negotiation ordering φ defines a partial order of all nego-
tiation issues. A feature assignment ϕ is a mapping function
that assigns a value to each attribute that needs to be decided in
the negotiation. A negotiation outcome χ for a set of negotiations
{vj}, (j = 1, ..., n) specifies the result for each negotiation, either
success or failure. There are a total of 2n different outcomes for n
negotiations: {chii}, (i = 1, ..., 2n). P (χi,ϕ) denotes the prob-
ability of the outcome χi given the feature assignment ϕ, which
is calculated based on the success probability of each negotiation.
R(χi,ϕ) denotes the agent’s utility increase given the outcome χi

and the feature assignment ϕ, and C(χi,φ,ϕ) is the sum of the de-
commitment penalties of those negotiations, which are successful,
but need to be abandoned because the failure of other directly re-
lated negotiations; these directly related negotiations are performed
concurrently with this negotiation or after this negotiation accord-
ing to the negotiation ordering φ.

The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07) 51

Computer
Producer

CPU

Other Tasks

Distribution
Center

Memory
Producer

Transporter

Deliver Hardware

Order Memory (2)

Other Tasks

Other Tasks

Order Chips

PC
Manufacturer

Order Store

Order Memory (1)

Other Tasks

Purchase Memory
Customer

Deliver Computer

Hardware
Computer

Order Purchase

Figure 1: A Complex Negotiation Chain Scenario

A heuristic search algorithm [10] has been developed to solve
the single agent’s multi-linked negotiation problem that produces
nearly-optimal solutions. This algorithm is used as the core of the
decision-making for each individual agent in the negotiation chain
scenario. In the rest of the paper, we present our work on how to
improve the local solution of a single agent in the global negotiation
chain context.

3. NEGOTIATION CHAIN PROBLEM
Negotiation chain problem occurs in a multi-agent system, where

each agent represents an individual, a company, or an organization,
and there is no absolute authority in the system. Each agent has
its own utility function for defining the implications of achieving
its goals. The agent is designed to optimize its expected utility
given its limited information, computational and communication
resources. Dynamic tasks arrive to individual agents, most tasks
requiring the coordination of multiple agents. Each agent has the
scheduling and planning ability to manage its local activities, some
of these activities are related to other agents’ activities. Negotiation
is used to coordinate the scheduling of these mutual related activ-
ities. The negotiation is tightly connected with the agent’s local
scheduling/planning processes and is also related to other negoti-
ations. An agent may be involved in multiple related negotiations
with multiple other agents, and each of the other agents may be
involved in related negotiations with others too.

Figure 1 describes a complex negotiation chain scenario. The
Store, the PC manufacturer, the Memory Producer and the Dis-
tribution Center are all involved in multi-linked negotiation prob-
lems. Figure 2 shows a distributed model of part of the negotiation
chain described in Figure 1. Each agent has a local optimization
problem - the multi-linked negotiation problem (represented as an
and-or tree), which can be solved using the model and procedures
described in Section 2. However, the local optimal solution may
not be optimal in the global context given the local model is neither
complete or accurate. The dash line in Figure 2 represents the con-
nection of these local optimization problem though the common
negotiation subject.

Negotiation chain problem O is a group of tightly-coupled local
optimization problems:

O = {O1, O2,On}, Oi denotes the local optimization problem
(multi-linked negotiation problem) of agent Ai

Agent Ai’s local optimal solution Slo
i maximizes the expected lo-

cal utility based on an incomplete information and assumptions
about other agents’ local strategies - we defined such incomplete
information and imperfect assumptions of agent i as Ii):

Uexp
i (Slo

i , Ii) ≥ Uexp
i (Sx

i , Ii) for all x "= lo.

However, the combination of these local optimal solutions {Slo
i } :

< Slo
1 , Slo

2 ,Slo
n > can be sub-optimal to a set of better local

optimal solutions {Sblo
i } : < Sblo

1 , Sblo
2 ,Sblo

n > if the global
utility can be improved without any agent’s local utility being de-
creased by using {Sblo

i }. In other words, {Slo
i } is dominated by

{Sblo
i } ({Slo

i } ≺ {Sblo
i }) iff:

Ui(< Slo
1 , Slo

2 ,Slo
n >) ≤ Ui(< Sblo

1 , Sblo
2 ,Sblo

n >) for
i = 1, ...n and

Pn
i=1

Ui(< Slo
1 , Slo

2 ,Slo
n >) <

Pn
i=1

Ui(< Sblo
1 , Sblo

2 ,Sblo
n >)

There are multiple sets of better local optimal solutions: {Sblo1

i },
{Sblo2

i }, ... {Sblom

i }. Some of them may be dominated by others.
A set of better local optimal solutions {S

blog

i } that is not domi-
nated by any others is called best local optimal. If a set of best
local optimal solutions {S

blog

i } dominates all others, {Sblog

i } is
called globally local optimal. However, sometimes the globally
local optimal set does not exist, instead, there exist multiple sets
of best local optimal solutions. Even if the globally local optimal
solution does exist in theory, finding it may not be realistic given
the agents are making decision concurrently, to construct the per-
fect local information and assumptions about other agents (Ii) in
this dynamic environment is a very difficult and sometimes even
impossible task.

The goal of this work is to improve each agent’s local model
about other agents (Ii) through meta-level coordination. As Ii be-
come more accurate, the agent’s local optimal solution to its local
multi-linked negotiation problem become a better local optimal so-
lution in the context of the global negotiation chain problem. We
are not arguing that this statement is a universal valid statement
that holds in all situations, but our experimental work shows that
the sum of the agents’ utilities in the system has been improved by
95% on average when meta-level coordination is used to improve
each agent’s local model Ii. In this work, we focus on improving
the agent’s local model through two directions. One direction is
to build a better function to describe the relationship between the
success probability of the negotiation and the flexibility allocated
to the negotiation. The other direction is to find how to allocate
time more efficiently for each negotiation in the negotiation chain
context.

4. NEW MECHANISM - META-LEVEL CO-
ORDINATION

In order for an agent to get a better local model about other
agents in the negotiation chain context, we introduce a pre-negotiation
phase into the local negotiation process. During the pre-negotiation
phase, agents communicate with other agents who have tasks con-
tracting relationships with them, they transfer meta-level informa-
tion before they decide on how and when to do the negotiations.
Each agent tells other agents what types of tasks it will ask them
to perform, and the probability distributions of some parameters of
those tasks, i.e. the earliest start times and the deadlines, etc. When
these probability distributions are not available directly, agents can
learn such information from their past experience. In our experi-
ment described later, such distributed information is learned rather
than being directly told by other agents. Specifically, each agent
provides the following information to other related agents:

• Whether additional negotiation is needed in order to make a
decision on the contracting task; if so, how many more ne-
gotiations are needed. negCount represents the total number
of additional negotiations needed for a task, including addi-
tional negotiations needed for its subtasks that happen among
other agents. In a negotiation chain situation, this informa-
tion is being propagated and updated through the chain until

52 The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07)

E: Order Hardware F: Deliver Computer H: Get Memory I: Deliver Hardware I: Deliver Hardware

F: Deliver Computer

G: Get CPU

E: Get Hardware
and

TransporterDistribution Center

A: Purchase Computer B: Purchase Memory

C: Order Computer D: Order Memory

Store Agent PC Manufacturer

and

C: Order Computer

Figure 2: Distributed Model of Negotiation Chains

every agent has accurate information. Let subNeg(T) be a
set of subtasks of task T that require additional negotiations,
then we have:

negCount(T) = |subNeg(T)| +
X

t∈subNeg(T)

(negCount(t))

(2)
For example, in the scenario described in Figure 1, for the
distribution center, task Order Hardware consists of three
subtasks that need additional negotiations with other agents:
Order Chips, Order Memory and Deliver Hardware. How-
ever, no further negotiations are needed for other agents to
make decision on these subtasks, hence the negCount for
these subtasks are 0. The following information is sent to the
PC manufacturer by the distribution center:
negCount(Order Hardware) = 3
For the PC manufacturer task Order Computer contains two
subtasks that requires additional negotiations: Deliver Com-
puter and Order Hardware. When the PC manufacturer re-
ceives the message from the Distribution Center, it updates
its local information:
negCount(Order Computer) = 2+
negCount(Deliver Computer)(0)+
negCount(Order Hardware)(3) = 5
and sends the updated information to the Store Agent.

• Whether there are other tasks competing with this task and
what is the likelihood of conflict. Conflict means that given
all constrains, the agent cannot accomplish all tasks on time,
it needs to reject some tasks. The likelihood of conflict Pcij

between a task of type i and another task of type j is calcu-
lated based on the statistical model of each task’s parameters,
including earliest start time (est), deadline (dl), task dura-
tion (dur) and slack time (sl), using a formula [7]: Pcij =
P (dli − estj ≤ duri + durj ∧ dlj − esti ≤ duri + durj)

When there are more than two types of tasks, the likelihood
of no conflict between task i and the rest of the tasks, is cal-
culated as: PnoConflict(i) =

Qn
j=1,j "=i(1 − Pcij)

For example, the Memory Producer tells the Distribution Center
about the task Order Memory. Its local decision does not involve
additional negotiation with other agents (negCount = 0), how-
ever, there is another task from the Store Agent that competes with
this task, thus the likelihood of no conflict is 0.5 (PnoConflict =
0.5). On the other hand, the CPU Producer tells the Distribution
Center about the task Order Chips: its local decision does not in-
volve additional negotiation with other agents, and there are no
other tasks competing with this task (PnoConflict = 1.0) given
the current environment setting. Based on the above information,
the Distribution Center knows that task Order Memory needs more
flexibility than task Order Chips in order to be successful in ne-
gotiation. Meanwhile, the Distribution Center would tell the PC
Manufacturer that task Order Hardware involves further negotia-
tion with other agents (negCount = 3), and that its local decision
depends on other agents’ decisions. This piece of information helps
the PC Manufacturer allocate appropriate flexibility for task Order
Hardware in negotiation. In this work, we introduce a short period

and

Produce_Computer

Get_Software
Install_Software

Deliver_Computer

Memory ProducerHardware Producer Transporter

Consumer Agent

Order_Computer

Order_Memory

Order_Hardware

Order_Hardware

process−time: 3

Distribution Center PC Manufacturer

Order_Chips

Deliver_HardwareGet_Parts

process−time: 11

enables

enables
process−time: 4

process−time: 3

and and

enables
process−time: 4

and

enables

process−time: 3

process−time: 2

Figure 3: Task Structures of PC Manufacturer and Distribu-
tion Center

for agents to learn the characteristics of those incoming tasks, in-
cluding est, dl, dur and sl, which are used to calculate Pcij and
PnoConflict for the meta-level coordination. During system per-
formance, agents are continually monitoring these characteristics.
An updated message will be send to related agents when there is
significant change of the meta-level information.

Next we will describe how the agent uses the meta-level infor-
mation transferred during the pre-negotiation phase. This informa-
tion will be used to improve the agent’s local model, more specif-
ically, they are used in the agent’s local decision-making process
by affecting the values of some features. Especially, we will be
concerned with two features that have strong implications for the
agent’s macro strategy for the multi-linked negotiations, and hence
also affect the performance of a negotiation chain significantly. The
first is the amount of flexibility specified in the negotiation param-
eter. The second feature we will explore is the time allocated for
the negotiation process to complete. The time allocated for each
negotiation affects the possible ordering of those negotiations, and
it also affects the negotiation outcome. Details are discussed in the
following sections.

4.1 Flexibility and Success Probability
Agents not only need to deal with complex negotiation problems,

they also need to handle their own local scheduling and planning
process that are interleaved with the negotiation process. Figure
3 shows the local task structures of the PC Manufacturer and the
Distribution Center. Some of these tasks can be performed locally
by the PC manufacturer, such as Get Software and Install Software,
while other tasks (non-local tasks) such as Order Hardware and
Deliver Computer need to be performed by other agents.The PC
Manufacturer needs to negotiate with the Distribution Center and
the Transporter about whether they can perform these tasks, and if
so, when and how they will perform them.

When the PC Manufacturer negotiates with other agents about
the non-local task, it needs to have the other agents’ arrangement
fit into its local schedule. Since the PC Manufacturer is dealing
with multiple non-local tasks simultaneously, it also needs to en-
sure the commitments on these non-local tasks are consistent with
each other. For example, the deadline of task Order Hardware can-
not be later than the start time of task Deliver Computer. Figure 4

The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07) 53

Order_Hardware

Deliver_Computer

[34, 40]

process time: 4

process time: 3

[11, 28]

[11, 28]

process time: 11

Get_Software

Install_Software

[28, 34]

process time: 2

Order_Computer starts at time 11 and finishes by 40

Figure 4: A Sample Local Schedule of the PC Manufacturer

shows a sample local schedule of the PC Manufacturer. According
to this schedule, as long as task Order Hardware is performed dur-
ing time [11, 28] and task Deliver Computer is performed during
time [34, 40], there exists a feasible schedule for all tasks and task
Order Computer can be finished by time 40, which is the dead-
line promised to the Customer. These time ranges allocated for
task Order Hardware and task Deliver Computer are called con-
sistent ranges; the negotiations on these tasks can be performed
independently within these ranges without worrying about conflict.
Notice that each task should be allocated with a time range that is
large enough to accommodate the estimated task process time. The
larger the range is, the more likely the negotiation will succeed, be-
cause it is easier for the other agent to find a local schedule for this
task. Then the question is, how big should this time range be? We
defined a quantitative measure called flexibility:

Given a task t, suppose the allocated time range for t is [est, dl],
est is the earliest start time and dl stands for the deadline,

flexibility(t) =
dl − est − process time(t)

process time(t)
(3)

Flexibility is an important attribute because it directly affects the
possible outcome of the negotiation. The success probability of a
negotiation can be described as a function of the flexibility. In this
work, we adopt the following formula for the success probability
function based on the flexibility of the negotiation issue:

ps(v) = pbs(v) ∗ (2/π) ∗ (arctan(f(v) + c))) (4)

This function describes a phenomenon where initially the likeli-
hood of a successful negotiation increases significantly as the flex-
ibility grows, and then levels off afterward, which mirrors our ex-
perience from previous experiments. pbs is the basic success prob-
ability of this negotiation v when the flexibility f(v) is very large.
c is a parameter used to adjust the relationship. Different func-
tion patterns can result from different parameter values, as shown
in Figure 5. This function describes the agent’s assumption about
how the other agent involved in this negotiation would response to
this particular negotiation request, when it has flexibility f(v). This
function is part of the agent’s local model about other agents. To
improve the accuracy of this function and make it closer to the re-
ality, the agent adjusts these two values according to the meta-level
information transferred during pre-negotiation phase. The values
of c depends on whether there is further negotiation involved and
whether there are other tasks competing with this task for common
resources. If so, more flexibility is needed for this issue and hence
c should be assigned a smaller value. In our implementation, the
following procedure is used to calculate c based on the meta-level
information negCount and PnoConflict:

if(PnoConflict > 0.99) // no other competing task
c = Clarge − negCount

else // competing task exists
c = Csmall

This procedure works as follows: when there is no other competing

!"

!"#$

!"#%

!"#&

!"#'

!(

!(#$

!" !(!$!) !% !*

+
,
-
-
.
+
+
!/
01
2
3
2
454
67

85.94245467

-1:/304+1;!18!<488.0.;6!+,--.++!/0123245467!8,;-641

=2+>(#"?!->$
=2+>(#"?!->*
=2+>"#@A?!->(

Figure 5: Different Success Probability Functions

task, c depends on the number of additional negotiations needed.
The more additional negotiations that are needed, the smaller value
c has, hence more flexibility will be assigned to this issue to en-
sure the negotiation success. If no more negotiation is needed, c is
assigned to a large number Clarge, meaning that less flexibility is
needed for this issue. When there are other competing tasks, c is
assigned to a small number Csmall, meaning that more flexibility
is needed for this issue. In our experimental work, we have Clarge

as 5 and Csmall as 1. These values are selected according to our
experience; however, a more practical approach is to have agents
learn and dynamically adjust these values. This is also part of our
future work.

pbs is calculated based on PnoConflict, f(v) (the flexibility of v
in previous negotiation), and c, using the reverse format of equation
4.

pbs(v) = min(1.0, PnoConflict(v)∗ (π/2)/(arctan(f(v)+ c))) (5)

For example, based on the scenario described above, the agents
have the following values for c and pbs based on the meta-level
information transferred:

• PC Manufacturer, Order Hardware: pbs = 1.0, c = 2;
• Distribution Center, Order Chips: pbs = 1.0, c = 5;
• Store Agent, Order Memory: pbs = 0.79, c = 1;

Figure 5 shows the different patterns of the success probability
function given different parameter values. Based on such patterns,
the Store Agent would allocate more flexibility to the task Order
Memory to increase the likelihood of success in negotiation. In the
agent’s further negotiation process, formula 4 with different param-
eter values is used in reasoning on how much flexibility should be
allocated to a certain issue.

The pre-negotiation communication occurs before negotiation,
but not before every negotiation session. Agents only need to com-
municate when the environment changes, for example, new types
of tasks are generated, the characteristics of tasks changes, the ne-
gotiation partner changes, etc. If no major change happens, the
agent can just use the current knowledge from previous communi-
cations. The communication and computation overhead of this pre-
negotiation mechanism is very small, given the simple information
collection procedure and the short message to be transferred. We
will discuss the effect of this mechanism in Section 5.

4.2 Negotiation Duration and Deadline
In the agent’s local model, there are two attributes that describe

how soon the agent expects the other agent would reply to the nego-
tiation v: negotiation duration δ(v) and negotiation deadline ε(v)

54 The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07)

Table 1: Examples of negotiations (δ(v): negotiation duration,
s.p.: success probability)

index task-name δ(v) reward s.p. penalty
1 Order Hardware 4 6 0.99 3
2 Order Chips 4 1 0.99 0.5
3 Order Memory 4 1 0.80 0.5
4 Deliver Hardware 4 1 0.70 0.5

. These two important attributes that affect the negotiation solu-
tion. Part of the negotiation solution is a negotiation ordering φ
which specifies in what order the multiple negotiations should be
performed. In order to control the negotiation process, every nego-
tiation should be finished before its negotiation deadline, and the
negotiation duration is the time allocated for this negotiation. If a
negotiation cannot be finished during the allocated time, the agent
has to stop this negotiation and consider it as a failure. The deci-
sion about the negotiation order depends on the success probability,
reward, and decommitment penalty of each negotiation. A good ne-
gotiation order should reduce the risk of decommitment and hence
reduce the decommitment penalty. A search algorithm has been
developed to find such negotiation order described in [10].

For example, Table 1 shows some of the negotiations for the Dis-
tribution Center and their related attributes. Given enough time (ne-
gotiation deadline is greater than 16), the best negotiation order is:
4 → 3 → 2 → 1. The most uncertain negotiation (4: Deliver
Hardware) is performed first. The negotiation with highest penalty
(1: Order hardware) is performed after all related negotiations (2,
3, and 4) have been completed so as to reduce the risk of decommit-
ment. If the negotiation deadline is less than 12 and greater than 8,
the following negotiation order is preferred: (4, 3, 2) → 1, which
means negotiation 4, 3, 2 can be performed in parallel, and 1 needs
to be performed after them. If the negotiation deadline is less than
8, then all negotiations have to be performed in parallel, because
there is no time for sequencing negotiations.

In the original model for single agent [10], the negotiation dead-
line ε(v) is assumed to be given by the agent who initiates the con-
tract. The negotiation duration δ(v) is an estimation of how long
the negotiation takes based on experience. However, the situation
is not that simple in a negotiation chain problem. Considering the
following scenario. When the customer posts a contract for task
Purchase Computer, it could require the Store Agent to reply by
time 20. Time 20 can be considered as the negotiation deadline
for Purchase Computer. When the Store Agent negotiates with the
PC Manufacturer about Order Computer, what negotiation dead-
line should it specify? How long the negotiation on Order Com-
puter takes depends on how the PC Manufacturer handles its local
multiple negotiations: whether it replies to the Store Agent first or
waits until all other related negotiations have been settled. How-
ever, the ordering of negotiations depends on the negotiation dead-
line on Order Computer, which should be provided by the Store
Agent. The negotiation deadline of Order Computer for the PC
Manufacturer is actually decided based on the negotiation duration
of Order Computer for the Store Agent. How much time the Store
Agent would like to spend on the negotiation Order Computer is its
duration, and also determines the negotiation deadline for the PC
Manufacturer.

Now the question arises: how should an agent decide how much
time it should spend on each negotiation, which actually affects the
other agents’ negotiation decisions. The original model does not
handle this question since it assumes the negotiation duration δ(v)
is known. Here we propose three different approaches to handle
this issue.

1. same-deadline policy. Use the same negotiation deadline for
all related negotiations, which means allocate all available
time to all negotiations:
δ(v) = total available time
For example if the negotiation deadline for Purchase Com-
puter is 20, the Store Agent will tell the PC Manufacturer to
reply by 20 for Order Computer (ignoring the communica-
tion delay). This strategy allows every negotiation to have
the largest possible duration, however it also eliminates the
possibility of performing negotiations in sequence - all ne-
gotiations need to be performed in parallel because the total
available time is the same as the duration of each negotiation.

2. meta-info-deadline policy. Allocate time for each negotia-
tion according to the meta-level information transferred in
the pre-negotiation phase. A more complicated negotiation,
which involves further negotiations, should be allocated ad-
ditional time. For example, the PC Manufacturer allocates
a duration of 12 for the negotiation Order Hardware, and a
duration of 4 for Deliver Computer. The reason is that the ne-
gotiation with the Distribution Center about Order Hardware
is more complicated because it involves further negotiations
between the Distribution Center and other agents. In our im-
plementation, we use the following procedure to decide the
negotiation duration δ(v):

if(negCount(v) >= 3) // more additional nego-
tiation needed

δ(v) = (negCount(v)−1)∗basic neg cycle
else if(negCount(v) > 0) // one or two addi-
tional negotiations needed

δ(v) = 2 ∗ basic neg cycle
else //no additional negotiation

δ(v) = basic neg cycle + 1

basic neg cycle represents the minimum time needed for a
negotiation cycle (proposal-think-reply), which is 3 in our
system setting including communication delay. One addi-
tional time unit is allocated for the simplest negotiation be-
cause it allows the agent to perform a more complicated rea-
soning process in thinking. Again, the structure of this proce-
dure is selected according to experience, and it can be learned
and adjusted by agents dynamically.

3. evenly-divided-deadline policy. Evenly divide the available
time among the n related negotiations:
δ(v) = total available time/n
For example, if the current time is 0, and the negotiation
deadline for Order Computer is 21, given two other related
negotiations, Order Hardware and Deliver Computer, each
negotiation is allocated with a duration of 7.

Intuitively we feel the strategy 1 may not be a good one, because
performing all negotiations in parallel would increase the risk of
decommitment and hence also decommitment penalties. However,
it is not very clear how strategy 2 and 3 perform, and we will dis-
cuss some experimental results in Section 5.

5. EXPERIMENTS
To verify and evaluate the mechanisms presented for the nego-

tiation chain problem, we implemented the scenario described in
Figure 1 . New tasks were randomly generated with decommit-
ment penalty rate p ∈ [0, 1], early finish reward rate e ∈ [0, 0.3],
and deadline dl ∈ [10, 60] (this range allows different flexibilities
available for those sub-contracted tasks), and arrived at the store
agent periodically. We performed two sets of experiments to study

The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07) 55

Table 2: Parameter Values Without/With Meta-level Informa-
tion

fixed-flex meta-info-flex
negotiation pbs pbs c

Order Computer 0.95 1.0 0
Order Memory (1) 0.95 0.79 1
Order Hardware 0.95 1.0 2

Deliver Computer 0.95 1.0 1
Deliver Hardware 0.95 1.0 5

Order Chips 0.95 1.0 1
Order Memory (2) 0.95 0.76 1

Figure 6: Different Flexibility Policies

how the success probability functions and negotiation deadlines af-
fect the negotiation outcome, the agents’ utilities and the system’s
overall utility. In this experiment, agents need to make decision on
negotiation ordering and feature assignment for multiple attributes
including: earliest start time, deadline, promised finish time, and
those attributes-of-negotiation. To focus on the study of flexibility,
in this experiment, the regular rewards for each type of tasks are
fixed and not under negotiation. Here we only describe how agents
handle the negotiation duration and negotiation deadlines because
they are the attributes affected by the pre-negotiation phase. All
other attributes involved in negotiation are handled according to
how they affect the feasibility of local schedule (time-related at-
tributes) and how they affect the negotiation success probability
(time and cost related attributes) and how they affect the expect
utility. A search algorithm [10] and a set of partial order schedul-
ing algorithms are used to handle these attributes.

We tried two different flexibility policies.

1. fixed-flexibility policy: the agent uses a fixed value as the
success probability (ps(v) = pbs(v)), according to its local
knowledge and estimation.

2. meta-info-flexibility policy: the agent uses the function ps(v) =
pbs(v) ∗ (2/π) ∗ (arctan(f(v) + c))) to model the suc-
cess probability. It also adjusts those parameters (pbs(v) and
c) according to the meta-level information obtained in pre-
negotiation phase as described in Section 4. Table 2 shows
the values of those parameters for some negotiations.

Figure 6 shows the results of this experiment. This set of experi-
ments includes 10 system runs, and each run is for 1000 simulating
time units. In the first 200 time units, agents are learning about
the task characteristics, which will be used to calculate the conflict
probabilities Pcij . At time 200, agents perform meta-level infor-
mation communication, and in the next 800 time units, agents use
the meta-level information in their local reasoning process. The
data was collected over the 800 time units after the pre-negotiation

Figure 7: Different Negotiation Deadline Policies

phase 2. One Purchase Computer task is generated every 20 time
units, and two Purchase Memory tasks are generated every 20 time
units. The deadline for task Purchase Computer is randomly gener-
ated in the range of [30, 60], the deadline for task Purchase Mem-
ory is in the range of [10, 30]. The decommitment penalty rate is
randomly generated in the range of [0, 1]. This setting creates mul-
tiple concurrent negotiation chain situations; there is one long
chain:
Customer - Store - PC Manufacturer - Distribution Center - Pro-
ducers - Transporter
and two short chains:
Customer - Store - Memory Producer
This demonstrates that this mechanism is capable of handling mul-
tiple concurrent negotiation chains.

All agents perform better in this example (gain more utility)
when they are using the meta-level information to adjust their local
control through the parameters in the success probability function
(meta-info-flex policy). Especially for those agents in the middle of
the negotiation chain, such as the PC Manufacturer and the Distri-
bution Center, the flexibility policy makes a significant difference.
When the agent has a better understanding of the global negotiation
scenario, it is able to allocate more flexibility for those tasks that
involve complicated negotiations and resource contentions. There-
fore, the success probability increases and fewer tasks are rejected
or canceled (90% of the tasks have been successfully negotiated
over when using meta-level information, compared to 39% when
no pre-negotiation is used), resulting in both the agent and the sys-
tem achieving better performance.

In the second set of experiments studies, we compare three ne-
gotiation deadline policies described in Section 4.2 when using
the meta-info flexibility policy described above. The initial result
shows that the same-deadline policy and the meta-info-deadline
policy perform almost the same when the amount of system work-
load level is moderate, tasks can be accommodated given sufficient
flexibility. In this situation, with either of the policies, most ne-
gotiations are successful, and there are few decommitment occur-
rences, so the ordering of negotiations does not make too much dif-
ference. Therefore, in this second set of experiments, we increase
the number of new tasks generated to raise the average workload
in the system. One Purchase Computer task is generated every
15 time units, three Purchase Memory tasks are generated every

2We only measure the utility collected after the learning phase be-
cause that the learning phase is relatively short comparing to the
evaluation phase, also during the learning phase, no meta-level in-
formation is used, so some of the policies are invalid.

56 The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07)

15 time units, and one task Deliver Gift (directly from the cus-
tomer to the Transporter) is generated every 10 time units. This
setup generates a higher level of system workload, which results
in some tasks not being completed no matter what negotiation or-
dering is used. In this situation, we found the meta-info-deadline
policy performs much better than same-deadline policy (See Fig-
ure 7). When an agent uses the same-deadline policy, all negoti-
ations have to be performed in parallel. In the case that one ne-
gotiation fails, all related tasks have to be canceled, and the agent
needs to pay multiple decommitment penalties. When the agent
uses the meta-info-deadline policy, complicated negotiations are
allocated more time and, correspondingly, simpler negotiations are
allocated less time. This also has the effect of allowing some ne-
gotiations to be performed in sequence. The consequence of se-
quencing negotiation is that, if there is failure, an agent can simply
cancel the other related negotiations that have not been started. In
this way, the agent does not have to pay decommitment penalty for
those canceled negotiations because no commitment has been es-
tablished yet. The evenly-divided-deadline policy performs much
worse than the meta-info-deadline policy. In the evenly-divided-
deadline policy, the agent allocates negotiation time evenly among
the related negotiations, hence the complicated negotiation does not
get enough time to complete.

The above experiment results show that the meta-level informa-
tion transferred among agents during the pre-negotiation phase is
critical in building a more accurate model of the negotiation prob-
lem. The reasoning process based on this more accurate model pro-
duces an efficient negotiation solution, which improves the agent’s
and the system’s overall utility significantly. This conclusion holds
for those environments where the system is facing moderate heavy
load and tasks have relatively tight time deadline (our experiment
setup is to produce such environment); the efficient negotiation is
especially important in such environments.

6. RELATED WORK
Fatima, Wooldridge and Jennings [1] studied the multiple issues

in negotiation in terms of the agenda and negotiation procedure.
However, this work is limited since it only involves a single agent’s
perspective without any understanding that the agent may be part
of a negotiation chain. Mailler and Lesser [4] have presented an ap-
proach to a distributed resource allocation problem where the nego-
tiation chain scenario occurs. It models the negotiation problem as
a distributed constraint optimization problem (DCOP) and a coop-
erative mediation mechanism is used to centralize relevant portions
of the DCOP. In our work, the negotiation involves more compli-
cated issues such as reward, penalty and utility; also, we adopt a
distribution approach where no centralized control is needed. A
mediator-based partial centralized approach has been applied to the
coordination and scheduling of complex task network [8], which is
different from our work since the system is a complete cooperative
system and individual utility of single agent is not concerned at all.
A combinatorial auction [2, 9] could be another approach to solv-
ing the negotiation chain problem. However, in a combinatorial
auction, the agent does not reason about the ordering of negotia-
tions. This would lead to a problem similar to those we discussed
when the same-deadline policy is used.

7. CONCLUSION AND FUTURE WORK
In this paper, we have solved negotiation chain problems by ex-

tending our multi-linked negotiation model from the perspective of
a single agent to multiple agents. Instead of solving the negotiation
chain problem in a centralized approach, we adopt a distributed ap-

proach where each agent has an extended local model and decision-
making process. We have introduced a pre-negotiation phase that
allows agents to transfer meta-level information on related nego-
tiation issues. Using this information, the agent can build a more
accurate model of the negotiation in terms of modeling the rela-
tionship of flexibility and success probability. This more accurate
model helps the agent in choosing the appropriate negotiation solu-
tion. The experimental data shows that these mechanisms improve
the agent’s and the system’s overall performance significantly. In
future extension of this work, we would like to develop mecha-
nisms to verify how reliable the agents are. We also recognize
that the current approach of applying the meta-level information
is mainly heuristic, so we would like to develop a learning mecha-
nism that enables the agent to learn how to use such information to
adjust its local model from previous experience. To further verify
this distributed approach, we would like to develop a centralized
approach, so we can evaluate how good the solution from this dis-
tributed approach is compared to the optimal solution found by the
centralized approach.

8. REFERENCES
[1] S. S. Fatima, M. Wooldridge, and N. R. Jennings. Optimal

negotiation strategies for agents with incomplete information. In
Revised Papers from the 8th International Workshop on Intelligent
Agents VIII, pages 377–392. Springer-Verlag, 2002.

[2] L. Hunsberger and B. J. Grosz. A combinatorial auction for
collaborative planning. In Proceedings of the Fourth International
Conference on Multi-Agent Systems (ICMAS-2000), 2000.

[3] N. R. Jennings, P. Faratin, T. J. Norman, P. O’Brien, B. Odgers, and
J. L. Alty. Implementing a business process management system
using adept: A real-world case study. Int. Journal of Applied
Artificial Intelligence, 2000.

[4] R. Mailler and V. Lesser. A Cooperative Mediation-Based Protocol
for Dynamic, Distributed Resource Allocation. IEEE Transaction on
Systems, Man, and Cybernetics, Part C, Special Issue on
Game-theoretic Analysis and Stochastic Simulation of Negotiation
Agents, 2004.

[5] T. J. Norman, A. Preece, S. Chalmers, N. R. Jennings, M. Luck, V. D.
Dang, T. D. Nguyen, V. Deora, J. Shao, A. Gray, and N. Fiddian.
Agent-based formation of virtual organisations. Int. J. Knowledge
Based Systems, 17(2-4):103–111, 2004.

[6] T. Sandholm and V. Lesser. Issues in automated negotiation and
electronic commerce: Extending the contract net framework. In
Proceedings of the First International Conference on Multi-Agent
Systems (ICMAS95), pages 328–335, 1995.

[7] J. Shen, X. Zhang, and V. Lesser. Degree of Local Cooperation and
its Implication on Global Utility. Proceedings of Third International
Joint Conference on Autonomous Agents and MultiAgent Systems
(AAMAS 2004), July 2004.

[8] M. Sims, H. Mostafa, B. Horling, H. Zhang, V. Lesser, and
D. Corkill. Lateral and Hierarchical Partial Centralization for
Distributed Coordination and Scheduling of Complex Hierarchical
Task Networks. AAAI 2006 Spring Symposium on Distributed Plan
and Schedule Management, 2006.

[9] W. Walsh, M. Wellman, and F. Ygge. Combinatorial auctions for
supply chain formation. In Second ACM Conference on Electronic
Commerce, 2000.

[10] X. Zhang, V. Lesser, and S. Abdallah. Efficient management of
multi-linked negotiation based on a formalized model. Autonomous
Agents and MultiAgent Systems, 10(2):165–205, 2005.

[11] X. Zhang, V. Lesser, and T. Wagner. Integrative negotiation among
agents situated in organizations. IEEE Transactions on System, Man,
and Cybernetics: Part C, Special Issue on Game-theoretic Analysis
and Stochastic Simulation of Negotiation Agents, 36(1):19–30,
January 2006.

[12] Q. Zheng and X. Zhang. Automatic formation and analysis of
multi-agent virtual organization. Journal of the Brazilian Computer
Society: Special Issue on Agents Organizations, 11(1):74–89, July
2005.

The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07) 57

